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and Béatrice Pesquet-Popescu3

*Correspondence:
marco.cagnazzo@telecom-paristech.fr corresponding
3Institut Mines,
Telecom-ParisTech, LTCI-CNRS,
Paris, France
Full list of author information is
available at the end of the article

Abstract

Multi-view video streaming is an emerging video paradigm that enables new
interactive services, such as 3D video, free viewpoint television, and
immersive teleconferencing. Because of the high bandwidth cost they come
with, multi-view streaming applications can greatly benefit from the use of
network coding, in particular in transmission scenarios such as wireless
network, where the channels have limited capacity and are affected by
losses. In this paper, we address the topic of cooperative streaming of
multi-view video content, wherein users who recently acquired the content
can contribute parts of it to their neighbors by providing linear combinations
of the video packets. We propose a novel method for selection and network
encoding of the transmitted frames based on the users’ preferences for the
different views, and the rate-distortion properties of the stream. Using
network coding enables the users to retrieve the content in a faster and more
reliable manner, and without the need for coordination among the senders.
Our experimental results prove that our preference-based approach provides
a high quality decoding even when the up-link capacity of each node is only a
small fraction of the rate of the stream.
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1 Introduction
In recent years, the advances in video acquisition, compression, transmission, and render-

ing have made possible the development of technologies thatcan enhance the viewers’

experience by including the third dimension. While traditional 2D video offers the viewer

only a passive view of the scene, a more realistic experiencecan be obtained through ap-

plications such as 3D video or free view-point selection. 3Dcinema productions have al-

ready generated big revenues, but other applications such as 3DTV and Free Viewpoint

TV (FTV) [1,2] are also becoming more desirable due to the increased affordability of 3D

displays for home use.

Multi-View Video (MVV) is one of the key elements of these applications: it consists

in the simultaneous representation of a scene captured byN cameras placed in different

spatial positions, called points of view. By using more thantwo cameras during video ac-

quisition, adjacent views act like local stereo pairs to guarantee stereoscopy to the viewer.

This can be used to synthesize virtual views different from the acquired ones. This function-
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ality is used in FTV where the user interactively controls the viewpoint in the scene. On the

other hand, since 3D video could not be deployed if the quality perceived by the user does

not exceed the existing 2D quality standards, the bandwidthfor storage and transmission

of the multiple views is accordingly increased.

A first solution for multi-view video transmission, known assimulcast [3], is to com-

press and send each view independently [4]). While simple to implement and backward

compatible with the existing infrastructures, this technique does not take into account the

redundancy due to the similarities among the views that can be used to further compress

the data. On the other hand, it allows for easier switching between views, as the lack of

inter-view prediction makes the views independently decodable.

TheMulti-view Video Coding (MVC) extension of the H.264/MPEG-4 AVC standard [5]

exploits inter-view dependency in a simple, yet effective ways: images from other views

(but at the same time instant) can be used as references for the current frame prediction

(inter-view prediction). This is the only major change introduced in the MVC extension of

H.264. The MVC extension of HEVC, referred to as MV-HEVC, is based on very similar

principles [6]. With MVC two main coding schemes are particularly worth mentioning:

view progressive and fully hierarchical. In the view progressive architecture, the first view,

called thebase view, is encoded independently from the others. In any other view, for

each GOP, there is one frame, the V-frame, that is predicted using only inter-view predic-

tion from the corresponding I-frame in the base view. For allother frames only temporal

prediction is used. In the second architecture, both hierarchical temporal prediction and

inter-view prediction are performed for all P/B-frames of all views except for the the base

view. These tools allow a rate reduction, for the same subjective quality, estimated around

50% with respect to the case of independent view coding (Simulcast) [5].

Even though recently a relevant part of the attention of the research in 3D has been

attracted by depth-based formats [7] (which allow virtual view-point synthesis), the interest

in MVV coding is still very high, as witnessed by the activityof the ad-hoc group on

free viewpoint TV and super-multiview video (i.e. video with more than 30 views, and

holoscopic video) [8–10]. The quality of synthesized view generated with depth datais

still questionable, at such a point that it is still not completely clear whether depth-based

format have a clear advantage over MVV or super-MVV, above all when subjective quality

is considered [11]. In summary, (super-) MVV seems still being a serious candidate for

FTV and 3D video services [12].

Multi-view streaming becomes an even more challenging taskin the context of mobile

networking, where the high bitrate issue of multi-view addson top of the existing prob-

lems of mobile networking. Even though streaming applications are nowadays common-

place, and the technology involved has greatly advanced in the past few years [13, 14],

in a wireless network it is difficult to meet the inherent requirement of continuous deliv-

ery necessary for an uninterrupted presentation of the content, as the nodes move freely

and independently in all directions –thus, the channel conditions of the links and the link

themselves are unreliable and erratic– and individual nodes may connect and disconnect

asynchronously [15].

Also, in the context of a streaming application, it would be desirable to have the quality

of the received media degrade gracefully as the network environment and resources change

and to tolerate losses to some extent. Even though techniques to provide graceful degrada-

tion and loss immunity exist, these usually require an increase in the bitrate of the stream,
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a condition that could be difficult to satisfy in a wireless network, where the nodes’ uplink

capacity is typically quite limited.
One positive aspect of wireless networks w.r.t. video streaming is the inherently broadcast

nature of the medium. This makes more straight-forward for asender the task of multicas-

ting the content to several receiver, but also allows a single receiver to collect video packet
from several servers.

Recently, good results have been achieved, in the context ofmobile video streaming, by

exploiting the broadcast nature of the medium through the construction of video packet de-
livery overlays [16,17]. These logical networks, built on top of the actual wireless network
through the cooperation of nodes, allow to provide a streaming service with good video

quality and graceful degradation. However, these techniques were designed for single-view
streams, and relied on the use of Multiple Description Coding (MDC) [18], a joint source-
channel coding technique that does not lend itself well to beconjugated with multi-view,

due to its additional bitrate cost, a cost already considerable for multi-view streams.
In this article, we propose to use network coding for the robust delivery of MVV and

super-MVV over an unreliable network such as a wireless networks. In order to do so,

we design aRate-Distortion Optimized (RDO) scheduling algorithm that, at each sending
opportunity, selects which video packet has to be added to the coding window, in such
a way as to minimize the expected video distortion measured at the receiver. This opti-

mization will be performed by taking into account the preferences of the users in terms
of required views, an approach already successfully exploited for video caching of single-
view streams in mobile environment [19]. Being the wireless medium inherently broadcast,

we exploit the fact that each receiver could be exposed to multiple senders. We thus ensure
that senders transmit innovative packets (i.e. packets with novel information with respect
to those already sent) even though they do not coordinate their actions.

The particularity of the coding structures of the multi-view representation reflects in a
non-trivial impact of each coded frame on the overall quality of the reconstructed multi-
view content. If this impact is properly captured, it can be used to design an intelligent

transmission scheme that allocates the limited channel capacities in a rate-distortion opti-
mized order (scheduling). In order to effectively disseminate the content to the end-users,
an analogous scheme can be devised to schedule the frames fortransmission [20].

