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Abstract. Speakers accompany their speech with incessant, subtle head
movements. It is important to implement such “visual prosody” in virtual
agents, not only to make their behavior more natural, but also because
it has been shown to help listeners understand speech. We contribute a
visual prosody model for interactive virtual agents that shall be capable
of having live, non-scripted interactions with humans and thus have to
use Text-To-Speech rather than recorded speech. We present our method
for creating visual prosody online from continuous TTS output, and we
report results from three crowdsourcing experiments carried out to see
if and to what extent it can help in enhancing the interaction experience
with an agent.

Keywords: Visual prosody · Nonverbal behavior · Realtime animation ·
Interactive agents

1 Introduction

Our heads move almost incessantly during speaking. These movements are
related to e.g. the neurological and biomechanical coupling between head and
jaw, the prosodic structure of speech, the content of speech and pragmatics
such as turn-taking [10]. In this paper we focus on synthesizing and evaluating
visual prosody : the movements of the head related to the prosodic structure of
the accompanying speech [8]. It is important to endow Intelligent Virtual Agents
(IVAs) with visual prosody, not only to make their movement and behavior more
human-like, but also because visual prosody has been shown to help listeners in
understanding speech [16].

Recently, many approaches to motion synthesis based on speech prosody
have been proposed (see Sect. 2 for an overview). However, to the best of our
knowledge, none of these approaches deal with interactive IVAs in live interac-
tions with humans. Going beyond simple playback of prerecorded audio scripts,
interactive IVAs have to rely on flexible Text-To-Speech (TTS) output. In such
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agents, visual prosody must be generated in real-time from running synthetic
speech. That is, the preparation of a motion segment (including the generation
of TTS for it) should take less time than playing back the motion segment.
Beyond that, we aim to use visual prosody in an incremental behavior realizer
[17]. In such a realizer, utterances are generated in chunks much smaller than
a full sentence, e.g. in a phrase. A visual prosody module that is of any use in
such realization scenarios should work in an online fashion. That is, it should be
able to deal with motion synthesis using only the current and previous phrases
and make use of only little (if any) look-ahead.

In this paper, we present the first online TTS-based system for visual prosody.
After discussing related work, we present our approach to creating online visual
prosody for a behavior realizer. Finally, we report results from three crowdsourc-
ing experiments carried out to measure if and to what extent this model can help
in enhancing the interaction experience with an IVA. In particular, we compare
our approach (1) to not using speech related head motion at all (as is common
practise in most behavior realizers), (2) using motion captured head motion
that is unrelated to the spoken content, and 3) feeding TTS to a state-of-the-art
offline visual prosody model [5].

2 Related Work

The generation of speech-accompanying head movements has been tackled in
several projects before. Lee and colleagues (see [12] for a recent overview of their
work) have provided a nonverbal behavior generator (NVBG) that generates
head and other motion on the basis of speech. Their work is complementary
to ours: the NVBG generates motion based on speech content and pragmat-
ics rather than on speech prosody. Other computer animation systems provide
head motion on the basis of speech prosody. Typically these systems work offline
(e.g. in [3–5,15]): they take a spoken sentence and generate head motion that is
fluent and at the same time fits to the prosodic structure (e.g. speech pitch (f0),
energy, or syllable boundaries) of the sentence. To capture the temporal evolu-
tion of sequential data (here, head rotations) these systems typically make use
of a Hidden Markov Models (HMMs) as visual prosody models [3,15]. However,
such visual prosody models suffer from the limitations of HMM independence
assumptions.1 This limitation can be attenuated by a variant of HMM, called
parameterized (contextual) HMM, where state emission probabilities and state
transition probabilities are defined by contextual parameters (e.g. prosody fea-
tures) at each time step. Ding et al. [5] proposed a fully parameterized (contex-
tual) HMM as visual prosody model, which not only embeds the advantage of
HMMs but also overcomes the limitations of classical HMMs.

