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Abstract

Multi-view video streaming is an emerging video paradigm that enables new
interactive services, such as 3D video, free viewpoint television, and
immersive teleconferencing. Because of the high bandwidth cost they come
with, multi-view streaming applications can greatly benefit from the use of
network coding, in particular in transmission scenarios such as wireless
network, where the channels have limited capacity and are affected by
losses. In this paper, we address the topic of cooperative streaming of
multi-view video content, wherein users who recently acquired the content
can contribute parts of it to their neighbors by providing linear combinations
of the video packets. We propose a novel method for selection and network
encoding of the transmitted frames based on the users’ preferences for the
different views, and the rate-distortion properties of the stream. Using
network coding enables the users to retrieve the content in a faster and more
reliable manner, and without the need for coordination among the senders.
Our experimental results prove that our preference-based approach provides
a high quality decoding even when the up-link capacity of each node is only a
small fraction of the rate of the stream.

Keywords: Multi-View Video Coding; Network Coding; Video Streaming

1 Introduction

In recent years, the advances in video acquisition, corsfmestransmission, and render-
ing have made possible the development of technologiescdratenhance the viewers’
experience by including the third dimension. While traafitl 2D video offers the viewer
only a passive view of the scene, a more realistic experieanebe obtained through ap-
plications such as 3D video or free view-point selection.cdema productions have al-
ready generated big revenues, but other applications su@Da&V and Free Viewpoint
TV (FTV) [1, 2] are also becoming more desirable due to the increasediaffidity of 3D
displays for home use.

Multi-View Video (MVV) is one of the key elements of these applications: it siets
in the simultaneous representation of a scene captured bgmeras placed in different
spatial positions, called points of view. By using more th&a cameras during video ac-
quisition, adjacent views act like local stereo pairs torgntee stereoscopy to the viewer.
This can be used to synthesize virtual views different froentcquired ones. This function-
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ality is used in FTV where the user interactively controks ¢iewpoint in the scene. On the
other hand, since 3D video could not be deployed if the qupétceived by the user does
not exceed the existing 2D quality standards, the bandwaltktorage and transmission
of the multiple views is accordingly increased.

A first solution for multi-view video transmission, known sisnulcast [3], is to com-
press and send each view independentj). While simple to implement and backward
compatible with the existing infrastructures, this tecjug does not take into account the
redundancy due to the similarities among the views that eanded to further compress
the data. On the other hand, it allows for easier switchirtgvben views, as the lack of
inter-view prediction makes the views independently dedxel

TheMulti-view Video Coding (MVC) extension of the H.264/MPEG-4 AVC standaf [
exploits inter-view dependency in a simple, yet effectivaysas images from other views
(but at the same time instant) can be used as referencesefeuthent frame prediction
(inter-view prediction). This is the only major change adtuced in the MVC extension of
H.264. The MVC extension of HEVC, referred to as MV-HEVC, &skd on very similar
principles p]. With MVC two main coding schemes are particularly worthrmiening:
view progressive and fully hierarchical. In the view praggige architecture, the first view,
called thebase view, is encoded independently from the others. In any other view
each GOP, there is one frame, the V-frame, that is predictedjonly inter-view predic-
tion from the corresponding I-frame in the base view. Foo#iler frames only temporal
prediction is used. In the second architecture, both hibireal temporal prediction and
inter-view prediction are performed for all P/B-frames tfvéews except for the the base
view. These tools allow a rate reduction, for the same stilsgequality, estimated around
50% with respect to the case of independent view coding (Best) [b].

Even though recently a relevant part of the attention of #search in 3D has been
attracted by depth-based formafg({which allow virtual view-point synthesis), the interest
in MVV coding is still very high, as witnessed by the activiby the ad-hoc group on
free viewpoint TV and super-multiview video (i.e. video itnore than 30 views, and
holoscopic video) 8-10]. The quality of synthesized view generated with depth data
still questionable, at such a point that it is still not coetply clear whether depth-based
format have a clear advantage over MVV or super-MVV, abole/lén subjective quality
is consideredq1]. In summary, (super-) MVV seems still being a serious cdat# for
FTV and 3D video serviced p).

Multi-view streaming becomes an even more challenging itaske context of mobile
networking, where the high bitrate issue of multi-view adtstop of the existing prob-
lems of mobile networking. Even though streaming appliwatiare nowadays common-
place, and the technology involved has greatly advancebdrpast few yearsip, 14,
in a wireless network it is difficult to meet the inherent regment of continuous deliv-
ery necessary for an uninterrupted presentation of theeconds the nodes move freely
and independently in all directions —thus, the channel itimmd of the links and the link
themselves are unreliable and erratic— and individual saday connect and disconnect
asynchronouslyl5|.

Also, in the context of a streaming application, it would sidable to have the quality
of the received media degrade gracefully as the network@mvient and resources change
and to tolerate losses to some extent. Even though techsiiqueeovide graceful degrada-
tion and loss immunity exist, these usually require an iasedn the bitrate of the stream,
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a condition that could be difficult to satisfy in a wirelesswerk, where the nodes’ uplink
capacity is typically quite limited.

One positive aspect of wireless networks w.r.t. video stiiag is the inherently broadcast
nature of the medium. This makes more straight-forward fegrader the task of multicas-
ting the content to several receiver, but also allows a singteiver to collect video packet
from several servers.

Recently, good results have been achieved, in the contewmbbfle video streaming, by
exploiting the broadcast nature of the medium through timsiraction of video packet de-
livery overlays [L6,17]. These logical networks, built on top of the actual wirelegtwork
through the cooperation of nodes, allow to provide a stragmservice with good video
quality and graceful degradation. However, these tectesigeere designed for single-view
streams, and relied on the use of Multiple Description CgdMDC) [18], a joint source-
channel coding technique that does not lend itself well tedorgugated with multi-view,
due to its additional bitrate cost, a cost already conshiefar multi-view streams.

In this article, we propose to use network coding for the sblielivery of MVV and
super-MVV over an unreliable network such as a wireless odsv In order to do so,
we design d&ate-Distortion Optimized (RDO) scheduling algorithm that, at each sending
opportunity, selects which video packet has to be addedeatiding window, in such
a way as to minimize the expected video distortion measurddeareceiver. This opti-
mization will be performed by taking into account the prefeses of the users in terms
of required views, an approach already successfully etgquldor video caching of single-
view streams in mobile environmeritd]. Being the wireless medium inherently broadcast,
we exploit the fact that each receiver could be exposed ttipreisenders. We thus ensure
that senders transmit innovative packets. packets with novel information with respect
to those already sent) even though they do not coordinaitegttiBons.

The particularity of the coding structures of the multiwieepresentation reflects in a
non-trivial impact of each coded frame on the overall qyaiit the reconstructed multi-
view content. If this impact is properly captured, it can lsedito design an intelligent
transmission scheme that allocates the limited channelaiiigs in a rate-distortion opti-
mized order gcheduling). In order to effectively disseminate the content to the-asels,
an analogous scheme can be devised to schedule the frantesygmissionZ0].

