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Abstract
This paper proposes a unified statistical framework to synthe-
size speaking and laughing lip animations for virtual agents
in real time. Our lip animation synthesis model takes as in-
put the decomposition of a spoken text into phonemes as well
as their duration. Our model can be used with synthesized
speech. First, Gaussian mixture models (GMMs), called lip
shape GMMs, are used to model the relationship between
phoneme duration and lip shape from human motion capture
data; then an interpolation function is learnt from human mo-
tion capture data, which is based on hidden Markov models
(HMMs), calledHMMs interpolation. In the synthesis step,
lip shapeGMMs are used to infer a first lip shape stream from
the inputs; then this lip shape stream is smoothed by the learnt
HMMs interpolation, to obtain the synthesized lip anima-
tion. The effectiveness of the proposed framework is confirmed
in the objective evaluation.
Index Terms: lip animation, speech to animation, interac-
tive virtual agent, laughter, speech, Gaussian mixture models
(GMMs), hidden Markov models (HMMs)

1. Introduction
Interactive virtual agents (IVAs) are human-like virtual charac-
ters. IVAs systems use speech synthesizer to output what the
agent says. They can also express their intentions, attitudes
and emotions as humans do through nonverbal behaviors. They
are used in various applications of human-computer interaction,
such as web assistants and information providers, or as NPC in
video games.

Humans are very skilled at reading facial expression and
lip motion of human [1] as well as of IVAs [2, 3, 4, 5]. In
particular, humans notice when lip animation and speech are
not fully matched and synchronized [1, 6]. Lip animation is
not built from a succession of the lip shape of phonemes but
ought to capture co-articulation effect [7]. Lip animation for
speech has been studied quite a lot and several challenges were
conducted [8, 9].

The model of Cohen and Massaro [7], one of the first mod-
els of lip synthesis, uses dominance functions to model and in-
fer co-articulation influences between neighboring phonemes.
Similar approaches also considered the influence of surround-
ing phonemes [10, 11, 12]. Such works used specific functions
to define the co-articulation relationship of specific neighbor-
ing phonemes. However it is time consuming to cover all the
possible combinations of neighboring phonemes. These ap-
proaches are not easily manipulated to new speakers or other
languages. Other works [13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 5, 23, 24, 25, 26, 27, 28] used statistical models to learn
the co-articulation relationships, where specific combinations

Figure 1: Overview of synthesis framework.

of neighboring phonemes are not explicitly specified. Such
statistical models can be learned for a new speaker. Based
on statistical model, HMM-based synthesis framework is a
classical approach to simulate speech lip animation synthe-
sis [14, 15, 29, 16, 20, 21, 23, 24, 25, 26, 28]. Usually,
an HMM is built for each phoneme in context, that is tak-
ing into account the vowel and/or consonant that surround the
phoneme. During the synthesis step, one concatenates the
context-dependent phoneme-sized HMM according to the in-
put sequence of phonemes and of their duration; then one can
obtain a sequence of HMM states. In a second step, given a
state sequence, the parameter generation algorithm [30] is used
to synthesize a smooth animation of the lip shapes.

Such a synthesis approach makes the assumption that lip
shape is characterized only by phoneme type and not also by
its duration. However, lip shape depends not only on phoneme
type but also on phoneme duration [7, 31]. For example, for
short phoneme duration lip shape may not reach its standard
position [31]. This temporal information is ignored by HMM-
based synthesis framework. Furthermore, the synthesis genera-
tion algorithm proposed by [30] cannot synthesize animation in
real-time.

While many research works have focused on audio-visual
speech synthesis during neutral speech, other researchers have
developed models for emotional speech [19] [32] and for laugh-
ter [33] [34]. These last works on laughter use Hidden Markov
Models (HMMs) but do not work on real-time. Ding et al. [35]
proposed linear regression models to infer laughter lip anima-
tion in real-time. However, no model has been proposed to syn-
thesize both speech and laughter lip animation.

Existing lip animation models can be classified as text-
driven or speech-driven approaches. Although these both ap-
proaches use different input signals, they both use phoneme in-
formation. The former uses the text decomposed into phonemes
stream; the latter use the stream of acoustic features, which is
strictly linked to phoneme. Agents interact in real-time with
human users. Their speech is obtained by using speech synthe-
sizer technology. Therefore, text-driven approaches are used in
most applications of IVAs [10, 11, 12, 7].