Others have worked on ‘live’ synthesis of visual prosody, where head motion is
synthesized directly on the basis of microphone input. Levine et al. [14] generate
1 The state at time t is independent of all the previous states given the state at time

t−1; the observation at time t is assumed independent of all other observations and
all states given the state at time t.
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a live stream of gesture (including head movement) from speech f0 and energy,
summarized per syllable. Gesture synthesis is achieved using a HMM that selects
the right gesture phase to perform at each syllable. In later work, rather than
modeling the mapping between motion and speech prosody directly, Levine and
colleagues [13] provide a two-layered model, which outperformes [14] in perceived
realism. This model uses an inference layer (using a Conditional Random Field)
that models the relationship between prosodic features and more abstract motion
features (such as temporal and spatial extend, velocity, curvature). At synthesis
time, a control layer selects the most appropiate gesture segment using a pre-
computed optimal control policy that aims to minimize the difference between
desired and selected gesture features while maximizing the animation quality.
Le et al. [11] have implemented a live visual prosody system that synthesizes
head, eye and eyelid motion on the basis of speech loudness and f0. The head
motion synthesis of this model is implemented as a frame-by-frame selection of
head posture on the basis of the prosodic features and the head posture on the
previous two frames. It uses a Gaussian Mixture Model (GMM) to maximize the
combined probability density of the head posture, velocity and acceleration with
the prosodic features. This system outperforms some of the other online and
offline systems ([3,4,14]) discussed in this section in terms of preference ratings
by subjects. To the best of our knowledge, none of these live visual prosody
systems have been tested with TTS rather than real human speech.

3 Online TTS-Based Visual Prosody

As live synthesis fits with our goal of implementing online visual prosody in
incremental behavior realization scenarios, we decided to implement our online
TTS-based visual prosody model on the basis of a live visual prosody model.
Since we are currently exploring the feasibility of TTS-based visual prosody, we
opted to implement a modified version of [11] and test it with TTS input, as
their system is easy to implement, yet provides synthesis results that are beyond
the quality of several existing visual prosody models.

Le et al.’s visual prosody model works as follows. Its speech features are
f (f0) and l (loudness). Its motion features κ ∈ {r, p, y, v, a} include the euler
angles rt (roll), pt (pitch) and yt (yaw) of the head at frame t, and the head
velocity vt and acceleration at, defined as:
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It makes use of five GMMs, one for each motion feature, modeling the joint
probability density of that motion feature with the two speech features:

P (X) =
m∑

i=1

ci
1
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Here X = (κ, f, l)T , m is the number of mixtures, ci, μi and Σi are the weight,
mean and covariance matrix of the i-th mixture respectively. The GMMs are
trained using the Expectation-Maximation algorithm. At synthesis, the next
head pose is then found using:

(r∗
t , p∗

t , y
∗
t ) = arg max

rt,pt,yt
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Thus, the method favours poses and velocities that are likely in combination with
the prosodic features, and additionally, by taking into account the previous two
frames of animation and the likelihood density of velocities and accelerations,
smooth motion trajectories.

We provide several modifications to this model. Le et al. use a customly
recorded motion capture corpus in which an actor is asked to read from a phone
balanced corpus for 47 min. As neither this corpus nor their trained models
are publicly available, we opted to train the model from the IEMocap corpus
[2] instead. The corpus contains dialogs between two actors in 8 improvised
and 7 scripted scenarios. In each dialog, the movement of one of the actors
is recorded using motion capture. Each scenario is recorded for five male and
five female actors. We performed Canonical Correlation Analysis (CCA) on the
head motion and speech, which revealed significant differences for the synchrony
of head motion and speech, both between different actors and between their
scripted and improvized sessions. Based on this observation we decided to train
the model based on the speech and motion of one female actor (actor F1) in her
scripted scenarios. We choose to train on the scripted scenarios, as they have
a higher CCA coeficient and we hypothised that they therefore may have less
head motions that are unrelated to speech prosody. In total, the training set
contained 7.4 min of speech and head motion.