Network Coding (NC) [21] has been proposed as an elegant and effective solution for

multi-view transmission. In NC, instead of merely relayingpackets, the intermediate nodes
of a network send linear combinations of the packets they have previously received, with
random coefficients taken from a finite field. The coding coefficients, needed to reconstruct

the original packets, are typically sent along the combinations as headers [22–25], unless
more advanced reconstruction schemes are implemented at the receiver side [26,27]. Used
as an alternative to traditional routing, NC has proved beneficial to real-time streaming

applications, both in terms of maximization of the throughput and in terms of reduction of
the effects of losses [28–33].

In a NC-based transmission system, rather than sending the data packets, the users send

mixed packets. The advantage of this technique is that even though the users act inde-
pendently from each other, with high probability each of them will contribute innovative
information to the transmission [20,34]. In the most common implementation of network

coding, referred to as Practical Network Coding (PNC) [25], the content is divided into
groups of packets known asgenerations, and only packets belonging to the same genera-
tion can be mixed together. In our system each packet contains only one encoded frame,
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and we only mix frames belonging to the same GOP. The set of packets actually used to

generate a mixture is referred to ascoding window.

One technique based on the network coding principles has been proposed by Wanget

al. [35] for peer-to-peer video-on-demand applications. More recently, Kaoet al. [36] pro-

posed a general framework able to provide an interactive streaming service,i.e., allowing

random access operations to the users. However, neither of these techniques addresses the

multi-view case, nor takes into account the rate-distortion properties of the stream, nor the

users’ preferences.

Other existing works have tackled the subject of distributed video services, achieving

similar properties, by proposing to use rateless codes –conceptually similar to network

coding– for video delivery [37, 38]. However, even though these techniques have been

proposed for video delivery, only the delay requirements ofvideo streaming have been

exploited, while our method is tailored for multi-view video content and in particular it uses

the prediction structure of the encoded sequence in its optimization algorithm. It should be

noted that in our method, rather than a simple hit-rate maximization, a proper RDO-based

scheduling is performed in order to provide the users with the best possible video quality

given the limited channel capacity allocated to each node.

The rest of this article is organized as follows. In Sec.2 we review some recent works

closely related to our problem. Then, in Sec.3 we present the system model, detailing and

motivating our assumptions. In Sec.4 we describe the selection method used to decide

which frames will be included in the coding window of the transmitting nodes. In Sec.5,

we present the experimental validation of the proposed technique and analyze the results.

Finally, in Sec.6 we draw our conclusions and point out some directions for future work.

2 Related work
Unlike previous works on multi-view streaming rather than focusing on the source encod-

ing of the content, and rather than considering each client as an independent agent, we

study how the distribution of the stream can take advantage of ana priori knowledge about

the different clients, and in particular the fact that they share common preferences —in this

case, in terms of preferred view.

Examples of work in the context of multi-view streaming thattake user preferences into

account include the source rate allocation technique proposed in [39] and the joint source-

channel coding scheme introduced in [40].

While these works consider similar applications as ours, weaddress here a substantially

different problem, in which the multi-view video has been already encoded, and we must

decide, at each sending opportunity, about which parts of the content have to be included

in the coding window for transmission. We also consider the case when the preference

estimation used to decide the packet scheduling does not perfectly correspond to the actual

user preferences.

In our work, we also rely on a network coding scheme that allows for the prioritization

of certain packets with respect to others. Several works exists that make use of similar

schemes, in which the video stream is divided into layers of priority and unequal error

protection is given to the different layers using PNC.

For instance, in [29] a receiver-driven network coding strategy is proposed, where the

receiving peers request packets from classes with varying importance. Packet classes are

constructed based on the unequal contribution of the various video packets to the overall
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quality of the presentation or in scalable video streams. Prioritized transmission is achieved

by varying the number of packets from each class that are usedin network coding opera-
tions. The coding operations are driven by the children nodes that determine the optimal
amount of coding allocated to each importance class of the data to which they subscribe.

The work in [29] has later been extended to the case of multi-view video in [41]. Cam-
eras’ streams are organized into layered subsets, with subsets organized based on their
priority levels. These prioritized layers are transmittedin an UEP fashion, sending in a

more reliable way more important subsets. Interview dependencies are built based on the
subsets organization: views from a given subset can depend from views of the same subset
or lower ones. In this way, since lower subsets are more likely to be received than higher

ones, every time a view has to be decoded, most likely the reference view from which it
depends has been already received.

This work is related to ours both for its use of network codingand its application to

multi-view content. However, there are notable differences both in the model of the service
provided to the user and, as a consequence, to the utility function that is maximized.

In the scenario envisioned in this work, users request viewpoints that are, in general,

synthesized from camera views either by coinciding with onethem, or by using depth-
image based rendering on a couple of camera views bracketingthe synthetic viewpoint. The
distortion to minimize depends on the spatial distance between the synthetic view and each

of the camera views used to reconstruct it. Priority, in the sense of a higher redundancy to
insure reception in the face of losses, is defined based on theutility of camera view subsets
in reconstructing the synthetic views requested by the users.

In our work, on the other hand, the users are only interested in camera views,i.e., no
view synthesis is used. This implies that, while in the abovementioned work, there are
different combination of received camera views that can satisfy the view request of a user,

with different levels of distortion depending on their distance, in our scheme only the exact
camera view the user is interested in can increase its quality of experience.

Furthermore, in our scheme priority is not intended in the sense of loss protection, but

rather arrival order. In our scheme, the different treatment of layers is not intended to dif-
ferentiate the likelihood of their reception, but rather the delay experienced by the user
before they can start displaying it. For this reason, while the network coding scheme used
in [41] varies the number the number of packets from each layer in the coding window, in

our scheme all packets from lower layers are introduced in the coding window before any
packet of a higher layer is introduced.

Notice that this work only consider the case of aligned and equally spaced cameras, so

that correlation between views decreases with their distance. In a more recent work [42], the
same authors extend this model to optimize other settings, but this work does not address
the communication aspects.

Another relevant approach to video transmission from multiple senders is proposed
in [43], wherein the authors jointly tackled the problem of defining an optimal schedule
and an optimal network-coding strategy using a prioritizing network coding scheme. Un-

like ours, this work only considers the case of single-view content, therefore there are no
preferences to be taken into account, and the optimal schedule is unique. Furthermore, in
order to find an optimal solution this technique requires some degree of coordination among

the senders, whereas we assume that coordination is not feasible and rely on randomization
in order to circumvent this limitation.

[41] [42] [43] [32] [40]
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Figure 1 Simulated scenario for each receiver. I(v, k) and Î(v, k) are respectively the original and
reconstructed version of frame k of view v. Sm, m = 1, . . . ,M are the senders (or sources), NCm

the network coding modules, Cm the capacity of the channels, RX is the receiver R’s buffer.

3 System Model
In order to optimize the rate-distortion performance of thetransmitted content, we select

the frames to be included in the coding window based on their popularity among the users.

Before explaining in detail our proposed technique, in thissection we list and justify some

assumptions about the system that will be used in the design of the technique.