We aim to develop a unified statistical model to infer speech



Figure 2: Left figure: Position of motion capture sensors on lip
and jaw. Each sensor can capture 3-dimensional motion data.
Right figure: Lip and jaw facial animation parameters (FAPs):
22 FAPs are defined for the lip and 1 FAP for the jaw. FAPs are
represented by arrows and circles. The 11 blue arrows are outer
lip FAPs and jaw FAP; the 8 red arrows are inner lip FAPs; the
green circles present forward and backward displacements of
the outer lip.

and laughter lip shape from speech/laughter text information.
The statistical model captures co-articulation effects and runs
in real-time. In our work, speech and laughter lip animations
are independent with each other; computing lip animation syn-
thesis for speaking while laughing is beyond the scope of this
paper. First, the built GMMs, called lip shape GMMs, are
used to infer lip shape for each phoneme. Secondly, the built
HMMs, called HMMs interpolation, are used as an inter-
polation function, taking the inferred lip shape stream as input,
and then generating smooth lip animation. Figure 1 shows the
overview of our synthesis framework.

In the next section 2 we detail our model. Then we describe
the objective evaluation we conducted. Finally we conclude our
paper.

2. Real-Time Lip Animation
This section introduces the statistical framework of our real-
time lip animation synthesis. As mentioned above, the statisti-
cal framework for speech and laughter is identical; that is both
take as input a list of phonemes and their duration information.
The output features are identical in speech and laughter, which
be used to animate IVAs. Speech and laughter animation mod-
els are independent with each other.

Our speech lip animation framework is built on a dataset
called IEMOCAP [36]. 169 episodes are used in our work.
Each episode contains speech data as well as lip and jaw mo-
tions. Lip and jaw motions are recorded through 9 motion cap-
ture markers capturing point displacement in 3D (giving a total
of 24 dimensions for lip and 3 dimensions for jaw). Figure 2
shows the layout of lip motion capture markers. More details
about dataset can been found in [36].

The facial animation model of our agent model follows the
MEPG-4 standard [37]. In MEPG-4 standard, 22 lip facial ani-
mation parameters (FAPs) and 1 jaw FAP are defined to describe
all the possible lip shapes (specifying inner and outer lip shapes)
and jaw position. Figure 2 illustrates lip and jaw FAPs. Jaw FAP
can be obtained directly from jaw motion capture marker. To
define a mapping between lip dimension from the mocap data
and the FAPs, we can notice that the 24 dimensions obtained by
the mocap data, only 12 correspond to the outer lip parameters
FAPs of the virtual agent. For the other 10 FAPs defining the
inner lip shapes, there is no direct correspondence. The IEMO-
CAP did not capture this information. For sake of simplicity,
in our model, inner lip moves similarly as the outer lip. Such a
simplification was made in [38, 39]. Thus, 13 motion features

Figure 3: Example of jaw outputs by lip shape GMMs and
HMMs interpolation. The spoken sentence is ”yeah”. The
red circles are computed by lip shape GMMs; the blue curve
is obtained by HMMs interpolation. During the synthesis
step, lip shape GMMs determine the sequence of lip shapes
for each time frame; HMMs interpolation is used to smooth
the sequence of lip shapes.

are taken into account including 12 lip FAPs and 1 jaw FAP.
The IEMOCAP dataset [36] provides phonemes informa-

tion, including phonemes label and their duration for each
episode, which was obtained from Ubiqus [40]. In total, 48
phonemes labels are considered.

Laughter lip animation synthesis is built on a dataset called
AVLaughterCycle [41]. The database contains human laughter
audio and video. The lip motion is detected by an open-source
face tracking tool - FaceTracker [42]. The tracking algorithm
outputs value for the outer lip and jaw parameters; having these
values, we extrapolate the value of the inner lip shapes as done
for speech inner lip FAPs.

In building laughter animation synthesis framework, laugh-
ter phoneme is used in reference to (speech) phoneme. Laughter
phoneme is defined by [43], which categorized laughter audio
into 12 laughter phonemes according to human hearing percep-
tion.

Our algorithm is made of two steps. It works as follows.
At first, lip shape GMMs are used to model the relationship
between phoneme duration and visemes (phoneme lip shape)
(described in Section 2.1). Then, an interpolation function
(GMMs interpolation) is built by learning human lip mo-
tion (detailed in Section 2.2). Finally, the real-time synthe-
sis is explained in Section 2.3. That is, lip shape GMMs
is used to estimate viseme stream corresponding to the input
phoneme sequence. In this step, the viseme stream is defined by
a unique position that runs over for the whole phoneme. Then
such viseme stream is smoothed by HMMs interpolation.
Figure3 illustrates the outputs of lip shape GMMs and
HMMs interpolation. The framework overview is illus-
trated in Figure1.