Similarly to [11], we use openSMILE [6] to extract audio features. However,
rather than using loudness and f0, we opted to use RMS energy and f0, as we
found that RMS energy correlates more with the head postures and is easier to
obtain directly from TTS software. As we have less training data available, we
decided to use a higher sample rate (120 Hz instead of 24 Hz as used in [11]) to
obtain more training samples. Figure 1a shows a histogram of the head pitch and
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f0 in the training data. In 31 % of the samples in the training data (the red box
in Fig. 1a), the f0 is 0, that is, there is either a silence or the speech is not voiced.
As it turned out to be difficult to fit a GMM to this speech pattern we decided to
learn the GMM only on the voiced parts of the speech, which left us with 5.1 min
of training data. As we observed that the head velocity is low during unvoiced
speech (Fig. 1b), we decided to keep the head still whenever f0 is 0 during syn-
thesis. Based on cross validation results, we set the number of GMMs to 11 in all
mixture models ([11] uses 10). Rather than using gradient descent search to find
the optimum of Eq. 4, we opted to use the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm for optimization (we make use of the algorithm as provided by
WEKA [9]) as it converges faster than gradient descent and works with different
(TTS) voices without requiring manual tweaking of the optimization parameters
for each voice.
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Fig. 1. Left: Histogram of head pitch and f0; right: probability density of head velocity
during voiced and unvoiced speech.

4 Evaluation

To measure if and to what extent implementing online visual prosody in a behav-
ior realizer can help in enhancing the interaction experience, we conducted three
experiments. The first two experiments explore whether an IVA that exhibits
visual prosody is perceived as warmer, more competent and/or more human-
like. In the third experiment, we check whether subjects perceive the online
visual prosody as fitting to the accompanying speech.

4.1 Experimental Conditions

We use four experimental conditions to measure the performance of online visual
prosody. In the none condition no visual prosody is used, which is the common
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practise in current behavior realizers. In the mocap condition the head movement
of the IVA is steered by motion capture motion from a speaker in the corpus.
That is, the IVA replays a real human speaking motion, but it is not produced in
concordance with the accompanied TTS output. Motion capture segments that
may represent visual prosody are selected from the IEMOCAP corpus [2] using
the following criteria:

1. The head should, on average, face in the direction of the interlocutor. This
corresponds with motion segments that have their mean pitch, yaw and roll
in the ranges < −4, 4 >,< −5, 5 > and < −6, 6 > degrees respectively.

2. Extreme head poses are to be avoided, the head pitch, yaw and roll should be
in the ranges < −8, 8 >, < −15, 15 > and < −12, 12 > degrees respectively.

3. Extreme rotational velocities (greater than 240◦/s) and accelerations (greater
than 60◦/s2) are to be avoided.

These criteria are meant to prevent excessive movements that too obviously do
not correspond to TTS. The numerical values were obtained by manual inspec-
tion of the histograms of head rotations in the corpus.

In the offline condition the head movement of the IVA is steered by a state-of-
the-art offline visual prosody model [5]. This model synthesizes head and eyebrow
motions on the basis of the f0 and RMS energy of speech. In the experiments we
make use of only the head motion generated by this model. This is a challenging
baseline as it can take into account more information when synthesizing head
motion than the online model. In the online condition the head movement of
the IVA is steered by the online visual prosody model (see Sect. 3).

mocap offline online
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d g h l s d g h l s d g h l s
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a
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Fig. 2. Left: CCA-coefficients of the stimuli; right: prototypical head movements.

