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Abstract

This paper introduces deep neural network (DNN) - hidden Markov model (HMM) based
methods to tackle speech recognition in heterogeneous groups of speakers including chil-
dren. We target three speaker groups consisting of children, adult males and adult females.
Two different kind of approaches are introduced here: approaches based on DNN adapta-
tion and approaches relying on vocal-tract length normalisation (VTLN).

First, the recent approach that consists in adapting a general DNN to domain/language
specific data is extended to target age/gender groups in the context of DNN-HMM. Then,
VTLN is investigated by training a DNN-HMM system by using either mel frequency
cepstral coefficients (MFCC) normalised with standard VTLN or MFCC derived acoustic
features combined with the posterior probabilities of the VTLN warping factors. In this
later, novel, approach the posterior probabilities of the warping factors are obtained with
a separate DNN and the decoding can be operated in a single pass when the VTLN
approach requires two decoding passes. Finally, the different approaches presented here
are combined to take advantage of their complementarity. The combination of several
approaches is shown to improve the baseline phone error rate performance by 30% to 35%
relative and the baseline word error rate performance by about 10% relative.

1 Introduction

Speaker-related acoustic variability is a major source of errors in automatic speech

recognition. In this paper we cope with age group differences, by considering the

relevant case of children versus adults, as well as with male/female differences.

Here DNN is used to deal with the acoustic variability induced by age and gender

differences.
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Developmental changes in speech production introduce age-dependent spectral

and temporal variabilities in speech produced by children. Studies on morphol-

ogy and development of the vocal tract (Fitch and Giedd, 1999) reveal that during

childhood there is a steady gradual lengthening of the vocal tract as the child grows

while a concomitant decrease in formant frequencies occurs (Huber, Stathopoulos,

Curione, Ash, and Johnson, 1999; Lee, Potamianos, and Narayanan, 1999). In par-

ticular, for females there is an essential gradual continuous growth of vocal tract

through puberty into adulthood, while for males during puberty there is a dispro-

portionate growth of the vocal tract, which lowers formant frequencies, together

with an enlargement of the glottis, which lowers the pitch. After age 15, males

show a substantial longer vocal tract and lower formant frequencies than females.

Consequently, voices of children tend to be more similar to the voices of women

than to those of men.

When an automatic speech recognition (ASR) system trained on adults’ speech

is employed to recognise children’s speech, performance decreases drastically, espe-

cially for younger children (Wilpon and Jacobsen, 1996; Claes, Dologlou, ten Bosch,

and Compernolle, 1998; Das, Nix, and Picheny, 1998; Li and Russell, 2001; Giu-

liani and Gerosa, 2003; Potamianos and Narayanan, 2003; Gerosa, Giuliani, and

Brugnara, 2007; Gerosa, Giuliani, Narayanan, and Potamianos, 2009b). A number

of attempts have been reported in the literature to compensate for this effect. Most

of them try to compensate for spectral differences caused by differences in vocal

tract length and shape by warping the frequency axis of the speech power spec-

trum of each test speaker or transforming acoustic models (Claes et al., 1998; Das

et al., 1998; Potamianos and Narayanan, 2003). However, to ensure good recog-

nition performance, age-specific acoustic models trained on speech collected from

children of the target age, or group of ages, is usually employed (Wilpon and Jacob-

sen, 1996; Hagen, Pellom, and Cole, 2003; Nisimura, Lee, Saruwatari, and Shikano,

2004; Gerosa et al., 2007). Typically much less training data are available for chil-

dren than for adults. The use of adults’ speech for reinforcing the training data in

the case of a lack of children’s speech was investigated in the past (Wilpon and

Jacobsen, 1996; Steidl, Stemmer, Hacker, Nöth, and Niemann, 2003). However, in

order to achieve a recognition performance improvement when training with a mix-

ture of children’s and adults’ speech, speaker normalisation and speaker adaptive

training techniques are usually needed (Gerosa, Giuliani, and Brugnara, 2009a).

How to cope with acoustic variability induced by gender differences has been

studied for adult speakers in a number of papers. Assuming that there is enough

training data, one approach consists in the use of gender-dependent models that

are either directly used in the recognition process itself (Yochai and Morgan, 1992;

Woodland, Odell, Valtchev, and Young, 1994) or used as a better seed for speaker

adaptation (Lee and Gauvain, 1993). Alternatively, when training on speakers of

both genders, speaker normalisation and adaptation techniques are commonly em-

ployed to compensate for acoustic inter-speaker variability (Lee and Rose, 1996;

Gales, 1998).