Network Coding (NC) [21] has been proposed as an elegant and effective solution for
multi-view transmission. In NC, instead of merely relayparkets, the intermediate nodes
of a network send linear combinations of the packets theg Ipagviously received, with
random coefficients taken from a finite field. The coding cogffits, needed to reconstruct
the original packets, are typically sent along the comlbmatas header2p-25], unless
more advanced reconstruction schemes are implementeel iabiver sided6, 27]. Used
as an alternative to traditional routing, NC has proved beia¢ to real-time streaming
applications, both in terms of maximization of the througtgnd in terms of reduction of
the effects of losse2B-33].

In a NC-based transmission system, rather than sendingathepdckets, the users send
mixed packets. The advantage of this technique is that dwaungh the users act inde-
pendently from each other, with high probability each ofntheill contribute innovative
information to the transmissior2(, 34]. In the most common implementation of network
coding, referred to as Practical Network Coding (PNZ9][ the content is divided into
groups of packets known @gnerations, and only packets belonging to the same genera-
tion can be mixed together. In our system each packet cantaily one encoded frame,
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and we only mix frames belonging to the same GOP. The set depaactually used to
generate a mixture is referred to@msling window.

One technique based on the network coding principles has jpegosed by Wanet
al. [35] for peer-to-peer video-on-demand applications. Morendy, Kaoet al. [36] pro-
posed a general framework able to provide an interactieastng service.e., allowing
random access operations to the users. However, neitheesd techniques addresses the
multi-view case, nor takes into account the rate-distartimperties of the stream, nor the
users’ preferences.

Other existing works have tackled the subject of distriduwt@leo services, achieving
similar properties, by proposing to use rateless codescepinally similar to network
coding- for video delivery 37, 38]. However, even though these techniques have been
proposed for video delivery, only the delay requirementsidéo streaming have been
exploited, while our method is tailored for multi-view vidleontent and in particular it uses
the prediction structure of the encoded sequence in itsnigstion algorithm. It should be
noted that in our method, rather than a simple hit-rate mezetion, a proper RDO-based
scheduling is performed in order to provide the users withltlst possible video quality
given the limited channel capacity allocated to each node.

The rest of this article is organized as follows. In S2eve review some recent works
closely related to our problem. Then, in S8ave present the system model, detailing and
motivating our assumptions. In Setwe describe the selection method used to decide
which frames will be included in the coding window of the tsaritting nodes. In Sed,
we present the experimental validation of the proposediigaie and analyze the results.
Finally, in Sec6 we draw our conclusions and point out some directions faréutvork.

2 Related work

Unlike previous works on multi-view streaming rather thandsing on the source encod-
ing of the content, and rather than considering each clisrgraindependent agent, we
study how the distribution of the stream can take advanthgeapriori knowledge about
the different clients, and in particular the fact that thksire common preferences —in this
case, in terms of preferred view.

Examples of work in the context of multi-view streaming ttelte user preferences into
account include the source rate allocation technique m@egpo B9 and the joint source-
channel coding scheme introduced 4],

While these works consider similar applications as oursaddress here a substantially
different problem, in which the multi-view video has beereally encoded, and we must
decide, at each sending opportunity, about which partseottimtent have to be included
in the coding window for transmission. We also consider thgecwhen the preference
estimation used to decide the packet scheduling does rieigrcorrespond to the actual
user preferences.

In our work, we also rely on a network coding scheme that aléwy the prioritization
of certain packets with respect to others. Several workst&that make use of similar
schemes, in which the video stream is divided into layersrafrity and unequal error
protection is given to the different layers using PNC.

For instance, in29 a receiver-driven network coding strategy is proposedgnetihe
receiving peers request packets from classes with varyipgitance. Packet classes are
constructed based on the unequal contribution of the van@eo packets to the overall
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quality of the presentation or in scalable video streamisriflized transmission is achieved
by varying the number of packets from each class that are inseetwork coding opera-
tions. The coding operations are driven by the children adbat determine the optimal
amount of coding allocated to each importance class of tteetdavhich they subscribe.

The work in P9 has later been extended to the case of multi-view vided ih [Cam-
eras’ streams are organized into layered subsets, witteubsganized based on their
priority levels. These prioritized layers are transmitiechn UEP fashion, sending in a
more reliable way more important subsets. Interview depeaigs are built based on the
subsets organization: views from a given subset can depentMiews of the same subset
or lower ones. In this way, since lower subsets are moreyliteebe received than higher
ones, every time a view has to be decoded, most likely theaebée view from which it
depends has been already received.

This work is related to ours both for its use of network codargl its application to
multi-view content. However, there are notable differextoeth in the model of the service
provided to the user and, as a consequence, to the utiligtibmthat is maximized.

In the scenario envisioned in this work, users request vaéntp that are, in general,
synthesized from camera views either by coinciding with trem, or by using depth-
image based rendering on a couple of camera views brackbgrgynthetic viewpoint. The
distortion to minimize depends on the spatial distance betvwthe synthetic view and each
of the camera views used to reconstruct it. Priority, in thiese of a higher redundancy to
insure reception in the face of losses, is defined based artitity of camera view subsets
in reconstructing the synthetic views requested by thesuser

In our work, on the other hand, the users are only interestazhinera viewsi.e., no
view synthesis is used. This implies that, while in the abmentioned work, there are
different combination of received camera views that caisfyathe view request of a user,
with different levels of distortion depending on their diste, in our scheme only the exact
camera view the user is interested in can increase its yudléxperience.

Furthermore, in our scheme priority is not intended in thesseof loss protection, but
rather arrival order. In our scheme, the different treatnoétayers is not intended to dif-
ferentiate the likelihood of their reception, but rathee thelay experienced by the user
before they can start displaying it. For this reason, wiikertetwork coding scheme used
in [4]] varies the number the number of packets from each layerirtdlding window, in
our scheme all packets from lower layers are introduceddrctding window before any
packet of a higher layer is introduced.

Notice that this work only consider the case of aligned angaég spaced cameras, so
that correlation between views decreases with their distdn a more recent workdp], the
same authors extend this model to optimize other settingghis work does not address
the communication aspects.

Another relevant approach to video transmission from mpldtisenders is proposed
in [43], wherein the authors jointly tackled the problem of definan optimal schedule
and an optimal network-coding strategy using a prioritiznetwork coding scheme. Un-
like ours, this work only considers the case of single-vientent, therefore there are no
preferences to be taken into account, and the optimal stdhédunique. Furthermore, in
order to find an optimal solution this technique requiressdeygree of coordination among
the senders, whereas we assume that coordination is nitifléeaisd rely on randomization
in order to circumvent this limitation.

[41] [42) [43[32] [40
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Figure 1 Simulated scenario for each receiver. I(v, k) and I(v, k) are respectively the original and
reconstructed version of frame k of view v. S,,,, m = 1,..., M are the senders (or sources), NC,,

© "

etwork coding modules, C,,, the capacity of the channels, RX is the receiver R’s buffer.

3 System Model

Ino

rder to optimize the rate-distortion performance oftila@smitted content, we select

the frames to be included in the coding window based on tlegiufarity among the users.
Before explaining in detail our proposed technique, in fgistion we list and justify some
assumptions about the system that will be used in the desitdpe dechnique.