2.1. Modeling Lip Shape

Lip shape depends not only on phoneme type by also on
phoneme duration [31]. This section introduces how to build
lip shape GMMs, which is used to capture the relationship
between phoneme duration and visemes. In the following we
present how we build the training dataset that we used to train
lip shape GMMs. Then, we describe how to infer viseme ac-
cording to the given phoneme and its duration; this step is used
in the synthesis part.

We compute how many times each of them occurs in all
the training episodes. Let us call N the number of occurrence
of phoneme label pho; each phoneme can occur several times
in one episode. We compute the envelop of the WAV stream.
We segment this envelop for the phonemes sequence. For each



Figure 4: Building datasets for each phoneme. In total, 48
datasets are built. One dataset corresponds to one phoneme.
Each dataset contains N samples. N being the number of
phoneme occurrences. Each sample consists of 12-dimensional
motion vector and 1-dimensional phoneme duration.

phoneme segment, we consider the maximum point on the en-
velop. The apex of a viseme is defined by the temporal value
of the maximum of the phoneme segment. We collect the apex
of the 13 labial parameters of each occurrence of each phoneme
pho and build motion sets (see Figure 4), mi

pho, i = 1, ..., N .
mpho

i is 13-dimensional vector composed of the 13 FAPs. Each
occurring phoneme is also characterized by its duration, dphoi .
For each phoneme label, we have a set ofmi

pho and dphoi . This
set is noted by mdpho.

2.1.1. Training: Building GMMsm,d

N GMMsm,d are built (where N is equal to 48 for speech
lip and 12 for laughter lip). Each GMMsm,d of N is used to
model the joint probability density of mpho

i and dphoi , which
is recorded in mdpho. The GMMsm,d for phoneme pho is
described as follows:

P (mdphoi |λ(md)) =
C

Σ
c=1

αcN(mdphoi ;µ(md)
c , σ(md)

c ) (1)

where mdphoi = [mpho
i

T
dphoi

T
]T . The notation T denotes

the transpose of the vector. The parameter set of the GMM is
λ(md). The mixture component index is c. The total number of
mixture components is C (where C is equal to 5). The weight
of the cth mixture component is αc. The distribution with mean
µ and covariance σ is denoted as N(.;µ, σ). The mean vector
µ
(md)
c is a 14-dimensional joint vector and the corresponding

covariance matrix is Σ
(md)
c . The 14-dimensional mean vector

µ
(md)
c is composed of 14-dimensional mean vector of motion

and µ(m)
c , 1-dimensional mean of duration, µ(d)

c .
As described above, N GMMsm,d can be separately built

for N phonemes.

2.1.2. Synthesis: Extracting GMMsd and GMMsm

In the synthesis step, GMMsphom,d can be decomposed into
GMMsphod and GMMsphom , by respectively ignoring either
the element of motion or the element of phoneme duration from
µ
(md)
m and Σ

(md)
m . In GMMsphom mean vector, µ(m)

m , is a 13-
dimensional vector while in GMMsphod mean vector, µ(d)

m , is
1-dimensional vector. Such a framework based on GMMs is
called lip shape GMMs.

Figure 5: Training lip shape GMMs for each phoneme.

2.1.3. Synthesis: Inferring lip shape sequence

Given the input of phonemes sequence, we can align a se-
quence of GMMsphod according to phoneme label. Then each
GMMsphod is used to synthesize the segment of lip animation.
The following introduces how to synthesize lip animation from
a given GMMsphod .

Given the phoneme duration, d, GMMsphod is used to se-
lect the most likely component as follows:

c = argmax
c=1,...,C

αcP (d|µc, σc) (2)

where the c-th component is determined as the occurring
component. Then the occurring component is applied to
GMMsphom .

Once the occurring component is determined, the mean
vector, µc, of the c-th component in GMMsphom is viewed as
the lip shape output, m. Then m is repeated d times; that is, the
same lip shape output is used for the whole duration, d.

As introduced above, the GMMs-based framework, lip
shape GMMs, is used to learn the relationship between lip
shape and phoneme defined by its label and its duration. Then
this framework is used to infer lip shape for all phonemes at
each time step. In this step, the output lip shapes are viewed
as being constant over the whole phoneme and are independent
from the neighboring phonemes. Figure 3 shows the output lip
shapes (displayed as red circles) as obtained from lip shape
GMMs.

2.2. Training an Interpolation Function

In the previous section 2.1, we introduce how to infer lip shape
for each phoneme. In the following we detail how to smooth lip
shapes using neighboring phonemes, thus capturing some form
of co-articulation effect.