Since the surfacing of efficient pre-training algorithms during the past years (Hin-

ton, Osindero, and Teh, 2006; Bengio, Lamblin, Popovici, and Larochelle, 2007;
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Erhan, Bengio, Courville, Manzagol, Vincent, and Bengio, 2010; Seide, Li, Chen,

and Yu, 2011), DNN has proven to be an effective alternative to Gaussian mixture

model (GMM) in HMM-GMM based ASR (Bourlard and Morgan, 1994; Hinton,

Deng, Yu, Dahl, Mohamed, Jaitly, Senior, Vanhoucke, Nguyen, Sainath, and Kings-

bury, 2012) and really good performance has been obtained with hybrid DNN-HMM

systems (Dahl, Yu, Deng, and Acero, 2012; Mohamed, Dahl, and Hinton, 2012).

Capitalising on their good classification and generalisation capabilities DNNs

have been used widely in multi-domain and multi-languages tasks (Sivadas and

Hermansky, 2004; Stolcke, Grezl, Hwang, Lei, Morgan, and Vergyri, 2006). The

main idea is usually to first exploit a task independent (multi-lingual/multi-domain)

corpus and then to use a task specific corpus. These different corpora can be used

to design new DNN architectures with application to task specific ASR (Pinto,

Magimai-Doss, and Bourlard, 2009) or task independent ASR (Bell, Swietojanski,

and Renals, 2013). Another approach consists in using the different corpora at

different stages of the DNN training. The task independent corpus is used only for

the pre-training (Swietojanski, Ghoshal, and Renals, 2012) or for a general first

training (Le, Lamel, and Gauvain, 2010; Thomas, Seltzer, Church, and Hermansky,

2013) and the task specific corpus is used for the final training/adaptation of the

DNN. In under-resourced scenarios, approaches based on DNN (Imseng, Motlicek,

Garner, and Bourlard, 2013) have then shown to outperform approaches based on

subspace GMM (Burget, Schwarz, Agarwal, Akyazi, Feng, Ghoshal, Glembek, Goel,

Karafiat, Povey, Rastrow, Rose, and Thomas, 2010).

However, to our best knowledge, apart from the very recent work on the subject

in Metallinou and Cheng (2014) DNN is scarcely used in the context of children’s

speech recognition. In Wöllmer, Schuller, Batliner, Steidl, and Seppi (2011) a bidi-

rectional long short-term memory network is used for keyword detection but we

have not found any mention of the application of the hybrid DNN-HMM to chil-

dren’s speech recognition.

Three target groups of speakers are considered in this work, that is children,

adult males and adult females. There is only a limited amount of labelled data for

such groups. We investigated two approaches for ASR in under-resourced conditions

with an heterogeneous population of speakers.

The first approach investigated in this paper extends the idea introduced

in Yochai and Morgan (1992) to the DNN context. The DNN trained on speech

data from all the three groups of speakers is adapted to the age/gender group

specific corpora. First it is shown that training a DNN only from a group specific

corpus is not effective when only limited labelled data is available. Then the method

proposed in Thomas et al. (2013) is adapted to the age/gender specific problem and

used in a DNN-HMM architecture instead of a tandem architecture.

The second approach introduced in this paper relies on VTLN. In Seide et al.

(2011) an investigation was conducted by training a DNN on VTLN normalised

acoustic features, it was found that in a large vocabulary adults’ speech recogni-

tion task limited gain can be achieved with respect to using un-normalised acoustic

features. It was argued that, when a sufficient amount of training data is avail-

able, DNNs are already able to learn, to some extent, internal representations that
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are invariant with respect to sources of variability such as the vocal tract length

and shape. However, when only limited training data is available from a heteroge-

neous population of speakers, made of children and adults as in our case, the DNN

might not be able to reach strong generalisation capabilities (Serizel and Giuliani,

2014a). In such case, techniques like DNN adaptation (Le et al., 2010; Swietojanski

et al., 2012; Thomas et al., 2013), speaker adaptation (Abdel-Hamid and Jiang,

2013b; Liao, 2013) or VTLN (Eide and Gish, 1996; Lee and Rose, 1996; Wegmann,

McAllaster, Orloff, and Peskin, 1996) can help to improve the performance. Here

we consider first the application of a conventional VTLN technique to normalise

MFCC vectors as input features to a DNN-HMM system.

Recent works have shown that augmenting the inputs of a DNN with, e.g. an

estimate of the background noise (Seltzer, Yu, and Wang, 2013) or utterance i-

vector (Senior and Lopez-Moreno, 2014), can improve the robustness and speaker

independence of the DNN. We then propose to augment the MFCC inputs of the

DNN with the posterior probabilities of the VTLN-warping factors to improve

robustness with respect to inter-speaker acoustic variations.