4.2 Stimuli

For all stimuli, behavior is steered using AsapRealizer [17], with the ‘Arman-
dia’ virtual character (see Fig. 2b) and the ‘Hannah’ US-American voice frome
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CereProc.2 We introduce Armandia to the subjects as a virtual assistant that
helps manage their appointments. We created four appointments for Armandia
to introduce to the subjects (see Fig. 3 for an example). For each appointment,
we created videos for all four conditions. The eye gaze of the IVA is directed at
the camera in all interaction segments. Videos for the stimuli in all conditions
are provided at http://www.herwinvanwelbergen.nl/visual prosody.

To evaluate the speech-gesture synchrony of our stimuli we calculate the
CCA-coefficient between the euler angles of the head and the f0 of speech (see
Fig. 2a). This, or similar linear correlations have been used to demonstrate the
synchrony between head posture and speech prosody in related work (e.g. [3,16])
and the CCA-coefficient is proposed as an objective measurement for visual
prosody by Mariooryad and Busso [15]. The mean CCA-coefficients (indicated
with the red lines) are below the CCA-coefficients found in real speech (top
black line), but well above chance level (lower black line). Interestingly, the
CCA-coefficients are also high in the mocap condition. We hypothesize that
this is because both speech and gesture are rhythmic signals and some linear
correlation can always be found between two such signals.

All studies are conducted online. Subjects are recruited using the Crowd-
Flower crowdsourcing platform3 and got paid for participating. Participant
recruition was limited to English speaking countries. At the start of each of
the experiments, subjects are shown a video of Armandia reading a login code
to them. Subjects have to enter this code to proceed to the rest of the study.
This video serves both to let the subject get used to Text-To-Speech and our
IVA and to make sure that they understand what is being said (e.g. their audio
is enabled and at a high enough level, they understand some English). We intro-
duced several mechanisms (discussed in detail in each experiment) to filter out
subjects that provided nonsense answers to minimize their time spend on the
experiment and maximize their profit. Subjects were given the option to provide
free-text feedback after each experiment. At the end of each study, subjects were
debriefed on its purpose.

4.3 Evaluating Warmth, Competence and Humanlikeness

Our experimental design (including the questionnaires) to measure warmth, com-
petence and human-likeness is based upon the design used in succesful labora-
tory studies by Bergmann and colleagues (e.g. in [1]), in which these factors are
compared for several gesturing strategies (including not gesturing at all).

Subjects are instructed that they are to evaluate a virtual assistant that helps
manage their appointments. We use a between-subject design: each subject is
shown videos of Armandia in one condition. In this experiment, the login code
is read using that condition. After logging in, subjects are shown four videos
of Armandia discussing an appointment in one or two sentences. Each video is
followed by two-choice comprehension questions (see Fig. 3 for an example).

2 https://www.cereproc.com/.
3 http://www.crowdflower.com/.

http://www.herwinvanwelbergen.nl/visual_prosody
https://www.cereproc.com/
http://www.crowdflower.com/
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Appointment: Your plane to Hawaii leaves on Saturday at 10 am, so you
should take the train at 7:10, what do you think about that?

Question: What leaves at 10 am?
Possible answers: Train, Plane

Fig. 3. Example appointment and comprehension question.

The comprehension questions are used to make sure subjects pay attention
to the videos and filter out those that did not understand what was said in them.
After watching the four videos subjects are asked to rate how well 18 adjectives
(see Table 1) fit Armandia’s behaviour on a 7-point Likert scale ranging from not
appropiate to very appropiate. The 18 adjectives are intertwined with three test
adjectives that have a more or less clear answer (we used ‘blond’, ‘dark-haired’,
‘english-speaking’). We used a pilot study with 10 subjects from our laboratories
to select a set of test adjectives that is best understood by the subjects and to
establish baselines for correctly answered comprehension questions.

Results. In total 260 subjects participated in the study, 232 of these finished
the questionnaire. We filtered out subjects that did not watch all videos (6), did
not rate the test adjectives correctly (48) or could not answer more than 6 out of
8 of the comprehension questions correctly (7). This left us with 171 participants
(101 female, 70 male, aged between 18 and 71; M = 39.7, SD = 12.2).