• From the point of view of the network, we assume that the usersare connected in

a (generally partial) mesh network in which each node can potentially receive from

multiple servers. This reflects the case of wireless networks and in particular ad-

hoc networks. Furthermore, we assume that the connectivityamong the users can be

modeled with a set of independent channels, each of them having a given capacity

C, expressed as a fraction of the encoded video bit-rate. WhenC = 100% each

node is able to transmit all the packets of a GOP in the time allocated to a GOP.

Still, these packets may be lost on the channels. We considertwo models for these

channels: a simple packet erasure channel (PEC) with loss rateε, and a Gilbert-Elliot

erasure channel (GE), characterized by loss rates in good and bad state (εG andεB)

and by transition probabilities (pGB andpBG). Notice that each channel does not

necessarily provide sufficient capacity for transferring the whole multi-view stream.

Our study will focus on the video quality achieved by a generic receiverR exposed

to M senders or sourcesS1, . . . , SM . This scenario is represented in Fig.1.

• From the point of view of the content, we assume that the stream is encoded using

H.264/MVC [5] or a similar inter-view prediction scheme, such as MV-HEVC[6].

In our experiments, the stream is encoded using the prediction structure depicted in
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Figure 2 Prediction structure used to encode the multi-view stream with temporal and inter-view
prediction. Labels indicate prediction level. This structure provides a good trade-off between
coding efficiency and loss propagation. Each row represents the timeline of a different view.

Fig. 2, with M = 5 views andN = 8 pictures per view in a GOP. This structure

is a compromise between view progressive and fully hierarchical MVC that uses

inter-view prediction in order to achieve a better coding efficiency, but is not fully

hierarchical in order to reduce the dependencies among the frames, thus reducing the

propagation of the effects of losses. However, it should be noted that our study can

easily be extended to other coding techniques and prediction structures of multi-view

content.

• For the user’s preferences, we assume that the choice of the preferred view for each

user follows the same, known distribution. Notice that, even though the proposed

method could be applied to any preference model, how the learning and keeping

track of the preference distribution is performed is outside the scope of this article,

and shall not be addressed in the following. However, these preference may be easily

learned and spread over the network with approaches similarto those shown in [17].

• We assume that the preference distribution does not change too fast over time, that

is, we assume that it can be considered valid for at least the duration of a GOP,

defined as an independently decodable set ofN×W frames, as depicted in Fig.2.

This implies that our system is able to work even when users’ preferences change as

frequently as once per GOP, which typically lasts less than one second. Any change

in preferences during a GOP will be taken into account at the next GOP.

An example of the complete system is shown in Fig.3. The video serverS sends the

encoded video packets together with side information aboutRD characteristics of the se-

quence. Nodes1 to 9 relays the video using the proposed system.

We focus on a given node receiving the video sequence fromM sources (or senders),

performing network coding and relaying the video to downlink nodes. For example Node6

seesM = 4 sources,i.e. nodes1 to 4. Node8 seesM = 2 sources,i.e. nodes5 and6. We

propose an algorithm to decide the order of inclusion of frames in the coding window. We

assume (for simplicity) that nodes do not compete for capacity but the available capacity
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Figure 3 Example of network for the proposed method. Node s is the encoder. Node 6 sees
M = 4 sources (or senders). Node 8 sees M = 2 sources.

N ∈ N No. of views
W ∈ N No. of frames per view in a GOP
~B (set) Bi-dimensional frame buffer
~p ∈ [0, 1]N Users’ preferences distribution
M ∈ N No. of senders

Cm [0, 1]
Capacity of channel m
as a fraction of the stream rate

εm [0, 1] Packet loss rate of channel m
W (set) Coding window
r ∈ N Current size of the coding window
D ∈ R Expected total distortion
Dv ∈ R Distortion of view v

Table 1 Summary of the notation used in this article.

may be less than the video coding bit-rate. We model each channel’s capacity as a percent-

age of the encoded video bit-rate. and that each node has viewpreferences according to a

given probability distribution.

4 Proposed Method
In this section we describe our proposed method of network encoding for a wireless stream-

ing of multi-view video content based on the users’ preferences.

As we mentioned in Sec.1, most practical implementations of NC are achieved by seg-

menting the data flow into generations and combining only packets belonging to the same

generation. Packets are made of the same length by padding. All packets in a generation

are jointly decoded as soon as enough linearly independent combinations have been re-

ceived, by means of linear system solving. Since the coefficients are taken from a finite

field, perfect reconstruction is assured.

It has been proposed [29] to apply NC to video content delivery, dividing the video

stream into layers of priority and providing unequal error protection for the different lay-

ers via PNC. Layered coding requires that all users receive at least the base layer, hence

all received packets must be stored in a buffer until a sufficient number of independent

combinations are received, which introduces a decoding delay that may be undesirable in

real-time streaming applications.

There exist several techniques aimed to reduce the decodingdelay, proposed by both

the NC and the video coding communities. In our technique, weuse an implementa-

tion of random linear network coding referred to asExpanding Window Network Coding

(EWNC) [28, 32]. The key idea of EWNC is to increase the size of the coding window
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(i.e., the set of packets in the generation that may appear in combination vectors) for each

new packet. Using Gaussian elimination at the receiver side, this method provides instant

decodability of packets. Thanks to this property EWNC is preferable over PNC in stream-

ing applications. Even though PNC could achieve almost instant decodability using a small

generation size, this would be ineffective in a wireless network, where a receiver could be

surrounded by a large number of senders, and if the size of thegeneration is smaller than the

number of senders, some combinations will necessarily be linearly dependent. On the other

hand, EWNC automatically adapts the coding window size allowing early decodability, and

innovation (i.e., linear independence) can be achieved if the senders include the packets in

the coding window in a different order. However, these orders should take into account the

RD properties of the video stream. In our previous work, we already successfully applied

EWNC principles to multi-view streaming in the context of wireless networking [44], but

we did not take into account the preferences of the users in terms of displayed view.

As mentioned in Sec.1, in other works user preferences were used to optimize the rate

allocation in the encoding process. Here, we show how they can be used to decide which

parts of the content have to be included in the coding window in order to optimize the

rate-distortion properties of the transmitted stream.

We model the distribution of users’ preferences with a probability vector~p, such thatpv
is the probability that a member of the group chooses to watchview v ∈ {1, . . .N} for the

current GOP.

In our case, the transmitted packets will contain linear combinations of frames belonging

to the same GOP. In order to select the order in which the frames will be included in the

coding window, which we denote byW , we proceed as follows. For each GOP, all the

frames of the current GOP are stored in a bi-dimensional frame buffer ~B, with N rows,

andW columns, whereN is the number of views andW is the per-view time-length of

the GOP. For clarity, a summary of the notation used in this article is given in Tab.1. The

maximum possible size of the coding window,i.e., the generation size, will be the size of

the GOPNW , while the current size of the coding window will be denotedr≤NW .

The organization of the bi-dimensional buffer corresponding to the prediction structure

described in Sec.3 and depicted in Fig.2 is shown in Fig.4. Notice that the views are

re-arranged to reflect the coding order, so the central view of Fig. 2 corresponds to view1

in Fig. 4, as the other views are predicted upon it.