This paper extends previous work by the authors on DNN adaptation (Serizel

and Giuliani, 2014a) and VTLN approaches for DNN-HMM based ASR (Serizel and

Giuliani, 2014b). An approach to optimise jointly the DNN that extracts the poste-

rior probabilities of the warping factors and the DNN-HMM is proposed here, com-

bination of the different approaches is considered and performance of the different

systems are evaluated not only on phone recognition but also on word recognition.

This paper is a proof of concept and its scope is limited to the investigation

of a simple acoustic model adaptation approach and several VTLN related ap-

proaches. To cope with inter-speaker acoustic variability induced by age and gender,

state-of-the-art approaches based on speaker identity models such as I-vectors (De-

hak, Kenny, Dehak, Dumouchel, and Ouellet, 2011; Saon, Soltau, Nahamoo, and

Picheny, 2013; Senior and Lopez-Moreno, 2014), speaker codes (Abdel-Hamid and

Jiang, 2013a), linear input networks and linear output networks (Li and Sim, 2010)

could be considered although they are beyond the scope of this paper.

The rest of the paper is organised as follows, Section 2 briefly introduces DNNs

for acoustic modelling in ASR and presents the approach based on DNN adaptation.

Approaches based on VTLN are presented in Section 3. The experimental set-up is

described in Section 4 and experiments results are presented in Section 5. Finally,

conclusions of the paper are drawn in Section 6.

2 DNN adaptation

A DNN is a feed-forward neural network where the neurons are arranged in fully

connected layers. The input layer processes the feature vectors (augmented with

context) and the output layer provides (in the case of ASR) the posterior probabil-

ity of the (sub)phonetic units. The layers between the input layer and the output

layer are called hidden layers. DNNs are called deep because they are composed of

many layers. Even though shallow neural network architectures (i.e., with few hid-

den layers) are supposed to be able to model any function, they may require a huge
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number of parameters to do so. The organisation of the neurons in a deep architec-

ture allows to use parameters more efficiently and to model the same function as a

shallow architectures with less parameters (Bengio, Courville, and Vincent, 2013).

Deep architectures also allow to extract high level features that are more invariant

(and therefore more robust) than low level features (Hinton et al., 2012). They also

allow to close the semantic gap between the features and the (sub)phonetic units.

The DNN used in this papers have sigmoid activation functions in the hidden

layers:

h = w.y+ b

σ(h) =
1

1 + e−h

with y the vector of input to the layer, w and b the weights and the bias of a given

neuron in the layer, respectively.

The target of the DNN presented here is to estimate posteriors probabilities.

Therefore, it is chosen to use softmax activation in the output layer, as the outputs

then sum up to one:

softmax(hj) =
ehj

∑

i

ehi

with i running over the neurons in the output layer.

The state posterior probabilities are then normalised by the state prior proba-

bilities to obtain the state emission likelihood used by the HMM. Following Bayes’

rule:

p(X |S) ∝
p(S|X)

p(S)

where X is the acoustic observation and S the HMM state.

2.1 Pre-training/training procedure

Training a DNN is a difficult task mainly because the optimisation criterion involved

is non convex. Training a randomly initialised DNN with back-propagation would

converge to one of the many local minima involved in the optimisation problem,

sometimes leading to poor performance (Erhan et al., 2010). In recent works this

limitation has been partly overcome by training on a huge amount of data (1700

hours in Senior and Lopez-Moreno (2014)). However, this solution does not apply

when tackling ASR for under-resourced groups of population where the amount of

training data is limited by definition. In such cases, pre-training is a mandatory

step to efficiently train a DNN. The aim of pre-training is to initialise the DNN

weights to a better starting point than randomly initialised DNN and avoid the

back-propagation training to be stuck in a poor local minima. Here generative train-

ing based on Restricted Boltzmann Machines (RBM) (Hinton et al., 2006; Erhan

et al., 2010) is chosen. Once the DNN weights have been initialised with stacked

RBM, the DNN is trained to convergence with back-propagation. More details

about training and network parameters are presented in Sections 4.2.2 and 4.3.2.
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2.2 Age/gender independent training

The general training procedure described above can be applied, by using all training

data available, in an attempt to achieve a system with strong generalisation capa-

bilities. Estimating the DNN parameters on speech from all groups of speakers,

that is children, adult males and adult females, may however, have some limitation

due to the inhomogeneity of the speech data that may negatively impact on the

classification accuracy compared to group-specific DNN.