To measure the reliability of our warmth, competence and human-likeness
factors, we calculated Cronbach’s α. All α valuses were above 0.7, which justifies
combining these items into one mean value as a single index for this scale (see
Table 1).

Table 1. Reliability analysis for the three factors.

Factor Items Cronbach’s α

Warmth pleasant, sensitive, friendly, likeable, affable,
approachable, sociable

.927

Competence dedicated, trustworthy, thorough, helpful,
intelligent, organized, expert

.925

Human-likeness active, humanlike, fun-loving, lively .846

We conducted a one-factorial ANOVA and found no significant difference
between the conditions in warmth (F (3, 167) = .284, p = .837), competence
(F (3, 167) = 1.095, p = .889) nor human-likeness (F (3, 167) = .722, p = .828).
Figure 4 (right) shows the distribution of the factors in each condition.

To check the consistency of the ratings on the questionnaire we conducted
principal component analysis (PCA) with orthogonal rotation (varimax) on the
14 questionnaire elements relating to warmth and competence. We selected only
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these factors, as they are consistently found as universal dimensions of social
judgement [7], while human-likeness is added as a more experimental factor,
which is not necesaraly orthogonal to warmth and competence in [1]. Two compo-
nents had eigenvalues of over Kaiser’s criterion of 1 and in combination explained
70.8% of the variance. Figure 4 (left side) shows the factor loading after rotation
and the mean and standard deviation of each factor. The items that cluster on
the same components suggest that one corresponds to competence and the other
to warmth and that each item clusters to its expected component.

item warmth competence

pleasant .705 .406
sensitive .763 .082
friendly .802 .322
likeable .765 .429
affable .732 .322
approachable .754 .433
sociable .824 .300

dedicated .493 .625
trustworthy .407 .760
thorough .222 .858
helpful .196 .796
intelligent .521 .680
organized .238 .845
expert .394 .699
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Fig. 4. Results of the evaluation of warmth, competence and human-likeness.

Over 42% (72) of the subjects used the possibility to provide free-text feed-
back. Most of the comments (42, in all conditions) were on the quality of
the TTS. Several subjects (11, in all conditions) commented that aspects of
movement were missing (e.g. emotion, smiles, blinking, gaze). Only one of the
subjects commented on the head motion.

4.4 Warmth, Competence and Humanlikeness Revisited

We hypothized that because of the comprehension task, many subjects may have
been too focused on understanding the speech to notice the head movement.
Therefore we ran a second experiment, in which we removed all comprehension
questions. Furthermore, we added a question at the end on which motions were
perceived by the subjects (head, lips, blinks, breathing).

Results. After filtering out subjects in the same way as for experiment 1, 176
subject remained. Of these we focus our analysis on the 142 (77 female, 65 male,
aged between 20 and 68; M = 37.8, SD = 10.7) that either correctly perceived
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head movement when the head moved in their condition, or reported no head
movement when they were assigned the none condition (analysis on the afore-
mentioned 176 shows similar results). Of these 142, 53 subjects have participated
in the first experiment. This might bias the results in favour of our models, as
it creates a partial within-subject condition for some of the participants.

As in the previous experiment, we calculate Cronbach’s α on the factors, and
again combining them into a one mean value as a single index for each factor was
justified. We conducted a one-factorial ANOVA and found no significant differ-
ence between the conditions in warmth (F (3, 138) = .733, p = .534), competence
(F (3, 138) = .923, p = .432) nor human-likeness (F (3, 138) = .919, p = .433).
The means and standard deviations of the factors are almost identical to those
of the first experiment.

4.5 Evaluating the Match Between Speech and Head-Motion

To evaluate how well the head motion generated by our model is perceived to fit
to the speech, we asked subjects to order the videos of the different conditions for
all four appointment sentences: participants were instructed to give each of the
four videos a unique ranking number (1st, 2nd, 3rd, 4th), but we did not enforce
this in the user interface of the study. This allowed us to filter out participants
that did not bother to read the instructions and (arguably) might not give very
serious rankings. In this experiment, the login code was read in the no-motion
condition.