Algorithm 1 Algorithm used by the nodes to include the frames in the coding
window.
1: procedure SCHEDULEFRAMES

2: G← N ×W ; ⊲ Size of the generation.
3: for all MV-GOPs do
4: W ← ∅; ⊲ Coding window.
5: for r ← 1 to G do
6: F ←

{
f ∈ ~B | REF(f) ⊆ W ∧ f 6∈ W

}
;

7: J∗ ← min
f∈F
{Jf=D(W∪{f})+λR(W∪{f})};

8: f∗ ← a random frame in{f |Jf = J∗};
9: W ←W ∪ {f∗};

10: end for
11: end for
12: end procedure
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Figure 4 Buffer ~B for N = 5 views and W = 8 frames for the structure in Fig. 2. In each view,
frames are ordered by prediction level, then by descending impact on the total distortion of the
view.

The scheduling algorithm1 aims to minimize the expected total distortion given a number

r≤NW of frames to be included in the coding windowW . It works in an iterative fashion,

starting with an empty coding window (W ← ∅), and adding at each iteration the most

suitable frame toW , given the frames already included at the previous iteration. More

precisely, letDv(W) be a function that computed the distortion of the viewv when the

frames selected inW are available. Note that, due to the inter-view prediction,the functions

Dv(·) depend on all the selected frames. For a generic user, the expected total distortionD

is expressed as:

D(W) =

N
∑

v=1

pvDv(W) = ~p⊤ ~D(W), (1)

where vector~D(W) is such that itsv-th component isDv(W). The optimization problem

can therefore be stated as:

W∗(r) = argmin
W

{

~p⊤ ~D(W)
}

s.t.:‖W‖ ≤ r (2)

Algorithm 1 provides an heuristic way to computeW∗(r) for all r ∈ {1, 2, . . . , NW}with

the additional constraint that for allr,W∗(r − 1) is a subset ofW∗(r), that is,W∗(r) is

build by adding a frame toW∗(r − 1). In general, the optimal solution to this problem is

unique. This means that all the senders would always computeexactly the same scheduling

order. As a consequence, the ”randomness” of NC would be lost: all the senders always

transmit dependent combinations. Even if a node receives packets fromM > 1 senders,

they will be identical, defeating the purpose of using NC. Inorder to take advantage of

the benefits of NC in terms of loss resiliency, we need to generate a variety of schedules,

possibly slightly sub-optimal, but with acceptable performances.
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Figure 5 Clustering of video frames for RDO-scheduling. Frames with similar operating points are
assigned to the same cluster. The RDO-scheduling will consider each frame as having the average
operating point of its cluster.

In order to solve this problem, we propose aclustering of the video frames: the clustering

is a classification of the frames based on their RD propertiesthat takes place at the video

source, after the video encoding and before scheduling for transmission. Frames with sim-

ilar RD points are assigned to the same cluster; each frame islabeled with the average rate

and distortion of its cluster, possibly quantized. Notice that clustering is performed using

the definition of distortion given in Eq. (1), i.e., by taking the preferences into account. An

illustration of the clustering is given in Fig.5. We observe that frame or packet classifica-

tion based on RD properties has been used in the literature, for example by Chakareski and

Frossard [45]. However, beside the differences in computing or estimating rate and distor-

tion, we use classification in a totally different way,i.e. for achieving a scheduling diversity

to be used in network coding. This concept is original in scientific literature.

The labels are decidedonly once at the encoder side, where rate and distortion are known

with negligible computational overhead and where a best estimation of the receiver’s pref-

erences is more likely to be available. Since the encoder knows the rate and distortion

characteristics of the frames, it can send them to the users with a very little overhead, since

this information amount to a few bytes per frame.

Let us now describe in detail how the algorithm1 works in an intermediate node. For all

MV-GOPs, the node computes the coding window, starting withan empty set and adding

at each sending opportunity a new frame. For a new value ofr, first we compute the set

of eligible framesF . It is made up of those whose references for prediction, if any, are

already in the coding window. For example, whenW = ∅, only the Intra frame of the GOP

is eligible. Therefore for all the nodes, whenr = 1,W only contains the Intra frame. In
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general however,F contains all the frames that are decodable using only the frame inW ,

and that are not inW (algorithm 1, line 6), that is, for the second iteration, allthe frames

of levelL1 with respect to Fig.4. For each frame inF , the algorithm computes the coding

cost functionJf obtained by addingf to W . Without clustering, generally speaking an

unique framef would minimizeJf , making it impossible to produce different scheduling

at different nodes. However, with clustering, several frames are labeled with the same,

fictive values of rate and distortion, even though they do notcorrespond to the actual rate

and distortion, see Fig.5. These frames will produce the same value ofJf (algorithm 1,

line 7). Therefore, the set of frames that achieve the minimal value ofJf will in general

be composed of several frames. As a consequence, each node can pick a random frame in

this set (line 8) to be added intoW (line 9). This step introduces the scheduling diversity

needed by NC.

As far as the choice of the value forλ (step 7) is concerned, as in classical RD opti-

mization problems, it depends on the target coding rate [46]. In principle each node could

adjust this value according to its knowledge about the downlink channel capacities. How-

ever, in our simulation we assume for simplicity that each node uses the same Lagrangian

parameter used by the encoder (this value is deduced from theQP and do not need to be

transmitted).

The size of the coding window is reset to zero with the new MV-GOP. A summary of the

operations performed by the nodes is reported in Algorithm1.

As far as the computational complexity of the scheduling Algorithm 1 is concerned, we

observe that, for a given MV-GOP, steps 4 to 10 are executed. The complexity of this part is

dominated by the minimization of the cost functionJ (step 7), which is executedG = NW

times. This minimization is performed by exhaustion: for any candidate framef ∈ F , we

compute the costJf = D + λR. As mentioned before, the rate distortion characteristics

of the sequence are computed once at the encoder as side-product of the compression pro-

cess, and may be sent as side information to nodes with negligible overhead. Therefore,

the complexity of step 7 is dominated by one multiplication per candidate frame. Since at

any iteration overr the number of candidate frames cannot be larger thanNW , the min-

imization complexity is at mostNW per value ofr and per MV-GOP. SinceNW values

of r are considered, the complexity of the scheduling algorithmis dominated by at most

N2W 2 multiplications per MV-GOP. With the configuration used in our simulation setup,

this amount to5000 multiplications per second, which is assumed to be negligible with

respect to other tasks of each node (e.g. video decoding for display).

A key point in this algorithm is the labeling of frames with fictive rate and distortion

values. If we cluster many frames with the same label, we increase the chance of different

nodes selecting different schedules, thus reducing the case of linear dependent packets in

NC. On the other hand, large clusters increase also the chances of having RD labels that

differ significantly from the actual RD values. This impliesan RD-suboptimal scheduling.

In conclusion, the clustering must be carefully performed,taking into account the expected

similarity of RD values among different frames. A simple clustering scheme is to assign

all the frames on the same prediction level to the same cluster. This scheme is independent

from the actual RD properties of the sequence and can be easily implemented; nevertheless,

it can be quite efficient if the views have frame-by-frame similar RD properties, and is the

approach that we have followed in our experiments. If the corresponding frames of different

views have unbalanced properties, then a more sophisticated scheme can be employed.
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Figure 6 Two possible schedules (first 20 rounds). The numbers indicate the round in which the
frame is included in the coding window. The dashed border identifies which frames have not been
selected yet for inclusion in the coding window at the 20-th round.