2.3 Age/gender adaptation

ASR systems provide their best recognition performances when the operating (or

testing) conditions match the training conditions. To be effective, the general train-

ing procedure described above requires that a sufficient amount of labelled data

is available. Therefore, when considering training for under-resourced population

groups (such as children or males/females in particular domains of applications) it

might be more effective to train first a DNN on all data available and then to adapt

this DNN to a specific group of speakers. A similar approach has been proposed

in Thomas et al. (2013) for the case of multilingual training. In this paper the

language does not change and the targets of the DNN remain the same when go-

ing from age/gender independent training to group specific adaptation. The DNN

trained on speech data from all groups of speakers can then be used directly as

initialisation to the adaptation procedure where the DNN is trained to convergence

with back-propagation only on group specific speech corpora.

This adaptation approach, however, suffers from a lack of flexibility: a new DNN

would have to be adapted to each new group of speakers.

3 VTLN approaches

In this section, we propose to define a more general framework inspired by VTLN

approaches to ASR to tackle the problem of inter-speaker acoustic variability due

to vocal tract length (and shape) variations among speakers. Two different ap-

proaches are considered here. The first one is based on the conventional VTLN

approach (Eide and Gish, 1996; Lee and Rose, 1996; Wegmann et al., 1996). The

resulting VTLN normalised acoustic features are used as input to the DNN both

during training and testing (Seide et al., 2011). The second approach, proposed in

this paper, has two main features: a) by using a dedicated DNN, for each speech

frame the posterior probability of each warping factor is estimated and b) for each

speech frame the vector of the estimated warping factor posterior probabilities is

appended to the un-normalised acoustic feature vector, extended with context, to

form an augmented acoustic feature vector for the DNN-HMM system.

3.1 VTLN normalised features as input to the DNN

In the conventional frequency warping approach to speaker normalisation (Eide

and Gish, 1996; Lee and Rose, 1996; Wegmann et al., 1996), typical issues are
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Fig. 1. Training of the DNN-warp.

the estimation of a proper frequency scaling factor for each speaker, or utterance,

and the implementation of the frequency scaling during speech analysis. A well

known method for estimating the scaling factor is based on a grid search over a

discrete set of possible scaling factors by maximizing the likelihood of warped data

given its transcription and a current set of HMM-based acoustic models (Lee and

Rose, 1996). Frequency scaling is performed by warping the power spectrum during

signal analysis or, for filter-bank based acoustic front-end, by changing the spacing

and width of the filters while maintaining the spectrum unchanged (Lee and Rose,

1996). In this work we adopted the latter approach considering a discrete set of

VTLN factors. Details on the VTLN implementation are provided in Section 4.5.

Similarly to the method proposed in Seide et al. (2011), the VTLN normalised

acoustic features are used to form the input to the DNN-HMM system both during

training and testing.

3.2 Posterior probabilities of VTLN warping factors as input to DNN

In this approach we propose to augment the acoustic feature vector with the pos-

terior probabilities of the VTLN warping factors to train a warping-factor aware

DNN. Similar approaches have recently been shown to improve the robustness to

noise and speaker independence of the DNN (Seltzer et al., 2013; Senior and Lopez-

Moreno, 2014).

The VTLN procedure is first applied to generate a warping factor for each ut-

terance in the training set. Each acoustic feature vector in the utterance is labelled

with the utterance warping factor. Then, training acoustic feature vectors and corre-

sponding warping factors are used to train a DNN classifier. Each class of the DNN

correspond to one of the discrete VTLN factors and the dimension of the DNN

output corresponds to the number of discrete VTLN factors. The DNN learns to

infer the VTLN warping factor from the acoustic feature vector (Figure 1) or more

precisely the posterior probability of each VTLN factor knowing the input acoustic

feature vector. This DNN will be referred to as DNN-warp.

During training and testing of the DNN-HMM system, for each speech frame the

warping factors posterior probabilities are estimated with the DNN-warp. These es-
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Fig. 2. Training of the warping factor aware DNN-HMM.
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Fig. 3. Joint optimisation of the DNN-warp and the DNN-HMM.

timated posterior probabilities are appended to the un-normalised acoustic feature

vectors, extended with context, to form an augmented acoustic feature vectors.

Mean and variance normalisation is then applied to the extended feature vector

which is used as input to the DNN-HMM (Figure 2).