From the point of view of the network, we assume that the uasronnected in
a (generally partial) mesh network in which each node caaniilly receive from
multiple servers. This reflects the case of wireless netsvarkd in particular ad-
hoc networks. Furthermore, we assume that the connedirityng the users can be
modeled with a set of independent channels, each of thenmdpavgiven capacity
C, expressed as a fraction of the encoded video bit-rate. Whea 100% each
node is able to transmit all the packets of a GOP in the timzcated to a GOP.
Still, these packets may be lost on the channels. We considemodels for these
channels: a simple packet erasure channel (PEC) with Itess,rand a Gilbert-Elliot
erasure channel (GE), characterized by loss rates in gabbahstated; andeg)
and by transition probabilities s andppg). Notice that each channel does not
necessarily provide sufficient capacity for transferring whole multi-view stream.
Our study will focus on the video quality achieved by a genegceiverR exposed
to M senders or sourcés, . .., Sy;. This scenario is represented in Flg.

From the point of view of the content, we assume that the istigeencoded using
H.264/MVC [5] or a similar inter-view prediction scheme, such as MV-HE}SL

In our experiments, the stream is encoded using the predistiucture depicted in
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Figure 2 Prediction structure used to encode the multi-view stream with temporal and inter-view
prediction. Labels indicate prediction level. This structure provides a good trade-off between
coding efficiency and loss propagation. Each row represents the timeline of a different view.

CECRORCRS

Fig. 2, with M = 5views andN = 8 pictures per view in a GOP. This structure
is a compromise between view progressive and fully hieieatiMVC that uses
inter-view prediction in order to achieve a better codinficefncy, but is not fully
hierarchical in order to reduce the dependencies amongdhreet, thus reducing the
propagation of the effects of losses. However, it shoulddtedthat our study can
easily be extended to other coding techniques and predistiactures of multi-view
content.

e For the user’s preferences, we assume that the choice ofdéferied view for each
user follows the same, known distribution. Notice that,retteough the proposed
method could be applied to any preference model, how thailegrand keeping
track of the preference distribution is performed is owgdite scope of this article,
and shall not be addressed in the following. However, thestepgence may be easily
learned and spread over the network with approaches sitaithnse shown in1[7].

e We assume that the preference distribution does not chaogast over time, that
is, we assume that it can be considered valid for at least tinatidn of a GOP,
defined as an independently decodable seVefil’ frames, as depicted in Fig.
This implies that our system is able to work even when useefepences change as
frequently as once per GOP, which typically lasts less thensecond. Any change
in preferences during a GOP will be taken into account at éxt GOP.

An example of the complete system is shown in gThe video servef sends the
encoded video packets together with side information aB@utharacteristics of the se-
guence. Nodes to 9 relays the video using the proposed system.

We focus on a given node receiving the video sequence f¥brsources (or senders),
performing network coding and relaying the video to dowklirwdes. For example Node
seesM = 4 sourcesi.e. nodesl to 4. Node8 seesM = 2 sourcesij.e. nodes and6. We
propose an algorithm to decide the order of inclusion of #anm the coding window. We
assume (for simplicity) that nodes do not compete for capdit the available capacity
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Figure 3 Example of network for the proposed method. Node s is the encoder. Node 6 sees
M = 4 sources (or senders). Node 8 sees M = 2 sources.

N | eN No. of views

W | €N No. of frames per view in a GOP
B (set) Bi-dimensional frame buffer

7 | €]0,1]Y | Users preferences distribution
M | €N No. of senders
c [0, 1] Capacity pf channel m

" ’ as a fraction of the stream rate
em | [0,1] Packet loss rate of channel m
W | (set) Coding window

T eN Current size of the coding window
D | eR Expected total distortion
D, | €eR Distortion of view v

Table 1 Summary of the notation used in this article.

may be less than the video coding bit-rate. We model eachnetfarcapacity as a percent-
age of the encoded video bit-rate. and that each node hagvéferences according to a
given probability distribution.

4 Proposed Method
In this section we describe our proposed method of netwar&ding for a wireless stream-
ing of multi-view video content based on the users’ prefeesn

As we mentioned in Sed., most practical implementations of NC are achieved by seg-
menting the data flow into generations and combining onlhkegschelonging to the same
generation. Packets are made of the same length by paddinmadkets in a generation
are jointly decoded as soon as enough linearly independenbinations have been re-
ceived, by means of linear system solving. Since the coeffisiare taken from a finite
field, perfect reconstruction is assured.

It has been propose@9] to apply NC to video content delivery, dividing the video
stream into layers of priority and providing unequal errostpction for the different lay-
ers via PNC. Layered coding requires that all users receileast the base layer, hence
all received packets must be stored in a buffer until a sefichumber of independent
combinations are received, which introduces a decodinaydélt may be undesirable in
real-time streaming applications.

There exist several techniques aimed to reduce the decodiag, proposed by both
the NC and the video coding communities. In our technique,use an implementa-
tion of random linear network coding referred toEganding Window Network Coding
(EWNC) [28,32]. The key idea of EWNC is to increase the size of the codingiain
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(i.e., the set of packets in the generation that may appear in ¢c@tibn vectors) for each
new packet. Using Gaussian elimination at the receiver, $iiie method provides instant
decodability of packets. Thanks to this property EWNC idgnable over PNC in stream-
ing applications. Even though PNC could achieve almosairtstecodability using a small
generation size, this would be ineffective in a wirelesswoek, where a receiver could be
surrounded by a large number of senders, and if the size githeration is smaller than the
number of senders, some combinations will necessarilynieatly dependent. On the other
hand, EWNC automatically adapts the coding window sizenatig early decodability, and
innovation (i.e., linear independence) can be achieved if the senders imthédpackets in
the coding window in a different order. However, these asddwould take into account the
RD properties of the video stream. In our previous work, weady successfully applied
EWNC principles to multi-view streaming in the context ofreless networking44], but
we did not take into account the preferences of the usersrmstef displayed view.

As mentioned in Sed, in other works user preferences were used to optimize tee ra
allocation in the encoding process. Here, we show how theybeaused to decide which
parts of the content have to be included in the coding windowrder to optimize the
rate-distortion properties of the transmitted stream.

We model the distribution of users’ preferences with a pbdiig vector p, such thap,
is the probability that a member of the group chooses to watshiv € {1,... N} for the
current GOP.

In our case, the transmitted packets will contain linearloio@tions of frames belonging
to the same GOP. In order to select the order in which the feamik be included in the
coding window, which we denote by/, we proceed as follows. For each GOP, all the
frames of the current GOP are stored in a bi-dimensionaldrauffer B, with N rows,
andW columns, whereV is the number of views antl’ is the per-view time-length of
the GOP. For clarity, a summary of the notation used in thislaris given in Tabl. The
maximum possible size of the coding winddwe,, the generation size, will be the size of
the GOPN W, while the current size of the coding window will be denotedV V.

The organization of the bi-dimensional buffer correspagdb the prediction structure
described in Sec3 and depicted in Fig2 is shown in Fig.4. Notice that the views are
re-arranged to reflect the coding order, so the central vigwg 2 corresponds to view
in Fig. 4, as the other views are predicted upon it.