4.1 A running example

An example of two different scheduling orders is presented in Fig.6. For the sake of sim-

plicity, only the scheduling for the first20 packets is presented. We observe that since

clustering has been performed at prediction level, when Algorithm 1 is run, at step 8 any

frame of a given prediction level can be selected.

In this example we show how the algorithm could run within nodes5 and6 in Fig. 3.

Their coding windows are depicted respectively in the top and bottom parts of Fig.6. In

this case, a receiver such as node8 would seeM = 2 sources (or senders).

Let f(v, k) be thek-th frame in display order of viewv, with the views denoted top to

bottom as1, 2, . . . , 5 so thatv = 3 is the central view.

In the first round, senders5 and6 each consider prediction levelL0 only. As a result, they

have an identical coding window containing only the I-frameof the central view —which
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is the only frame in the cluster of prediction levelL0: W1,5 = W1,6 = {f(3, 0)}, where
Wr,k is the coding window of senderk at roundr.

In the second round, senders5 and6 each randomly select a frame from prediction level
L1, likely a different one. Let us for example assume thatW2,5 = {f(3, 0), f(4, 0)} and
W2,6 = {f(3, 0), f(3, 4)}.

In the following rounds, both senders keep adding a random frame from the cluster of
prediction levelL1 to their coding windows, until no frame is left to be selected:

W3,5 =W2,5 ∪ {f(5, 0)} W3,6 =W2,6 ∪ {f(2, 0)}

W4,5 =W3,5 ∪ {f(1, 0)} W4,6 =W3,6 ∪ {f(1, 0)}

W5,5 =W4,5 ∪ {f(2, 0)} W5,6 =W4,6 ∪ {f(5, 0)}

Eventually, both senders will have included the whole cluster of frames of prediction level
L1 in their coding windows, which would therefore be again identical:W6,5 = W6,6 =

{f(1, 0), f(2, 0), f(3, 0), f(3, 4), f(4, 0), f(5, 0)}.
On the receiver side (node8), let us consider the setUr of the decodable frames received

by the end of roundr.
In the first round, since the coding windows of the two sendersare identical, the receiver

only obtains one decodable frame,U1 = {f(3, 0)}.
Then, since the schedule of5 and6 diverge, the receiver starts obtaining on average more

than one new decodable frame per round:

U2 = U1 ∪ {f(4, 0), f(3, 4)}

U3 = U2 ∪ {f(5, 0), f(2, 0)}

U4 = U3 ∪ {f(1, 0)}

Eventually, the receiver is able to decode the whole prediction levelL1 (and prediction
level L0, which is composed of f(3,0) alone). As a consequence, the following packets
received from5 and6 will not be innovative, meaning that they are linear combinations of
the packets inU4 and do not increase its rank:U6 = U5 = U4. However this redundancy is
effective against packet losses.

The same algorithm is applied for subsequent prediction levels until the whole GOP is
transmitted.

More in general, once the order of inclusion has been selected, each node generates a set
of NW mixed packets by applying EWNC, while the original stream will be discarded.
When a node receives a request from one of its neighbors to stream the content, it will
answer with as many combination packets as its capacity allows. The receiver will then
collect all the packets it receives from its neighbors and try to decode as many video frames
as possible. It will then select a view of the content, and display the relative decoded frames,
achieving a video quality depending on the frames it received and the view it selected. The
node will also in turn generate new combinations to contribute to future requests.

In this description of the scheduling algorithm, we assumedfor the sake of simplicity that
each view frame fits in one packet. However, the algorithm is immediately generalized to
the case when any other data structure is used, provided thatit is possible to determine its
rate, distortion and coding dependencies. For example, slices could be used; or more than
one frame can be included in the same packet. Given these three pieces of information,
Algorithm 1 can be run on any coded data structure.
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5 Experimental Results
In this section, we present the results of the proposed technique and compare them with

three different reference techniques. The simulation scenario is the one depicted in Fig.1

of Sec.3.

The receiverR is trying to obtain the multi-view content from its neighbors Sm,m ∈

{1, . . . ,M}, referred to as senders or sources, each connected to the receiver with a chan-

nel having capacityCm. The channel may be a PEC with packet loss rateεm or a GE

characterized by{εG, εB, pGB, pBG}. The receiver, at each GOP, randomly selects a view

according to the probability distribution of~p. In a first experiment we will consider a PEC

channel with a perfect knowledge of user preferences. Laterwe will show the results when

a GE model is employed and when preference estimation is not perfect.

We have selected three reference techniques to be compared with our proposed technique.

• The first reference uses EWNC and an RD-optimized schedulingto select the order

of inclusion in the coding window. However, unlike our proposed technique, the

preferences of the receiver are not taken into account and the expected distortion is

measured simply as the mean of the distortion on the views. This is equivalent to

assume a uniform distribution for~p independently from the actual distribution. This

technique is practically equivalent to the one previously proposed by the authors

in [44], and is labeledEWNC in the figures.

• The second reference uses Practical Network Coding [25] to transmit the stream.

Since the senders are uncoordinated, they are not aware of the number of other

senders or the capacities of their channels. Therefore, they use a coding window

of the same size of the generation (i.e., the same size as the GOP). This technique is

labeledPNC in the figures. In our scenario each of the senders generates as many

packets as it is the rank of the input generationi.e., no redundancy is added by

the senders. However, from the receiver side, the redundancy is inherent in having

M > 1 uncoordinated senders transmitting linear combinations of the same sender

generation. So, in each of our scenarios, the redundancy isr = (M − 1)/M .

• The last reference does not use network coding, nor it is aware of the users prefer-

ences. This technique is inspired by classical replicationschemes, such as the one

proposed in [47], and is labeledNo NC in the figures.

We used four common multi-view video sequences: “Ballet”, “Bookarrival”, “Break-

dancers”, and “Doorflowers”. They have1024× 768 pixels and25 frames per second. We

used100 frames per view and the first5 views per sequence, for a total of2000 frames.

They have been encoded in H.264/MVC using the GOP structure described in Sec.3, and

depicted in Fig.2, with QPs31, 34, 37, and40. The corresponding coding rates range

from 280 to 1570 kbps per view. The results presented are obtained averaging over at least

100 runs and over all the sequences.