This approach has the advantage to reduce considerably the complexity during

decoding compared to the approach making use of conventional VTLN normalised

acoustic features that requires a preliminary decoding pass to obtain a transcript

of acoustic data to be used for estimating the warping factor (Lee and Rose, 1996;

Welling, Kanthak, and Ney, 1999). It also allows for flexible estimation of the warp-

ing factors: they could either be updated on a frame to frame basis or averaged at

utterance level (see also Section 5).

3.3 Joint optimisation

The ultimate goal here is not to estimate the VTLN warping factors but to perform

robust speech recognition on heterogeneous corpora. To this end, the DNN-warp

and the DNN-HMM can be optimised jointly (Figure 3). The procedure is the

following one: 1) first the DNN-warp is trained alone (Figure 1); 2) the posteriors

of the warping factors on the training set are obtained with the DNN-warp; 3) these

posteriors of the warping factors are used as input to the DNN-HMM together with

the acoustic features to produce an extended feature vector; 4) the DNN-HMM is

trained (Figure 2); 5) the DNN-warp and the DNN-HMM are concatenated to

obtained a deeper network that is fine-tuned with back-propagation on the training

set (Figure 3). Details about joint optimisation are presented in Section 4.6
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Speech Corpus

ChildIt APASCI(f) APASCI(m) IBN(f) IBN(m)

Train 7h:15m 2h:40m 2h:40m 23h:00m 25h:00m

Test 2h:20m 0h:20m 0h:20m 1h:00m 1h:00m

Table 1. Data repartition in the speech corpora. (f) and (m) denote speech from

female and male speakers, respectively.

Grade

2 3 4 5 6 7 8

N. Speakers 24 24 23 24 28 26 22

Table 2. Distribution of speakers in the ChildIt corpus per grade. Children in grade

2 are approximatively 7 years old while children in grade 8 are approximatively 13

years old.

4 Experimental set-up

4.1 Speech corpora

For this study we relied on three Italian speech corpora: the ChildIt corpus con-

sisting of children’s speech, the APASCI corpus and the IBN corpus consisting of

adults’ speech. All corpora were used for evaluation purposes, while ChildIt and

APASCI provide a similar amount of training data for children and adults, respec-

tively, the IBN corpus contains approximately 5 times as much training data as

ChildIt or APASCI (Table 1).

4.1.1 ChildIt

The ChildIt corpus (Giuliani and Gerosa, 2003; Gerosa et al., 2007) consists of

Italian read sentences collected from 171 children (86 male and 85 female) aged

between 7 and 13, with a mean age of 10 years. Recordings took place at school,

usually in the computer room or in the library. Each child was asked to read a set

of sentences prepared according to her/his grade. Figure 2 reports the distribution

of children per grade.

The overall duration of audio recordings in the corpus is 10h:24m. For all record-

ings in the corpus a word-level transcription is available.

The corpus was partitioned into: a training set consisting of data from 115 speak-

ers for a total duration of 7h:15m; a development set consisting of data from 14
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speakers, for a total durations of 0h:49m; a test set consisting of data from 42

speakers balanced with respect to age and gender for a total duration of of 2h:20m.

4.1.2 APASCI

The APASCI speech corpus (Angelini, Brugnara, Falavigna, Giuliani, Gretter, and

Omologo, 1994) is a task-independent, high quality, acoustic-phonetic Italian cor-

pus. APASCI consists of read speech collected from 194 adult speakers for a total

durations of 7h:05m. For all recordings in the corpus a word-level transcription

is available. The corpus is partitioned into: a training set consisting of data from

134 speakers for a total duration of 5h:19m; a development set consisting of data

from 30 speakers balanced per gender, for a total durations of 0h:39m; a test set

consisting of data from 30 speakers balanced per gender, for a total duration of

0h:40m.

4.1.3 IBN Corpus

The IBN corpus is composed of speech from several radio and television Italian

news programs (Gerosa et al., 2009a). It consists of adult speech only, with word-

level transcriptions. The IBN corpus was partitioned into a training set, consisting

of 52h:00m of speech, and a test set formed by 2h:00m of speech. During the ex-

periments presented here 2h:00m of male speech and 2h:00m of female speech are

extracted from the training set to be used as development set during the DNN

training. The resulting training set is then partitioned into 25h:00m of male speech

and 23h:00m of female speech.

4.2 Phone recognition systems

The approaches proposed in this paper have been first tested on small corpora

(ChildIt + APASCI) for phone recognition to explore as many set-ups as possible

in a limited amount of time. The reference phone transcription of an utterance was

derived from the corresponding word transcription by performing Viterbi decoding

on a pronunciation network. This pronunciation network was built by concatenation

of the phonetic transcriptions of the words in the word transcription. In doing this

alternative word pronunciations were taken into account and an optional insertion

of the silence model between words was allowed.