Algorithm 1 Algorithm used by the nodes to include the frames in the coding

window.

1: procedure SCHEDULEFRAMES

2 G+ N x W; > Size of the generation.

3 for all MV-GOPs do

4 W« 0; > Coding window.
5: forr < 1to G do
6:
7
8
9

F e {feB‘| REF(f) gwwgw};
J* 5}22{Jf:D(WU{f})JFAR(WU{f})};

f* < arandom frame i f|J; = J*};
: W—WU{f}
10: end for
11 end for
12: end procedure
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View

y

Figure 4 Buffer B for N = 5 views and W = 8 frames for the structure in Fig. 2. In each view,
frames are ordered by prediction level, then by descending impact on the total distortion of the
view.

The scheduling algorithrhaims to minimize the expected total distortion given a numbe
r<NW of frames to be included in the coding winddW. It works in an iterative fashion,
starting with an empty coding window¥ « (), and adding at each iteration the most
suitable frame ta/V, given the frames already included at the previous itemathdore
precisely, letD, (W) be a function that computed the distortion of the viewhen the
frames selected iW are available. Note that, due to the inter-view predictiba functions
D, (-) depend on all the selected frames. For a generic user, tieetdiotal distortioD
is expressed as:

N
DW) =Y " p.Dy(W) =5 D(W), @

where vectoD (W) is such that ita-th component isD,, (V). The optimization problem
can therefore be stated as:

W (r) = arg min {ﬁTﬁ(W)} st w| <r @)

Algorithm 1 provides an heuristic way to computg*(r) forall r € {1,2,..., NW} with
the additional constraint that for all W*(r — 1) is a subset o#V*(r), that is, W*(r) is
build by adding a frame t®*(r — 1). In general, the optimal solution to this problem is
unigue. This means that all the senders would always congxaietly the same scheduling
order. As a consequence, the "randomness” of NC would bedtighe senders always
transmit dependent combinations. Even if a node receivelsetmfromM, > 1 senders,
they will be identical, defeating the purpose of using NCotder to take advantage of
the benefits of NC in terms of loss resiliency, we need to gerex variety of schedules,
possibly slightly sub-optimal, but with acceptable penfances.
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Frames in clustet
Label of clusterl
Frames in cluste2
Label point of clusteR
Frames in clustes
Label point of clusteB
Frames in clustet
Label point of clusterd

Frames in clustes

OXO X O XPYxO

Label point of clustef

Distortion
T

* | X

Rate

Figure 5 Clustering of video frames for RDO-scheduling. Frames with similar operating points are
assigned to the same cluster. The RDO-scheduling will consider each frame as having the average
operating point of its cluster.

In order to solve this problem, we proposdastering of the video frames: the clustering
is a classification of the frames based on their RD propethi@stakes place at the video
source, after the video encoding and before schedulingdasinission. Frames with sim-
ilar RD points are assigned to the same cluster; each fratabated with the average rate
and distortion of its cluster, possibly quantized. Noticattclustering is performed using
the definition of distortion given in Eqlj, i.e., by taking the preferences into account. An
illustration of the clustering is given in Fi§. We observe that frame or packet classifica-
tion based on RD properties has been used in the literaturrexédmple by Chakareski and
Frossard45]. However, beside the differences in computing or estingatate and distor-
tion, we use classification in a totally different wa, for achieving a scheduling diversity
to be used in network coding. This concept is original in stifie literature.

The labels are decidamhly once at the encoder side, where rate and distortion are known
with negligible computational overhead and where a beshatibn of the receiver’s pref-
erences is more likely to be available. Since the encodewgribe rate and distortion
characteristics of the frames, it can send them to the usdrawery little overhead, since
this information amount to a few bytes per frame.

Let us now describe in detail how the algoritinvorks in an intermediate node. For all
MV-GOPs, the node computes the coding window, starting aitlempty set and adding
at each sending opportunity a new frame. For a new value fifst we compute the set
of eligible framesF. It is made up of those whose references for prediction, yf are
already in the coding window. For example, whéh= (, only the Intra frame of the GOP
is eligible. Therefore for all the nodes, when= 1, W only contains the Intra frame. In



Greco et al.

Page 12 of 33

general howevelF contains all the frames that are decodable using only thedra )V,
and that are not iV (algorithm 1, line 6), that is, for the second iteration,th® frames
of level L, with respect to Fig4. For each frame igF, the algorithm computes the coding
cost functionJ; obtained by adding’ to W. Without clustering, generally speaking an
unique framef would minimizeJ;, making it impossible to produce different scheduling
at different nodes. However, with clustering, several feamare labeled with the same,
fictive values of rate and distortion, even though they docootespond to the actual rate
and distortion, see Figh. These frames will produce the same value/gf(algorithm 1,
line 7). Therefore, the set of frames that achieve the mihirate of J; will in general
be composed of several frames. As a consequence, each nodielca random frame in
this set (line 8) to be added inly (line 9). This step introduces the scheduling diversity
needed by NC.

As far as the choice of the value far(step 7) is concerned, as in classical RD opti-
mization problems, it depends on the target coding ré@g [n principle each node could
adjust this value according to its knowledge about the dimkrdhannel capacities. How-
ever, in our simulation we assume for simplicity that eacdenoses the same Lagrangian
parameter used by the encoder (this value is deduced fro@fhand do not need to be
transmitted).

The size of the coding window is reset to zero with the new MUFSA summary of the
operations performed by the nodes is reported in Algorithm

As far as the computational complexity of the schedulingo#idnm 1 is concerned, we
observe that, for a given MV-GOP, steps 4 to 10 are executeglc®mplexity of this partis
dominated by the minimization of the cost functidiistep 7), which is executed = NW
times. This minimization is performed by exhaustion: foy aandidate fram¢g < F, we
compute the cosf; = D + AR. As mentioned before, the rate distortion characteristics
of the sequence are computed once at the encoder as sidezpobthe compression pro-
cess, and may be sent as side information to nodes with it@gligverhead. Therefore,
the complexity of step 7 is dominated by one multiplicati@n pandidate frame. Since at
any iteration over- the number of candidate frames cannot be larger &, the min-
imization complexity is at mosV W per value ofr and per MV-GOP. Sinc& W values
of r are considered, the complexity of the scheduling algorithiciominated by at most
N2W?2 multiplications per MV-GOP. With the configuration used ursimulation setup,
this amount to5000 multiplications per second, which is assumed to be nedégibth
respect to other tasks of each node (e.g. video decodingsoliagt).

A key point in this algorithm is the labeling of frames withtfie rate and distortion
values. If we cluster many frames with the same label, weeeme the chance of different
nodes selecting different schedules, thus reducing the afalinear dependent packets in
NC. On the other hand, large clusters increase also the ebarichaving RD labels that
differ significantly from the actual RD values. This implias RD-suboptimal scheduling.
In conclusion, the clustering must be carefully performakling into account the expected
similarity of RD values among different frames. A simplestkring scheme is to assign
all the frames on the same prediction level to the same clugtes scheme is independent
from the actual RD properties of the sequence and can bg @apiemented; nevertheless,
it can be quite efficient if the views have frame-by-frameiEnRD properties, and is the
approach that we have followed in our experiments. If theesponding frames of different
views have unbalanced properties, then a more sophistisateeme can be employed.
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Figure 6 Two possible schedules (first 20 rounds). The numbers indicate the round in which the
frame is included in the coding window. The dashed border identifies which frames have not been
selected yet for inclusion in the coding window at the 20-th round.