We tested the system using four models of view preferences. In the first one, called

“peaky” distribution, the central view has a given probability pc and the other views share

uniformly the residual probability. In a second one, called“triangular”, probabilities in-

crease linearly from the left-most view to the central, thenthey decrease symmetrical up to

the right-most view. A third model uses a discrete Gaussian-like distribution, where proba-

bility of view k is proportional toe
(k−c)2

2σ2 , wherec is the index of central view. Finally we

consider a “bimodal” distribution where two views, symmetrical with respect to the central
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Figure 7 Comparison of the average PSNR of the decoded sequences (2 sources, 50% probability
of the receiver displaying the central view). Packet loss rates are 10% (left) and 30% (right). The
capacity of the channels is expressed as a ratio of the rate of the stream. For each sequence the
PSNR is computed as the average over the views weighted by the preference probabilities.
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View 1 2 3 4 5

Peaky 0.1250 0.1250 0.5000 0.1250 0.1250
Peaky 0.0625 0.0625 0.7500 0.0625 0.0625
Gaussian 0.0216 0.2284 0.5000 0.2284 0.0216
Gaussian 0.0006 0.1244 0.7500 0.1244 0.0006
Triangular 0.0000 0.2500 0.5000 0.2500 0.0000
Triangular 0.1000 0.2250 0.3500 0.2250 0.1000
Bimodal 0.0000 0.5000 0.0000 0.5000 0.0000
Bimodal 0.1000 0.3500 0.1000 0.3500 0.1000

Table 2 View preference distributions used in the experiments.

one, have the same probability, and the remaining share the residual probability. We con-

sider at least two cases for each of the models, ending up withthe probability distributions

shown in Tab.2. All these distribution are characterized by a single parameter, the probabil-

ity of the preferred view. We refer to this parameter aspc even though in the Bimodal case

this is not the probability of the central view. For each GOP,each user randomly selects a

view according to the distribution of~p, decodes the corresponding frames, and measures

the PSNR as

PSNRw = 10 log10
2552

∑

v pvDv

(3)

that is, the distortion is the weighted MSE described in Sec.4). This PSNR is reported as

a function of the channel capacity, which in turn is expressed as a percentage of the video

stream rate.

The interesting use case is when the channel capacity is intermediate between a very low

value (where the only possible strategy is to send the I-frame of the GOP) and high values,

where any solution would work quite well. The results of these experiments are reported in

the following.

We start by considering the peaky distribution. In Figure7, we report a comparison with

the reference techniques for a two senders scenario, PEC channel with packet loss rate of

10% and30%. The probability of the receiver displaying the central view is pc = 50%,

while the other views are equally probable.

First of all, we observe that our proposed technique outperforms all of the reference tech-

niques for the majority of the values of channel capacity, and has very similar performances

in the remaining cases.

We also observe that, if no network coding is used, each received packet increases the

PSNR. However, the transmission cannot recover from losses, thus the maximum quality

is not achieved. The EWNC technique follows the same trend asthe No NC technique, but

with slightly better performance, due to the effects of NC that partially compensates for the

losses.

Conversely, PNC eventually achieves the maximum quality, and can provide, for low loss

rates slightly better video quality than the proposed technique within a range of channel

capacities (about70% to 80% of the stream rate for up to a10% loss rate ) but the receiver

cannot decode almost any frame if the capacity of the sendersis below a threshold of

about50% of the stream rate. For higher loss probabilities, the PNC approach is even
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ε = 5% ε = 10% ε = 20% ε = 30%

NO NC 0.86 1.10 4.95 6.08
PNC 7.16 7.76 9.93 12.29
EWNC 0.50 0.47 0.63 0.43

Table 3 PSNR gain of the proposed technique with respect to the references, averaged over the
channel capacity. M = 2 sources, Peaky distribution, Pc = 50%

ε = 5% ε = 10% ε = 20% ε = 30%

NO NC 0.75 1.15 5.10 6.05
PNC 7.02 7.78 9.71 12.06
EWNC 0.30 0.39 0.33 0.07

Table 4 PSNR gain of the proposed technique with respect to the references, averaged on the
channel capacity. Triangular preference distribution, Pc = 35%. M = 2

ε = 5% ε = 10% ε = 20% ε = 30%

NO NC 1.61 1.91 5.65 5.33
PNC 7.77 8.42 10.48 11.59
EWNC 1.47 1.44 1.63 1.08

Table 5 PSNR gain of the proposed technique with respect to the references, averaged on the
channel capacity. Gaussian preference distribution, Pc = 50%. M = 2

ε = 5% ε = 10% ε = 20% ε = 30%

NO NC 1.07 1.47 5.87 6.63
PNC 7.29 8.07 10.08 12.39
EWNC 0.38 0.46 0.50 0.19

Table 6 PSNR gain of the proposed technique with respect to the references, averaged on the
channel capacity. Bimodal preference distribution, Pc = 35%. M = 2
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Figure 8 Comparison of the average PSNR of the decoded sequences (2 sources, 75% probability
of the receiver displaying the central view). Packet loss rates are 10% (left) and 30% (right). The
capacity of the channels is expressed as a ratio of the rate of the stream. For each sequence the
PSNR is computed as the average over the views weighted by the preference probabilities.
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more impaired, and is practically useless unless the channel capacity approaches the stream

rate. The necessity of a high minimum capacity to achieve anyacceptable quality is a
very undesirable property in a wireless environment, as in amobile scenario the channel
conditions could rapidly become very harsh, leaving then the node with no useful data.

Also, it is worth noticing that, as mentioned in Sec.1, the rate of a multi-view stream can
be several times larger than that of traditional, single-view, stream. The mobile nodes are
therefore likely to have an uplink capacity that is only a small fraction of the multi-view

stream rate.
In Tab.3 we reported the PSNR gain of the proposed technique with respect to the three

reference techniques averaged along the channel capacity and for different values of packet

loss probability. We observed that the proposed technique outperforms in average all the
references, even though in this configuration EWNC achievesa close performance. In the
following tables from4 to 6, we show the result for similar experiments where we just

change the preference probabilities. Gains are even largerfor distribution other than the
Peaky one.

In Figure8, we present the results for the same number of senders and thesame packet

loss rates, when the probability of the receiver of displaying the central view ispc = 75%,
while the other views are equally probable. We also reportedin Tab.7 the average PSNR
gains of the proposed technique with respect to the references. Tables from8 to 10 report

results for the other distributions, again in the case wherethe preferred view has a large
probability. The proposed techniques reports consistent gains in all these configurations.

As we can see both from the table and the figure, while the performance of the pro-

posed technique and of PNC stay almost unaltered, the performance of the EWNC and of
the No NC techniques drop visibly. This can be explained by the following observations:
the proposed technique adapts its coding window inclusion order to the distribution of the

preferences, thus producing a scheduling quasi-optimal with respect to the preferences no
matter what these are. On the other hand, the PNC technique imposes joint decoding of the
whole generation, so the order of inclusion is irrelevant. Finally, both No NC and EWNC do

use an RD optimized scheduler to decide their order of transmission and inclusion (respec-
tively), but since they do not take into account the receiver’s preferences, their estimation
of the expected distortion is incorrect, resulting in a sub-optimal order. In fact, by averag-
ing the PSNR over the views, these two models implicitly assume a uniform distribution

of preferences. We can therefore expect that their performance will be the less effective the
less the preference distribution resemble a uniform distribution, which is what we observed
experimentally.

This is confirmed by using the other preference distributions, as also shown in Fig-
ures9(a)and9(b).