2.2.1. Training: Building HMMs interpolation

A 13-dimensional motion stream, ml, l = 1, ..., 13, can be ob-
tained from each training episode. The speed feature, ∆ml, and
the acceleration, ∆∆ml, are calculated. The motion joint vec-
tor is defined as ol = [mlT ,∆mlT ∆∆mlT ]T . All the motion
joint vectors, ol, are grouped as a set, {ol}. Each set, {ol},
is clustered by the LBG algorithm [44]. We obtain a codebook
withQ representative subsets (whereQ is equal to 50). 13 code-
books of size Q are separately built on one-dimensional motion
stream. Each frame of the motion data is clustered into a subset.
In each subset, the mean and the covariance are calculated to



characterize this subset. Q pairs of mean and covariance can be
obtained for each dimensional motion stream and they are used
to define the emission probabilities of HMM. The state transi-
tion probabilities are learnt by computing the transition number.
As described above, 13 HMMsol interpolation can be built
separately for 13-dimensional motion.

2.2.2. Synthesis: Smoothing the lip shape stream

During the synthesis step, one HMMml with observation, ml,
can be extracted from the trained HMMol with observation,
ol, by ignoring the observations ∆ml and ∆∆ml.

As introduced in 2.1, lip shape GMMs can produce lip
shape stream corresponding to several phonemes. Lip shape
stream is composed of ml, l = 1, ...., 13. Lip shape is constant
over one phoneme. Given lip shape stream, a state sequence, q,
can be determined from HMMml by using Viterbi algorithm.

q is applied to GMMol . Given GMMsol and a state se-
quence, q, a smooth trajectory, ml, can be synthesized directly
by solving the equation as follows:

∂logP (Wml|q,HMMsol)

∂ml
= 0 (3)

whereW the operation matrix to satisfy ol = Wml. This equa-
tion has been solved by Tokuda et al. [30].

As introduced above, HMMs play the role of interpolation
function. For the sake of simplicity, such HMMs are called
interpolation HMMs. First, the rough observation stream
(constant over one phoneme) is used as input to determine a
state sequence. Then, from this state sequence, a smoothing
motion stream is generated as output.

2.3. Real-Time Lip Animation Synthesis

Section 2.1 presented how to infer lip shape at one time step,
based on lip shape GMMs; Section 2.2 explained the HMMs-
based interpolation function (HMMs interpolation). Gener-
ally, once lip shape stream is inferred by lip shape GMMs;
it can be smoothed by HMMs interpolation. The following
details how to perform the lip animation synthesis in real time
using lip shape GMMs and HMMs interpolation.

Given the input phonemes stream, vowels (V) are used to
segment phonemes stream as unit, which is inspired by the defi-
nition of syllables as the fundamental units of speech production
[7, 31, 45]. The last phoneme in one unit is the first phoneme
in the next unit. The unit can be group of V-V, V-Consonant-
V or V-Consonants-V. Three consonants (p, b, m) define labial
closure and they are also used to segment phonemes stream as
vowels do. In the step of synthesis, each unit is used sequen-
tially as input to the synthesis framework.

3. Results and Evaluation
Figure 6 shows two trajectory examples. To perform objective
evaluation of our model, we compute the difference (i.e. er-
ror rate) in lip shape between the original lip movement and
the synthesized one. To understand where errors may be more
prominent, we compute the differences in lip shape for specific
features. We rely on works done in phonetics studies that de-
scribed lip shapes by 4 labial parameters [7]:

1. lip openness: distance between top and bottom middle
lip positions.

2. lip extension: distance between left and right lip corners.

3. top lip protrusion.

Figure 6: Two Trajectory Examples. The red curve corresponds
to the human jaw trajectory; the blue one is the synthesized jaw
trajectory.

4. bottom lip protrusion.

These 4 labial parameters are taken into account to evalu-
ate objectively the performance of our model. We calculate the
differences in terms of 4 labial parameters between the original
and the synthesized motions, as follows:

diff =
Ori− Syn

MaximumV alue
(4)

where diff is the resulting difference; Ori is the value
from human data; Syn is the synthesized value and
MaximumV alue is the maximum value of the 4 labial pa-
rameters calculated on all the training episodes. Hence, diff
ranges from 0 to 1.

We separate the whole speech or laughter database in 80%
for training and 20% for testing. We run our algorithm on this
20%. We compute the value of the 4 phonetic parameters from
the synthesized lip animation. We compute the difference be-
tween the value of these 4 parameters for the synthesized ani-
mation and for the natural speech. We repeat this computation
20 times; that is, for 20 times, we divide the database into 2 sets,
80% for training and 20% for testing and compute the error rate
for the lip displacement. We take the average of the 20 error
rates and of the standard deviation for computing the final error
rate. Figure 6 shows two trajectory examples. The segment tra-
jectories corresponding to the phoneme silence for speech and
for laughter are not taken into account in our objective evalua-
tion.