4.1 A running example

An example of two different scheduling orders is presemntefgig. 6. For the sake of sim-
plicity, only the scheduling for the firs20 packets is presented. We observe that since
clustering has been performed at prediction level, wheroAlgm 1 is run, at step 8 any
frame of a given prediction level can be selected.

In this example we show how the algorithm could run within @®8 and6 in Fig. 3.
Their coding windows are depicted respectively in the tog bottom parts of Fig6. In
this case, a receiver such as nédeould seelM = 2 sources (or senders).

Let f(v, k) be thek-th frame in display order of view, with the views denoted top to
bottom asl, 2, ..., 5 so thatv = 3 is the central view.

In the first round, sendeBsand6 each consider prediction level, only. As a result, they
have an identical coding window containing only the I-fraofi¢he central view —which
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is the only frame in the cluster of prediction levie}: Wy 5 = Wi 6 = {f(3,0)}, where
Wi, is the coding window of sendérat roundr.

In the second round, sendérand6 each randomly select a frame from prediction level
L., likely a different one. Let us for example assume Hat; = {f(3,0), f(4,0)} and
W2,6 = {f(3, 0)7 f(3, 4)}

In the following rounds, both senders keep adding a randamédrfrom the cluster of
prediction levell, to their coding windows, until no frame is left to be selected

Wi 5 =WasU{f(5,0)} Wi =WaeU{f(2,0)}
W475 = W375 U {f(l, O)} W476 = W37G U {f(l, 0)}
Wss=WaisU{f(2,0)} Ws6=WieU{f(5,0)}

Eventually, both senders will have included the whole eust frames of prediction level
L in their coding windows, which would therefore be again fitel: Ws 5 = Ws e =
{£(1,0), £(2,0), £(3,0), f(3,4), f(4,0), £(5,0)}.

On the receiver side (nody, let us consider the sét. of the decodable frames received
by the end of round.

In the first round, since the coding windows of the two sendegsdentical, the receiver
only obtains one decodable frandg, = {f(3,0)}.

Then, since the schedule®&nd6 diverge, the receiver starts obtaining on average more
than one new decodable frame per round:

Uy =U U {f(470)a f(374)}
UB = UQ U {f(570>a f(270>}
Uy =Us U{f(1,0)}

Eventually, the receiver is able to decode the whole priedidevel L; (and prediction
level Ly, which is composed of f(3,0) alone). As a consequence, thewing packets
received fronb and6 will not be innovative, meaning that they are linear combores of
the packets i/, and do not increase its rartifs = Us = U,. However this redundancy is
effective against packet losses.

The same algorithm is applied for subsequent predictioal$euntil the whole GOP is
transmitted.

More in general, once the order of inclusion has been seleeteh node generates a set
of NW mixed packets by applying EWNC, while the original streani & discarded.
When a node receives a request from one of its neighborsaamstthe content, it will
answer with as many combination packets as its capacitysll@he receiver will then
collect all the packets it receives from its neighbors aptiiidecode as many video frames
as possible. It will then select a view of the content, angldisthe relative decoded frames,
achieving a video quality depending on the frames it reckared the view it selected. The
node will also in turn generate new combinations to contelbo future requests.

In this description of the scheduling algorithm, we assufoethe sake of simplicity that
each view frame fits in one packet. However, the algorithmmisiediately generalized to
the case when any other data structure is used, provided thg@tossible to determine its
rate, distortion and coding dependencies. For examptesstiould be used; or more than
one frame can be included in the same packet. Given these piegees of information,
Algorithm 1 can be run on any coded data structure.
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5 Experimental Results

In this section, we present the results of the proposed tgabrand compare them with
three different reference techniques. The simulationageris the one depicted in Fid.
of Sec.3.

The receiverR is trying to obtain the multi-view content from its neighbd,,,, m €
{1,..., M}, referred to as senders or sources, each connected to #ieeragith a chan-
nel having capacity’,,. The channel may be a PEC with packet loss rateor a GE
characterized byeq, eB, pan, PG }- The receiver, at each GOP, randomly selects a view
according to the probability distribution ¢f In a first experiment we will consider a PEC
channel with a perfect knowledge of user preferences. lvegewill show the results when
a GE model is employed and when preference estimation isenteqd.

We have selected three reference techniques to be compiheminvproposed technique.

e The first reference uses EWNC and an RD-optimized schedtdisglect the order
of inclusion in the coding window. However, unlike our pr@ed technique, the
preferences of the receiver are not taken into account andxpected distortion is
measured simply as the mean of the distortion on the viewis. iShrequivalent to
assume a uniform distribution fgfindependently from the actual distribution. This
technique is practically equivalent to the one previousiyppsed by the authors
in [44], and is labeledEWNC in the figures.

e The second reference uses Practical Network Codd&jytp transmit the stream.
Since the senders are uncoordinated, they are not awares ofuimber of other
senders or the capacities of their channels. Thereforg,uke a coding window
of the same size of the generatior( the same size as the GOP). This technique is
labeledPNC in the figures. In our scenario each of the senders genemtesiay
packets as it is the rank of the input generatie no redundancy is added by
the senders. However, from the receiver side, the reduydancherent in having
M > 1 uncoordinated senders transmitting linear combinatidrisedsame sender
generation. So, in each of our scenarios, the redundamcy:iéM — 1)/M.

e The last reference does not use network coding, nor it isewafthe users prefer-
ences. This technique is inspired by classical replicagidemes, such as the one
proposed in47], and is labeledNo NC in the figures.

We used four common multi-view video sequences: “BalleBpbtkarrival”, “Break-
dancers”, and “Doorflowers”. They hat@24 x 768 pixels and25 frames per second. We
used100 frames per view and the firstviews per sequence, for a total 2600 frames.
They have been encoded in H.264/MVC using the GOP structseritbed in Sec3, and
depicted in Fig.2, with QPs31, 34, 37, and40. The corresponding coding rates range
from 280 to 1570 kbps per view. The results presented arénautaveraging over at least
100 runs and over all the sequences.