In conclusion, withM = 2 sources, the proposed technique performs largely better than

PNC and No NC, especially when the channel conditions are harsh (high loss rate, small
capacity) and the preferences are skewed. It keeps a smallergain over EWNC, around0.5
dB whenpc = 50% and1.5 dB whenpc = 75% for the Peaky distribution, and higher for

others.
In Figures10 and11 we present analogous results forM = 4 sources and for respec-

tively pc = 50% andpc = 75%. Likewise, Tab.11 and12 present the averaged PSNR

over channel capacity at several loss rates. Similar results are obtained for the other distri-
butions. We do not report them for the sake of brevity. However, as for the previous case,
the Peaky distribution is the least favorable to our technique.
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(a) M = 2 ε = 10% pc = 50%
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(b) M = 2 ε = 30% pc = 35%

Figure 9 Comparison of the average PSNR of the decoded sequences (2 sources, packet loss
rate 10%). View preference distributions are Gaussian and Bimodal, with maximum probability pc
equal to 50% (top) and 35% (bottom). The capacity of the channels is expressed as a ratio of the
rate of the stream. For each sequence the PSNR is computed as the average over the views
weighted by the preference probabilities.
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ε = 5% ε = 10% ε = 20% ε = 30%

NO NC 1.48 1.72 4.85 6.27
PNC 7.78 8.36 10.48 12.91
EWNC 1.45 1.47 1.60 1.53

Table 7 PSNR gain [dB] of the proposed technique with respect to the references, averaged on the
channel capacity. Peaky preference distribution, Pc = 75%, M = 2

ε = 5% ε = 10% ε = 20% ε = 30%

NO NC 2.51 2.87 5.09 2.92
PNC 8.14 8.98 9.56 9.02
EWNC 2.48 2.52 1.45 0.86

Table 8 PSNR gain of the proposed technique with respect to the references, averaged on the
channel capacity. Triangular preference distribution, Pc = 50%. M = 2

ε = 5% ε = 10% ε = 20% ε = 30%

NO NC 2.76 2.73 4.94 4.22
PNC 8.48 8.87 10.05 10.67
EWNC 2.94 2.66 2.11 0.23

Table 9 PSNR gain of the proposed technique with respect to the references, averaged on the
channel capacity. Gaussian preference distribution, Pc = 75%. M = 2

ε = 5% ε = 10% ε = 20% ε = 30%

NO NC 3.05 2.49 5.29 4.58
PNC 8.57 8.63 9.04 10.38
EWNC 2.49 1.69 0.49 0.20

Table 10 PSNR gain of the proposed technique with respect to the references, averaged on the
channel capacity. Bimodal preference distribution, Pc = 50%. M = 2
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(b) M = 4 ε = 30% pc = 50%

Figure 10 Comparison of the average PSNR of the decoded sequences (4 sources, 50%
probability of the receiver displaying the central view). Packet loss rates are 10% (left) and 30%
(right). The capacity of the channels is expressed as a ratio of the rate of the stream. For each
sequence the PSNR is computed as the average over the views weighted by the preference
probabilities.
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(b) M = 4 ε = 30% pc = 75%

Figure 11 Comparison of the average PSNR of the decoded sequences (4 sources, 75%
probability of the receiver displaying the central view). Packet loss rates are 10% (left) and 30%
(right). The capacity of the channels is expressed as a ratio of the rate of the stream. For each
sequence the PSNR is computed as the average over the views weighted by the preference
probabilities.
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ε = 5% ε = 10% ε = 20% ε = 30%

NO NC 1.22 1.32 1.20 2.63
PNC 0.95 1.78 2.46 3.60
EWNC 0.41 0.72 0.61 0.53

Table 11 PSNR gain of the proposed technique with respect to the references, averaged over the
channel capacity. M = 4, Pc = 50%

ε = 5% ε = 10% ε = 20% ε = 30%

NO NC 1.85 1.76 1.77 3.02
PNC 1.59 2.14 2.98 4.07
EWNC 1.42 1.52 1.54 1.46

Table 12 PSNR gain of the proposed technique with respect to the references, averaged over the
channel capacity. M = 4, Pc = 75%

We observe that increasing the number of sources improves the performance of all tech-

niques. However, the greatest effect is visible in the PNC technique as, having the largest

coding window for any value of capacity, it is the one that benefits most from the diver-

sity of the received packets. This translates in a reductionof the minimum capacity needed

to achieve an acceptable quality and the minimum capacity needed to achieve the same

quality as the proposed technique (and eventually surpass it). These minimum capacities

of course are affected negatively by the packet loss rates, and the range of capacities in

which PNC can outperform the proposed technique narrows further when the distribution

of the receiver’s preferences is less uniform (Fig.11). Similar results are obtained for other

distribution, as shown in Fig.12. Moreover, the proposed technique still provides globally

better performance than the reference ones, as shown in Tab.11 and12. As expected, the

gains are larger for less uniform preference distributions, and the gain with respect to PNC

increases with the packet loss ratioε.

If the number of available sources increases, the PNC approach will finally provide the

best performance. In our experiments we found that the threshold isM = 6 for a packet

loss ratioε = 10%. However we underline that all the parameters of these simulations

(senders uplink capacities, packet loss rate, user preferences and in particular number of

senders per receiver) are in general not under control of theservice provider. Thus, even

though there exist specific scenarios in which PNC could provide a better service than

the proposed technique, the latter has a more stable and predictable behavior, much less

influenced by these factors, and in particular by the network-dependent factors, which –in

a wireless network– could change frequently and abruptly.

In Fig. 13 we show the distribution of the PSNR’s per view in the case of Gaussian

preference distribution,pc = 50%, loss rate =10%, andM = 2 sources. We observe that

when the channel capacity is small our technique allocate the resources to the central view,

in such a way that the PSNR distribution has a behavior similar to the view preference

distribution. On the contrary, the other strategies have a quite uniform per-view PSNR. Of

course, when the capacity is high, all the strategies achieve very high PSNR over all the

views. Lower PSNR for PNC and NoNC are explained as before, i.e. these technique are

less robust to losses.

Even though, as we stated in Sec.3, the estimation of the preference distribution is

outside the scope of this article, it is worth mentioning theeffects of an incorrect pref-

erence model on the performances of the technique. The effect on our technique is that
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Figure 12 Comparison of the average PSNR of the decoded sequences (4 sources, packet loss
rate 10%). View preference distributions are Triangular and Bimodal, with maximum probability pc
equal to 50%. The capacity of the channels is expressed as a ratio of the rate of the stream. For
each sequence the PSNR is computed as the average over the views weighted by the preference
probabilities.
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Figure 13 Average PSNR per view of the decoded sequences (2 sources, Gaussian distribution
with 50% probability of the receiver displaying the central view, packet loss rates 10%) Channel
capacities from C = 25,% to C = 100,% are considered.