The experimental results on speech lip animation are
showed in Table 1. 169 speech episodes are used in total.
The results show that our statistical framework outperforms
the HMM-based synthesis framework [29, 30] trained by Max-
imum Likelihood Estimation (MLE). The results by HMM-
based synthesis framework is based on the same dataset.

In HMM-based synthesis framework, all the inferred val-
ues at each frame time of one animation sequence are depen-
dent with each other; that is, with HMM-based synthesis model,
co-articulation occurs between both, close and distant neighbor-
ing phonemes. This may create artifact and may lower lip ani-
mation quality as studies have shown that co-articulation has a
range of influence, even if this range varies depending on the
phoneme sequences [7, 31]. Furthermore, HMM-based synthe-
sis framework do not work in real-time while our model does.

Our real-time framework emphasizes not only the impor-
tance of phoneme on lip shape with the lip shape GMMs, but
also it takes into account co-articulation of close neighboring



Proposed
model

HMM-based
framework[29]

lip openness 0.049 (0.029) 0.19 (0.056)
lip extension 0.061 (0.041) 0.23 (0.064)
top lip protrusion 0.163 (0.055) 0.34 (0.071)
bottom lip protrusion 0.132 (0.047) 0.31 (0.031)

Table 1: Speech Lip Results (diff ): Performance of the models
with respect to the synthesis quality. Performances are averaged
results gained on 20 experiments (standard deviations are given
in brackets). diff is in the range of 0 and 1

Proposed
model

regression
model[35]

lip openness 0.18 (0.076) 0.22 (0.067)
lip extension 0.19 (0.039) 0.25 (0.059)
top lip protrusion 0.21 (0.061) 0.26 (0.024)
bottom lip protrusion 0.27 (0.059) 0.31 (0.041)

Table 2: Laughter Lip Results: Performance of the models with
respect to the synthesis quality. Performances are averaged re-
sults gained running 20 experiments (standard deviations are
given in brackets).

phonemes with the HMMs interpolation. The lip shape
GMMs is capable of modeling viseme adaption depending on
phoneme duration; thus, it simulates how a viseme may not
reach its position if phoneme duration may not allow it [31].

Our proposed HMMs interpolation is inspired by the
parameter synthesis algorithm [30], which is used directly in
HMM-based synthesis framework [15, 29] to smooth the out-
put stream. Our framework only uses this parameter synthe-
sis algorithm as interpolation function on local motion seg-
ment. In [15, 29], the state sequence is estimated directly by the
phonemes stream, while, in our framework, the state (compo-
nent) sequence is estimated by a rough lip shape stream, which
is inferred by lip shape GMMs. The combination of lip
shape GMMs and HMMs interpolation allows us to re-
fine the synthesized motion.

The experiment results on laughter lip animation can be
seen in Table 2. 49 laughter episodes are used in total. The
results show that our statistical framework outperforms the ex-
isting laughter lip animation synthesis based on linear regres-
sion model [35]. These two approaches are based on the same
dataset and they are capable of synthesizing laughter lip ani-
mation in real time. In [35], co-articulation is not taken into
account. This may explain why the quality of laughter lip ani-
mation is lower with this previous model.

Comparing the results of laughter lip (see Table 2) and
speech lip (see Table 1), the quality of laughter lip is not as
accurately reproduced as the speech lip. Notice that human
speech lip is recorded by motion capture technology while hu-
man laughter lip is detected by tracking software. The track-
ing software cannot precisely capture human lip data. This can
have an effect of the the quality of the laughter animation. In
our work, we use a unified framework for speech and laughter
to model the lip co-articulation. However, lip co-articulation in
laughter is much lower than in speech, which is not taken into
account in the unified framework. This may explain the dif-
ference in error rates of lip shapes motion during speech and
laughter.

4. Conclusions
Our work focuses on text-driven lip animation for interactive
virtual agents. It involves speech and laughter lip animation
synthesis. The unified synthesis framework for speech and
laughter lip animation should facilitate the lip animation syn-
thesis for speaking while laughing which we tackle in future
work.

The proposed framework consists of lip shape GMMs
andHMMs interpolation: one is used to infer lip shape from
sequence of phonemes; the other to model the co-articulation
of human lip motion. The combination of lip shape GMMs
and HMMs interpolation ensures to refine the synthesized
motion.

The objective evaluation shows that our approach outper-
forms classical HMM-based synthesis approaches for speech lip
animation synthesis and linear regression model for laughter lip
animation synthesis.
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