We tested the system using four models of view preferencethd first one, called
“peaky” distribution, the central view has a given probiyip. and the other views share
uniformly the residual probability. In a second one, caflgthngular”, probabilities in-
crease linearly from the left-most view to the central, thiezy decrease symmetrical up to
the right-most view. A third model uses a discrete Gausbkandistribution, where proba-
bility of view k is proportional tcye%, wherec is the index of central view. Finally we
consider a “bimodal” distribution where two views, symniet with respect to the central
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Figure 7 Comparison of the average PSNR of the decoded sequences (2 sources, 50 % probability
of the receiver displaying the central view). Packet loss rates are 10 % (left) and 30 % (right). The
capacity of the channels is expressed as a ratio of the rate of the stream. For each sequence the
PSNR is computed as the average over the views weighted by the preference probabilities.
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View 1 2 3 4 5
Peaky 0.1250 0.1250 | 0.5000 | 0.1250 0.1250
Peaky 0.0625 0.0625 | 0.7500 | 0.0625 0.0625

Gaussian | 0.0216 0.2284 | 0.5000 | 0.2284 0.0216
Gaussian | 0.0006 0.1244 | 0.7500 | 0.1244 0.0006
Triangular | 0.0000 0.2500 | 0.5000 | 0.2500 0.0000
Triangular | 0.1000 0.2250 | 0.3500 | 0.2250 0.1000
Bimodal 0.0000 0.5000 | 0.0000 | 0.5000 0.0000
Bimodal 0.1000 0.3500 | 0.1000 | 0.3500 0.1000

Table 2 View preference distributions used in the experiments.

one, have the same probability, and the remaining sharestfidual probability. We con-
sider at least two cases for each of the models, ending upthéthrobability distributions
shown in Tab2. All these distribution are characterized by a single paamthe probabil-

ity of the preferred view. We refer to this parametepasven though in the Bimodal case
this is not the probability of the central view. For each G@d;h user randomly selects a
view according to the distribution gf, decodes the corresponding frames, and measures
the PSNR as

2552

PSNR,, = 10log;q e
Zv p’UD’U

3)
that is, the distortion is the weighted MSE described in 8gcThis PSNR is reported as
a function of the channel capacity, which in turn is exprdssea percentage of the video
stream rate.

The interesting use case is when the channel capacity rsriathate between a very low
value (where the only possible strategy is to send the I-€rafithe GOP) and high values,
where any solution would work quite well. The results of thegperiments are reported in
the following.

We start by considering the peaky distribution. In Figéreve report a comparison with
the reference techniques for a two senders scenario, PE@ehaith packet loss rate of
10 % and30 %. The probability of the receiver displaying the centralwies p. = 50 %,
while the other views are equally probable.

First of all, we observe that our proposed technique outper$ all of the reference tech-
nigues for the majority of the values of channel capacity, taas very similar performances
in the remaining cases.

We also observe that, if no network coding is used, eachwedgiacket increases the
PSNR. However, the transmission cannot recover from lps$lses the maximum quality
is not achieved. The EWNC technique follows the same trertdealslo NC technique, but
with slightly better performance, due to the effects of N@timartially compensates for the
losses.

Conversely, PNC eventually achieves the maximum quality,can provide, for low loss
rates slightly better video quality than the proposed tepmwithin a range of channel
capacities (about) % to 80 % of the stream rate for up told % loss rate ) but the receiver
cannot decode almost any frame if the capacity of the seriddyelow a threshold of
about50 % of the stream rate. For higher loss probabilities, the PN@r@grch is even



e=5%|e=10% | e=20% | e =30%
NO NC 0.86 1.10 4.95 6.08
PNC 7.16 7.76 9.93 12.29
EWNC 0.50 0.47 0.63 0.43

Table 3 PSNR gain of the proposed technique with respect to the references, averaged over the
channel capacity. M = 2 sources, Peaky distribution, P. = 50%

e=5%|e=10% | e=20% | e =30%
NO NC 0.75 1.15 5.10 6.05
PNC 7.02 7.78 9.71 12.06
EWNC 0.30 0.39 0.33 0.07

Table 4 PSNR gain of the proposed technique with respect to the references, averaged on the
channel capacity. Triangular preference distribution, P. = 35%. M = 2

e=5%|e=10% | e=20% | e =30%
NO NC 1.61 1.91 5.65 5.33
PNC 7.77 8.42 10.48 11.59
EWNC 1.47 1.44 1.63 1.08

Table 5 PSNR gain of the proposed technique with respect to the references, averaged on the
channel capacity. Gaussian preference distribution, P. = 50%. M = 2

e=5%|e=10% | e=20% | e =30%
NO NC 1.07 1.47 5.87 6.63
PNC 7.29 8.07 10.08 12.39
EWNC 0.38 0.46 0.50 0.19

Table 6 PSNR gain of the proposed technique with respect to the references, averaged on the
channel capacity. Bimodal preference distribution, P. = 35%. M = 2
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Figure 8 Comparison of the average PSNR of the decoded sequences (2 sources, 75 % probability
of the receiver displaying the central view). Packet loss rates are 10 % (left) and 30 % (right). The
capacity of the channels is expressed as a ratio of the rate of the stream. For each sequence the
PSNR is computed as the average over the views weighted by the preference probabilities.
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more impaired, and is practically useless unless the cthaapacity approaches the stream
rate. The necessity of a high minimum capacity to achieve amogptable quality is a
very undesirable property in a wireless environment, asrimoaile scenario the channel
conditions could rapidly become very harsh, leaving thenrtbde with no useful data.
Also, it is worth noticing that, as mentioned in Sécthe rate of a multi-view stream can
be several times larger than that of traditional, singkayistream. The mobile nodes are
therefore likely to have an uplink capacity that is only a Brfraction of the multi-view
stream rate.

In Tab.3 we reported the PSNR gain of the proposed technique witteot$p the three
reference techniques averaged along the channel capadifpiedifferent values of packet
loss probability. We observed that the proposed technigiigenforms in average all the
references, even though in this configuration EWNC achiawdsse performance. In the
following tables from4 to 6, we show the result for similar experiments where we just
change the preference probabilities. Gains are even l&ogelistribution other than the
Peaky one.

In Figure8, we present the results for the same number of senders amsdrie packet
loss rates, when the probability of the receiver of dispigythe central view ig; = 75 %,
while the other views are equally probable. We also repdrteichb. 7 the average PSNR
gains of the proposed technique with respect to the refesefi@bles fron8 to 10 report
results for the other distributions, again in the case wileeepreferred view has a large
probability. The proposed techniques reports consistainsgn all these configurations.

As we can see both from the table and the figure, while the padnce of the pro-
posed technique and of PNC stay almost unaltered, the peafare of the EWNC and of
the No NC techniques drop visibly. This can be explained leyftllowing observations:
the proposed technique adapts its coding window inclusiderao the distribution of the
preferences, thus producing a scheduling quasi-optinthlrespect to the preferences no
matter what these are. On the other hand, the PNC techniquesas joint decoding of the
whole generation, so the order of inclusion is irrelevaimtaiy, both No NC and EWNC do
use an RD optimized scheduler to decide their order of tréssam and inclusion (respec-
tively), but since they do not take into account the recevareferences, their estimation
of the expected distortion is incorrect, resulting in a syitimal order. In fact, by averag-
ing the PSNR over the views, these two models implicitly ass@ uniform distribution
of preferences. We can therefore expect that their perfocewill be the less effective the
less the preference distribution resemble a uniform tistion, which is what we observed
experimentally.

This is confirmed by using the other preference distribjaas also shown in Fig-
ures9(a)and9(b).

In conclusion, with\/ = 2 sources, the proposed technique performs largely beter th
PNC and No NC, especially when the channel conditions arghhiigh loss rate, small
capacity) and the preferences are skewed. It keeps a smaifeover EWNC, around.5
dB whenp, = 50 % and1.5 dB whenp. = 75 % for the Peaky distribution, and higher for
others.