the performance are negatively affected, and become closerto those of the EWNC tech-

nique. Since the EWNC technique is equivalent to ours when anuniform probability

model is assumed, our technique still outperforms this reference as long as the model

used is a better approximation of the real distribution thanthe uniform model,e.g., in

terms of Kullback–Leibler divergence. In order to prove this, we performed an experi-

ment in which the proposed technique uses an estimation of the central view probabil-

ity, p̂c ∈ {10%, 20%, 30%, 50%, 60%, 75%, 90%}, while the true user preference is

pc = 50%. In order to keep things simple, the probability on the viewsother than cen-

tral is always uniform. Then we computed the PSNR as a function of the channel capacity

for the different preference estimations. The results are reported in Fig.14 for 2 sources

andε = 10%. The average∆PSNR with respect to the perfect estimation are reported

in Tab.13, together with the relative entropy of the estimated distribution with respect to

the real one. We observe that the PSNR losses are larger when the estimated probability is

further from the real one. However, as we can see in Tab.13 and in Fig.15 (that reports

the same results graphically), it is better to overestimatepc than to underestimate it. We

also observe that, unless we use a very bad estimation ofpc (i.e., p̂c = 10%), the global

performance are still better than EWNC, which corresponds to the pointp̂c = 20%. In

conclusion, even when the preference probabilities are notvery precisely estimated, the

proposed technique can provide better performance than thereference ones, provided that

the estimated preferences are not much worse than the implicit estimation of EWNC.
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p̂c D(p||p̂) ∆ PSNR

10% 0.74 -1.14
20% 0.32 -0.47
30% 0.13 -0.23
60% 0.03 -0.03
75% 0.21 -0.08
90% 0.74 -0.40

Table 13 PSNR losses of the proposed technique and relative entropy of the estimated preference
distribution with respect to the perfect estimation pc = 50%. M = 2 and ε = 10%.
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Figure 14 PSNR vs channel capacity when preference estimation is wrong. M = 2 and ε = 10%.

In a further experiment, we considered two new clustering structures, to assess how this

impact on the rate-distortion performance of the system. Weused the same conditions as

in Fig. 7(a)and Fig.10(a), i.e., peaky distribution,pc = 50%, error probabilityε = 10%,

andM = 2 orM = 4 sources.

1 In a first case, we use a larger number of clusters: this meansthat the labels are

better representative of the clusters, but the “randomness” of the approach is limited.

For M = 2 sources we found a practically identical PSNR result with respect to

the initial clustering, while forM = 4 we registered a very small loss (∆PSNR=-

0.06 dB). This is reasonable: having small clusters makes ineffective having multiple

sources, since the senders are obliged to pick frames in the small sets.

2 In a second case, we used a smaller number of clusters, i.e. we merged predictions

levels two by two. This means that we have large clusters, andthe hypothesis of

similar rates and distortions within a cluster is less reasonable. On the other hand,

we improve the “randomness” of the algorithm. We observed a slightly larger losses

both forM = 2 (∆PSNR=-0.07 dB) and forM = 4 (∆PSNR=-0.12 dB): we are
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Figure 15 Graph of the PSNR losses of the proposed technique vs. the relative entropy of the
estimated preference distribution with respect to perfect estimation pc = 50%. M = 2 and
ε = 10%.

εG 10%
εB 30%

pGB 5%
pBG 20%

Table 14 Gilbert-Elliot model parameters used in the experiments.

not able to take advantage of the improved randomness, and wepay the fact of less

representative cluster labels.

As a conclusion from these new tests, we observe that the structure of the cluster has some

impact on the global RD performance, related to the trade-off between representation and

randomness. However, in all cases, the performance is better than the references.

In the last experiment we changed the channel model and used amore realistic Gilbert-

Elliot model, whose parameters are described in Tab.14. This corresponds to a global

packet loss ratio of14.0%. We performed the same experiment as the one in Fig.7, using

M = 2 sources and respectivelypc = 50% andpc = 75%. The PSNR’s as a function

of the channel bandwidth for the proposed and reference techniques are shown in Fig.16,

while the average PSNR gains are reported in Tab.15. We observe results similar to those

obtained for the PEC same global loss probability, for both values ofpc. Moreover the

proposed technique outperforms the others for practicallyall the values of the channel ca-

pacity. In conclusion, changing the channel model does not modify a lot the ranking among

the tested techniques, and the proposed one confirms being the best when the transmission

conditions are the most difficult.
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pc = 50% pc = 75%

NO NC 3.36 3.94
PNC 8.42 9.02
EWNC 0.44 1.41

Table 15 PSNR gain of the proposed technique with respect to the reference, M = 2. Gilbert-Elliot
channel with parameters in Tab. 14.

To summarize, we can conclude that our approach, thanks to the early decodability of-

fered by EWNC and thea priori on the users in terms of distribution of the preferred

views, is able to provide both a more consistent video quality, and –in the vast majority of

scenarios– better than PNC. Other approaches, such as usingEWNC without exploiting the

preference distribution, or not using NC at all, are always outperformed by the proposed

technique. Even when the estimation of preferences is not perfect, the proposed technique

is worth using, provided that this estimation is not too wrong. With respect to PNC, we ob-

serve that the higher gains are achieved when the number of senders is small, the capacities

of the channels are low, and the packet loss rate is high. In other words, the benefits of the

proposed technique are more visible when the transmission conditions are harsher (e.g.,

small capacity, high error probability), which is a particularly interesting case for wireless

services.

6 Conclusions and Future Work
In this work we presented a novel technique for distributed video streaming of multi-view

content over a wireless network. The challenge consists in transmitting a multi-view stream,

with the associated high bitrate, in a mobile network where the channel capacities are

limited and the packet loss rates may be high. To address thischallenge, we propose to

use Network Coding as a transmission technique, which –thanks to its unique property

of allowing uncoordinated cooperation of the nodes– is ableto fully exploit the available

capacity. In particular, in order to dynamically adapt to the network conditions, we propose

to use Expanding Window Network Coding, a network coding scheme that allows instant

decodability of the combined packets.

In order to be able to adapt the transmission to the channel capacity, the frames are

included in the coding window of each sender in an order determined by an RD-optimized

scheduler. The key idea is to use the users’ preferences to identify the parts of the content

more likely to be needed by the receiver in order to display its selected view. This induces a

definition of the expected distortion of the stream as a weighted average of the distortion of

the views. Using this metric, in order to reduce the probability of generating non-innovative

packets, the senders generate a simplified probabilistic RDmodel that provides them with

a degree of freedom in the choice of the schedule. Thus, the senders are able to generate

a multitude of different, close to the optimum, network coded flows that, when decoded

jointly by the receiver, allow for a high and stable expectedvideo quality.

We compared the performance of our proposed method with several techniques, in a

wide range of scenarios, in terms of number of senders, channel models and capacity, user

preferences and quality of the preference estimation. We observed that the introduction

of the preferences, jointly with the constraint imposed on the instant decodability of the

selection, significantly improves the performance w.r.t. the reference techniques in the vast

majority of the scenarios, in terms of video quality (PSNR) for a given capacity. Possible
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future work includes the development of a large-scale interactive multi-view distribution

system, in particular in the direction of a joint design of anoverlay management protocol

that could select which nodes of the network should rely the stream. This optimization

could be performed using topological information inferredfrom the packet exchanges of

neighboring nodes.
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Figure 16 Comparison of the average PSNR of the decoded sequences (2 sources) using a
Gilbert-Elliot channel model (see Tab. 14. The probabilities of the receiver displaying the central
view are 50% (left) and 75% (right). The capacity of the channels is expressed as a ratio of the
rate of the stream. For each sequence the PSNR is computed as the average over the views
weighted by the preference probabilities.
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