Results. In total 125 subjects participated in the study. Of these, 95 completed
the study. We filtered out subjects that did not watch the videos completely
(8), did not provide a unique ranking for each video (27), participated in the
previous experiments (7) or reported mistakes in filling out the ranking (1). This
left us with 52 participants (30 female, 22 male, aged from 17 to 64; M = 38.06,
SD = 11.95) for the analysis of our results.
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Fig. 5. Left: overview of the rankings, whiskers indicate the 95 % confidence intervals;
right: spread of the rankings per appointment sentence.
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We performed a repeated measures ANOVA to compare the ranking of the
conditions and their interaction with the appointments. Mauchly’s test indi-
cated that the assumption of sphericity had been violated for the main effect
of condition, χ2(5) = 12.257, p = .031 and the interaction between appoint-
ment and condition χ2(44) = 62.156, p = .038 , therefore the degrees of freedom
were corrected using Huynh-Feldt estimates of sphericity (ε = .929, ε = .934
respectively). The results show a significant main effect between the conditions
F (2.788, 339.144) = 45.919, p < 0.001, η2

p = .474. Post hoc tests (using Bonfer-
roni adjustment for multiple comparisons) show that the no-motion condition is
always ranked significantly lower as all other conditions (p < 0.001), online visual
prosody is always rated significantly higher as all other conditions (p < 0.002)
and offline and mocap are inbetween and their ratings do not significantly dif-
fer (p = 1.00). No interaction between appointment and condition was found
(F (8.407, 428.741) = 1.207, p = .291). An overview of the rankings for each con-
dition and their spread over different appointment sentences is given in Fig. 5.

5 Discussion

The evaluation showed that the online visual prosody model can provide head
motion that is perceived to fit better to TTS than using a state-of-the art offline
method for visual prosody with TTS, using motion capture from a different
speech segment, or using no motion at all. Surprisingly, motion synthesized with
the offline visual prosody model was not perceived as fitting better to speech
than motion captured motion that is unrelated to the speech. It could well
be that generating motion that is perceived to fit to TTS requires different
motion qualities (e.g. being more robotic) than generating motion that fits to
real human speech. Recall that the offline model is a more intricate model than
the relatively simple online model and might capture aspects of human speech
(for example prominence) that are not available in TTS. The online model might
thus outperform the offline model with TTS-speech because it is more robust
in generating head motion that is coherent to speech when some human-like
qualities of speech are missing.

We did not find any effect of visual prosody on perceived warmth, com-
petence or human-likeness. There could be several reasons for this: (1) visual
prosody might not affect perceived competence, warmth, nor human-likeness,
(2) the effects are relatively small and cannot be found in a between-subject
crowdsourcing study where we do not control screen-size, attention, outside
distractions, sound quality, etc., (3) other factors are far more important for
perceived competence, warmth or human-likeness than prosodic head motion
(e.g. speech quality, lipsync quality). We aim to tease apart which of these rea-
sons explain our results in further studies. Our experimental design to assess
warmth, competence and humanlike-ness was based on a successful laboratory
study on the perceived effects of gesture [1]. To assess (2), we plan to both run
our study in the laboratory and the laboratory study of Bergmann et al. [1] in
a crowdsourceing experiment. Point (3) is supported by the comments of sub-
jects on the quality of the TTS and the lack of other facial motion. Using visual
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prosody on more than one modality has been shown to enhance the perceived
human-likeness of an IVA for real speech [5,15]. In future work we thus aim to
enhance the online visual prosody model to include more modalities such as eye
and eyelid movement (e.g. using the online model of [11]) and eyebrow move-
ment (as in [5,15]) and assess if those help us in enhancing the human-likeness,
warmth and/or competence of TTS-driven real-time visual prosody.
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