4.2.1 GMM-HMM

The acoustic features are 13 mel frequency cepstral coefficients (MFCC), includ-

ing the zero order coefficient, computed on 20ms frames with 10ms overlap. First,

second and third order time derivatives are computed after cepstral mean sub-

traction performed utterance by utterance. These features are arranged into a 52-

dimensional vector that is projected into a 39-dimensional feature space by apply-

ing a linear transformation estimated through Heteroscedastic Linear Discriminant

Analysis (HLDA) (Kumar and Andreou, 1998).
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Acoustic models are 3039 tied-state triphone HMMs based on a set of 48 phonetic

units derived from the SAMPA Italian alphabet. Each tied-state is modelled with

a mixture of 8 Gaussian densities having a diagonal covariance matrix. In addition,

“silence” is modelled with a Gaussian mixture model having 32 Gaussian densities.

4.2.2 DNN-HMM

The DNN uses again 13 MFCC, including the zero order coefficient, computed

on 20ms frames with 10ms overlap. The context spans on a 31 frames window.

For each frequency band, the 31 coefficients context is separately scaled with a

Hamming window and projected to a 16 dimensional vector using DCT. The 13

resulting vectors are concatenated to obtain a 208 dimensional feature vector which

is normalised to have zero-mean and unit variance before being used as input to the

DNN. The targets of the DNN are the 3039 tied-states obtained from the GMM-

HMM training on the mixture of adults’ and children’s speech (ChildIt + APASCI).

The DNN has 4 hidden layers, each of which contains 1500 elements such that the

DNN architecture can be summarised as follows: 208 x 1500 x 1500 x 1500 x 1500

x 3039.

The DNN are trained with the TNet software package (Veselỳ, Burget, and Grézl,

2010). The DNN weights are initialised randomly and pre-trained with RBM. The

first layer is pre-trained with a Gaussian-Bernouilli RBM trained during 10 iter-

ations with a learning rate of 0.005. The following layers are pre-trained with a

Bernouilli-Bernouilli RBM trained during 5 iterations with a learning rate of 0.05.

Mini-batch size is 250. For the back propagation training the learning rate is kept to

0.02 as long as the frame accuracy on the cross-validation set progresses by at least

0.5% between successive epochs. The learning rate is then halved at each epoch

until the frame accuracy on the cross-validation set fails to improve by at least

0.1%. The mini-batch size is 512. In both pre-training and training, a first-order

momentum of 0.5 is applied. The values of the hyper-parameters (network topology

and learning parameters) are standard values, in the range of the values commonly

used for these parameters in the literature. Considering the relatively small size of

the corpora, the number of hidden layers is set to 4. Increasing the number of layers

with the amount of data available has been observed to provide no significant per-

formance improvement. Besides, training a system with more than 6 hidden layers

will result in lower performance than with 4 hidden layers.

The DNN can be trained either on all speech data available (ChildIt + APASCI)

or on group specific corpora (ChildIt, adult female speech in APASCI, adult male

speech in APASCI).

4.2.3 Language model

A simple finite state network having just one state and a looped transition for

each phone unit was employed. In this network uniform transition probabilities are

associated to looped transitions. In computing recognition performance, in terms

of PER, no distinction was made between single consonants and their geminate
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counterparts. In this way, the set of phonetic labels was reduced from 48 to 28

phone labels.

4.3 Word recognition systems

The approaches that performed best in phone recognition on the small corpora are

validated in word recognition on a more realistic set-up (ChildIt+ IBN) including

a corpus of adult speech (IBN) that is larger than the corpus of children speech

(ChildIt).

4.3.1 GMM-HMM

The GMM-HMM are similar to those used for phone recognition except that they

use more Gaussian densities to benefit from the extensive training data. Acoustic

models are 5021 tied-state triphone HMM based on a set of 48 phonetic units derived

from the SAMPA Italian alphabet. Each tied-state is modelled with a mixture of

32 Gaussian densities having a diagonal covariance matrix. In addition, “silence” is

modelled with a Gaussian mixture model having 32 Gaussian densities.

4.3.2 DNN-HMM

The DNN are similar to those used for phone recognition except that they are

trained on a different set of targets. The targets of the DNN are the 5021 tied-

states obtained from the word recognition GMM-HMM training on the mixture of

adults’ and children’s speech (ChildIt + IBN). The DNN has 4 hidden layers, each

of which contains 1500 elements such that the DNN architecture can be summarised

as follows: 208 x 1500 x 1500 x 1500 x 1500 x 5021.