In Figures10 and11 we present analogous results faf = 4 sources and for respec-
tively p. = 50 % andp. = 75 %. Likewise, Tab.11 and 12 present the averaged PSNR
over channel capacity at several loss rates. Similar ieaudt obtained for the other distri-
butions. We do not report them for the sake of brevity. Howeag for the previous case,
the Peaky distribution is the least favorable to our techeiq
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Figure 9 Comparison of the average PSNR of the decoded sequences (2 sources, packet loss
rate 10 %). View preference distributions are Gaussian and Bimodal, with maximum probability pc
equal to 50 % (top) and 35 % (bottom). The capacity of the channels is expressed as a ratio of the
rate of the stream. For each sequence the PSNR is computed as the average over the views
weighted by the preference probabilities.
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e=5%|e=10% | e=20% | e =30%
NO NC 1.48 1.72 4.85 6.27
PNC 7.78 8.36 10.48 12.91
EWNC 1.45 1.47 1.60 1.53

Table 7 PSNR gain [dB] of the proposed technique with respect to the references, averaged on the
channel capacity. Peaky preference distribution, P. = 75%, M = 2

e=5%|e=10% | e=20% | e =30%
NO NC 251 2.87 5.09 2.92
PNC 8.14 8.98 9.56 9.02
EWNC 2.48 2.52 1.45 0.86

Table 8 PSNR gain of the proposed technique with respect to the references, averaged on the
channel capacity. Triangular preference distribution, P. = 50%. M = 2

e=5%|e=10% | e=20% | e =30%
NO NC 2.76 2.73 4.94 4.22
PNC 8.48 8.87 10.05 10.67
EWNC 2.94 2.66 2.11 0.23

Table 9 PSNR gain of the proposed technique with respect to the references, averaged on the
channel capacity. Gaussian preference distribution, P. = 75%. M = 2

e=5%|e=10% | e=20% | e =30%
NO NC 3.05 2.49 5.29 458
PNC 8.57 8.63 9.04 10.38
EWNC 2.49 1.69 0.49 0.20

Table 10 PSNR gain of the proposed technique with respect to the references, averaged on the
channel capacity. Bimodal preference distribution, P. = 50%. M = 2
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Figure 10 Comparison of the average PSNR of the decoded sequences (4 sources, 50 %
probability of the receiver displaying the central view). Packet loss rates are 10 % (left) and 30 %
(right). The capacity of the channels is expressed as a ratio of the rate of the stream. For each
sequence the PSNR is computed as the average over the views weighted by the preference
probabilities.
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Figure 11 Comparison of the average PSNR of the decoded sequences (4 sources, 75 %
probability of the receiver displaying the central view). Packet loss rates are 10 % (left) and 30 %
(right). The capacity of the channels is expressed as a ratio of the rate of the stream. For each
sequence the PSNR is computed as the average over the views weighted by the preference
probabilities.
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e=5%|e=10% | e=20% | e =30%
NO NC 1.22 1.32 1.20 2.63
PNC 0.95 1.78 2.46 3.60
EWNC 0.41 0.72 0.61 0.53

Table 11 PSNR gain of the proposed technique with respect to the references, averaged over the
channel capacity. M = 4, P. = 50%

e=5%|e=10% | e =20% | ¢ =30%
NO NC 1.85 1.76 1.77 3.02
PNC 1.59 2.14 2.98 4.07
EWNC 1.42 1.52 1.54 1.46
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Table 12 PSNR gain of the proposed technique with respect to the references, averaged over the
channel capacity. M = 4, P. = 75%

We observe that increasing the number of sources improegsdtiormance of all tech-
nigues. However, the greatest effect is visible in the PNfbrig@ue as, having the largest
coding window for any value of capacity, it is the one thatdfga most from the diver-
sity of the received packets. This translates in a reductidihe minimum capacity needed
to achieve an acceptable quality and the minimum capaciéges to achieve the same
quality as the proposed technique (and eventually surpaskhiese minimum capacities
of course are affected negatively by the packet loss ratestlee range of capacities in
which PNC can outperform the proposed technique narrowsduwhen the distribution
of the receiver’s preferences is less uniform (Hit). Similar results are obtained for other
distribution, as shown in Fidl2. Moreover, the proposed technique still provides globally
better performance than the reference ones, as shown iliTalnd12. As expected, the
gains are larger for less uniform preference distributiansl the gain with respect to PNC
increases with the packet loss ratio

If the number of available sources increases, the PNC appnodl finally provide the
best performance. In our experiments we found that the hibidss A/ = 6 for a packet
loss ratioe = 10%. However we underline that all the parameters of these sitiounls
(senders uplink capacities, packet loss rate, user prefeseand in particular number of
senders per receiver) are in general not under control ofehdce provider. Thus, even
though there exist specific scenarios in which PNC could ipeoa better service than
the proposed technique, the latter has a more stable anitjatdd behavior, much less
influenced by these factors, and in particular by the netvdmendent factors, which —in
a wireless network— could change frequently and abruptly.

In Fig. 13 we show the distribution of the PSNR'’s per view in the case afi§sian
preference distributiom. = 50%, loss rate 20%, andM = 2 sources. We observe that
when the channel capacity is small our technique alloc&edabources to the central view,
in such a way that the PSNR distribution has a behavior sindldhe view preference
distribution. On the contrary, the other strategies haveite qiniform per-view PSNR. Of
course, when the capacity is high, all the strategies aehiewy high PSNR over all the
views. Lower PSNR for PNC and NoNC are explained as befaethiese technique are
less robust to losses.

Even though, as we stated in S&;.the estimation of the preference distribution is
outside the scope of this article, it is worth mentioning &ifects of an incorrect pref-
erence model on the performances of the technique. Thet effeour technique is that
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Figure 12 Comparison of the average PSNR of the decoded sequences (4 sources, packet loss
rate 10 %). View preference distributions are Triangular and Bimodal, with maximum probability pc
equal to 50 %. The capacity of the channels is expressed as a ratio of the rate of the stream. For
each sequence the PSNR is computed as the average over the views weighted by the preference
probabilities.
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Figure 13 Average PSNR per view of the decoded sequences (2 sources, Gaussian distribution
with 50 % probability of the receiver displaying the central view, packet loss rates 10 %) Channel
capacities from C' = 25, % to C' = 100, % are considered.

the performance are negatively affected, and become dogbpse of the EWNC tech-
nigue. Since the EWNC technique is equivalent to ours whemrdform probability
model is assumed, our technique still outperforms thisregfge as long as the model
used is a better approximation of the real distribution tti@a uniform modele.g., in
terms of Kullback—Leibler divergence. In order to provesthive performed an experi-
ment in which the proposed technigue uses an estimationeotehtral view probabil-
ity, p. € {10%,20 %, 30 %, 50 %, 60 %, 75 %, 90 %}, while the true user preference is
p. = 50%. In order to keep things simple, the probability on the viesiser than cen-
tral is always uniform. Then we computed the PSNR as a funafdhe channel capacity
for the different preference estimations. The results aported in Figl4 for 2 sources
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ande = 10%. The averageAPSNR with respect to the perfect estimation are reported

in Tab.13, together with the relative entropy of the estimated distibn with respect to
the real one. We observe that the PSNR losses are larger a@stimated probability is
further from the real one. However, as we can see in I8land in Fig.15 (that reports
the same results graphically), it is better to overestimpathan to underestimate it. We
also observe that, unless we use a very bad estimatipp @f., p. = 10 %), the global
performance are still better than EWNC, which correspondbi¢ pointp. = 20 %. In
conclusion, even when the preference probabilities areveit precisely estimated, the
proposed technique can provide better performance tharetbeence ones, provided that
the estimated preferences are not much worse than the itgdionation of EWNC.