4.3.3 Language model

For word recognition, a 5-gram language model was trained on texts from the Italian

news domain consisting of about 1.6G words. Part of the textual data, consisting in

about 1.0G words, were acquired via web crawling of news domains. The recognition

dictionary consists of the most frequent 250K words.

4.4 Age/gender adapted DNN for DNN-HMM

One option is to adapt an already trained general DNN to group specific corpora.

The data architecture is the same as described above. The initial DNN weights are

the weights obtained with a pre-training/training procedure applied on all train-

ing data available (ChildIt+APASCI, respectively ChildIt + IBN). The DNN is

then trained with back propagation on a group specific corpus (ChildIt, adult fe-

male speech in APASCI and adult male speech in APASCI, respectively IBN). The

training parameters are the same as during the general training (4.2.2 and 4.3.2,

respectively) and the learning rate follows the same rule as above. The mini-batch

size is 512 and a first-order momentum of 0.5 is applied.
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4.5 VTLN

In this work we are considering a set of 25 warping factors evenly distributed, with

step 0.02, in the range 0.76-1.24. During both training and testing a grid search

over the 25 warping factors was performed. The acoustic models for scaling factor

selection, carried out on an utterance-by-utterance basis, were speaker-independent

triphone HMM with 1 Gaussian per state, as proposed in (Welling et al., 1999), and

trained on un-warped children’s and adults’ speech (Gerosa et al., 2007, 2009a).

The DNN-warp inputs are the MFCC with a 61 frames context window, DCT

projected to a 208 dimensional feature vector (the procedure is similar as in 4.2.2).

The targets are the 25 warping factors. The DNN has 4 hidden layers, each of

which contains 500 elements such that the DNN architecture can be summarised

as follows: 208 x 500 x 500 x 500 x 500 x 25. The training procedure is the same as

for the DNN acoustic model in the DNN-HMM.

The posterior probabilities obtained with the DNN-warp are concatenated with

the 208-dimensional DCT projected acoustic feature vector to produce a 233-

dimensional feature vector that is mean-normalised before being used as input to

the DNN. The new DNN acoustic model has 4 hidden layers, each of which contains

1500 elements such that the DNN architecture can then be summarized as follows:

233 x 1500 x 1500 x 1500 x 1500 x 3039 for phone recognition and 233 x 1500 x

1500 x 1500 x 1500 x 5021 for word recognition.

4.6 Joint optimisation

The DNN-warp and DNN-HMM can be fine-tuned jointly with back-propagation.

In such case, the starting learning rate is set to 0.0002 in the first 4 hidden layers

(corresponding to the DNN-warp) and to 0.0001 in the last 4 hidden layers (corre-

sponding to the DNN-HMM). The learning rate is chosen empirically as the highest

value for which both training accuracy and cross-validation accuracy improve. Set-

ting a different learning rate in the first 4 hidden layers and the last 4 hidden layers

is done in an attempt to overcome the vanishing gradient effect in the 8 layers DNN

obtained from the concatenation of the DNN-warp and the DNN-HMM. The learn-

ing rates are then adapted following the same schedule as described above. The joint

optimisation is done with a modified version of the TNet software package (Veselỳ

et al., 2010).

5 Experimental Results

Two sets of experiments are presented here. First the systems are tested extensively

in terms of PER on small corpora (ChildIt + APASCI), then the best performing

systems are tested in terms ofWER performance on a more realistic set-up including

a larger adult speech corpus (IBN).
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5.1 Phone recognition

The experiments presented here are designed to verify the validity of the following

statements:

• The age/gender group specific training of the DNN does not necessarily lead

to improved performance, specially when a small amount of data is available
• The age/gender group adaptation of a general DNN can help to design group

specific systems, even when only a small amount of data is available
• VTLN can be beneficial to the DNN-HMM framework when targeting a het-

erogeneous speaker population with limited training data
• Developing an “all-DNN” approach to VTLN for a DNN-HMM framework,

when targeting a heterogeneous speaker population, offers a credible alter-

native to the use of VTLN normalised acoustic features or to the use of

age/gender group specific DNN
• Optimising the DNN-warp and the DNN-HMM jointly can help to improve

the performance in certain cases
• The different approaches introduced in this paper can be complementary.

During the experiments the language model weight is tuned on the development set

and used to decode the test set. Results were obtained with a phone loop language

model and the PER was computed based on 28 phone labels. Variations in recogni-

tion performance were validated using the matched-pair sentence test (Gillick and

Cox, 1989) to ascertain whether the observed results were inconsistent with the null

hypothesis that the output of two systems were statistically identical. Considered

significance levels were .05, .01 and .001.