Greco et al.

b | D) | A PSNR
10% 0.74 -1.14
20% 0.32 -0.47
30% 0.13 -0.23
60% 0.03 -0.03
75% 0.21 -0.08
90% 0.74 -0.40

Table 13 PSNR losses of the proposed technique and relative entropy of the estimated preference
distribution with respect to the perfect estimation p. = 50%. M = 2 and ¢ = 10 %.
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Figure 14 PSNR vs channel capacity when preference estimation is wrong. M = 2 and ¢ = 10 %.
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In a further experiment, we considered two new clusteringcstires, to assess how this
impact on the rate-distortion performance of the systemugésl the same conditions as

in Fig. 7(a)and Fig.10(a) i.e., peaky distributiorp. = 50%, error probabilitye = 10%,

andM = 2 or M = 4 sources.

1

In a first case, we use a larger number of clusters: this miésmtshe labels are
better representative of the clusters, but the “randonimés#ise approach is limited.
For M = 2 sources we found a practically identical PSNR result witpeet to
the initial clustering, while fotlM/ = 4 we registered a very small losSAPSNR=-
0.06 dB). This is reasonable: having small clusters maleftdictive having multiple

sources, since the senders are obliged to pick frames imthk sets.

In a second case, we used a smaller number of clusters,d.marged predictions
levels two by two. This means that we have large clusters,taadypothesis of
similar rates and distortions within a cluster is less reabte. On the other hand,
we improve the “randomness” of the algorithm. We observddyatty larger losses
both for M = 2 (APSNR=-0.07 dB) and fol/ = 4 (APSNR=-0.12 dB): we are
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Figure 15 Graph of the PSNR losses of the proposed technigue vs. the relative entropy of the
estimated preference distribution with respect to perfect estimation p. = 50%. M = 2 and
e =10%.

[ore) 10%
€B 30%
paB | 5%
pBa | 20%
Table 14 Gilbert-Elliot model parameters used in the experiments.

not able to take advantage of the improved randomness, ampdyvthe fact of less
representative cluster labels.
As a conclusion from these new tests, we observe that thetsteuof the cluster has some
impact on the global RD performance, related to the tradéetfveen representation and
randomness. However, in all cases, the performance is tietie the references.

In the last experiment we changed the channel model and usexdtarealistic Gilbert-
Elliot model, whose parameters are described in Tab.This corresponds to a global
packet loss ratio 0f4.0%. We performed the same experiment as the one in#igsing
M = 2 sources and respectivety = 50 % andp. = 75%. The PSNR'’s as a function
of the channel bandwidth for the proposed and referencaigeés are shown in Fid.6,
while the average PSNR gains are reported in TabWe observe results similar to those
obtained for the PEC same global loss probability, for battues ofp.. Moreover the
proposed technique outperforms the others for practicélihe values of the channel ca-
pacity. In conclusion, changing the channel model does malifya lot the ranking among
the tested techniques, and the proposed one confirms beihg#h when the transmission
conditions are the most difficult.
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Pe=50% | pc =T15%
NO NC 3.36 3.94
PNC 8.42 9.02
EWNC 0.44 1.41

Table 15 PSNR gain of the proposed technique with respect to the reference, M = 2. Gilbert-Elliot
channel with parameters in Tab. 14.

To summarize, we can conclude that our approach, thanketeaty decodability of-
fered by EWNC and the priori on the users in terms of distribution of the preferred
views, is able to provide both a more consistent video gualitd —in the vast majority of
scenarios— better than PNC. Other approaches, such aEWING without exploiting the
preference distribution, or not using NC at all, are alwaytperformed by the proposed
technique. Even when the estimation of preferences is nétqiethe proposed technique
is worth using, provided that this estimation is not too wyowith respect to PNC, we ob-
serve that the higher gains are achieved when the numbendéseis small, the capacities
of the channels are low, and the packet loss rate is highhler atords, the benefits of the
proposed technique are more visible when the transmissindittons are harsher (e.g.,
small capacity, high error probability), which is a partemly interesting case for wireless
services.

6 Conclusions and Future Work

In this work we presented a novel technique for distributieié® streaming of multi-view
content over awireless network. The challenge consistansinitting a multi-view stream,
with the associated high bitrate, in a mobile network whée ¢hannel capacities are
limited and the packet loss rates may be high. To addresliakenge, we propose to
use Network Coding as a transmission technique, which kthémits unique property
of allowing uncoordinated cooperation of the nodes— is &bkellly exploit the available
capacity. In particular, in order to dynamically adapt te tietwork conditions, we propose
to use Expanding Window Network Coding, a hetwork codingesed that allows instant
decodability of the combined packets.

In order to be able to adapt the transmission to the chanmpelcids, the frames are
included in the coding window of each sender in an order detexd by an RD-optimized
scheduler. The key idea is to use the users’ preferencesmdifigithe parts of the content
more likely to be needed by the receiver in order to dispkgdtiected view. This induces a
definition of the expected distortion of the stream as a wemjhverage of the distortion of
the views. Using this metric, in order to reduce the proligtof generating non-innovative
packets, the senders generate a simplified probabilisticd@Bel that provides them with
a degree of freedom in the choice of the schedule. Thus, tidesg are able to generate
a multitude of different, close to the optimum, network codiews that, when decoded
jointly by the receiver, allow for a high and stable expeatikko quality.

We compared the performance of our proposed method withraeteehniques, in a
wide range of scenarios, in terms of number of senders, ehamodels and capacity, user
preferences and quality of the preference estimation. Véenvled that the introduction
of the preferences, jointly with the constraint imposed loa instant decodability of the
selection, significantly improves the performance whg. teference techniques in the vast
majority of the scenarios, in terms of video quality (PSN&)d given capacity. Possible
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future work includes the development of a large-scale &uttre multi-view distribution
system, in particular in the direction of a joint design ofauerlay management protocol
that could select which nodes of the network should rely theas. This optimization
could be performed using topological information inferfesm the packet exchanges of

neighboring nodes.
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Figure 16 Comparison of the average PSNR of the decoded sequences (2 sources) using a
Gilbert-Elliot channel model (see Tab. 14. The probabilities of the receiver displaying the central
view are 50 % (left) and 75 % (right). The capacity of the channels is expressed as a ratio of the
rate of the stream. For each sequence the PSNR is computed as the average over the views

weighted by the preference probabilities.
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