5.1.1 Age/gender specific training for DNN-HMM

In this experiment, DNNs are trained on group specific corpora (children’s speech

in ChildIt, adult female speech in APASCI and adult male speech in APASCI) and

performance is compared with the DNN-HMM baseline introduced above where the

DNN is trained on speech from all speaker groups. Recognition results are reported

in Table 3, which includes results achieved with the DNN-HMM baseline in the row

Baseline. In ChildIt there is about 7h of training data which is apparently sufficient

to train an effective DNN and we can observe an improvement of 22% PER relative

compared to the baseline performance (from 15.56% to 12.76% with p < .001).

However, in adult data there is only about 2h:40m of data for each gender. This is

apparently not sufficient to train a DNN. In fact, the DNN-HMM system based on

a DNN that is trained on gender specific data consistently degrades the PER. The

degradation compared to the baseline performance is 14% PER relative on female

speakers in APASCI (from 10.91% to 12.75% with p < .001) and 12% PER relative

on male speakers in APASCI (from 8.62% to 9.83% with p < .001).

5.1.2 Age/gender adapted DNN-HMM

In this experiment the DNN trained on all available corpora is adapted to each group

specific corpus and recognition performance is compared with that obtained by the
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Evaluation Set

Training Set ChildIt APASCI(f) APASCI(m)

Baseline 15·56% 10·91% 8·62%

ChildIt 12·76% 29·59% 46·16%

APASCI(f) 34·23% 12·75% 31·21%

APASCI(m) 56·11% 30·81% 9·83%

Table 3. Phone error rate achieved with the DNN-HMM trained age/gender groups

specific data.

DNN-HMM baseline (where the DNN is trained on all available corpora). PER

performance is presented in Table 4 which also reports the results achieved by the

DNN-HMM baseline (in row Baseline). The group adapted DNN-HMM consistently

improve the PER compared to the DNN-HMM baseline. On children’s speech the

PER improvement compared to the baseline is 25% PER relative (from 15.56%

to 12.43% with p < .001). On adult female speakers in APASCI the age/gender

adaptation improves the baseline performance by about 13% PER relative (from

10.91% to 9.65% with p < .001). On adult male speakers the age/gender adaptation

improves the baseline performance by 13% (from 8.62% to 7.61% with p < .05).

From the results in Table 4 it is also possible to note that the DNN-HMM system

adapted to children’s voices performs much better for adult female speakers than

for adult male speakers. Similarly, the DNN-HMM system adapted to female voices

perform better on children’ speech than the system adapted to male voices. These

results are consistent with results in Table 3 and confirm that characteristics of

children’s voice is much more similar to those of adult female voices than those of

adult male voices.

In the Model selection (oracle) approach, we assumed that a perfect age/gender

classifier exist which allows us to know in which target group of speaker an incoming

speech segment belongs. The recognition is then performed using the corresponding

adapted model. On the evaluation set including all the target groups of speakers

(ChildIt + APASCI) the use of matched acoustic models improves the baseline by

23% PER relative (from 14.32% to 11.59% with p < .05).

For comparison purposes, last row of Table 4 (Model selection) reports results

obtained with an automatic approach for acoustic model selection. In this case each

utterance is decoded three times by using each individual group adapted acoustic

model and, as final recognition result, the recognition hypothesis resulting in the

highest likelihood is retained. Comparing recognition results in the last two rows of
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Evaluation Set

Adaptation Set ChildIt APASCI(f) APASCI(m)
ChildIt

+ APASCI

Baseline 15·56% 10·91% 8·62% 14·32%

ChildIt 12·43% 16·93% 24·96% N/A

APASCI(f) 21·91% 9·65% 17·01% N/A

APASCI(m) 32·33% 16·99% 7·61% N/A

Model selection (oracle) 12·43% 9·65% 7·61% 11·59%

Model selection 12·97% 10·98% 8·49% 12·26%

Table 4. Phone error rate achieved with the DNN-HMM trained on a mixture of

adult and children’s speech and adapted to specific age/gender groups.

Table 4 it is possible to note that the automatic model selection approach results

in an overall decrease of performance: from 11.59% to 12.26% PER. This decrease

of performance is consistent across the three groups of speakers. It would probably

be possible to obtain better model selection for example by training a DNN to

perform the selection but this is out of the scope of this paper. Therefore, in the

rest of the paper, Model selection approach is assumed to be the Model selection

(oracle) approach and recognition experiments are always conducted with matching

adapted acoustic models.

5.1.3 VTLN based approaches

Table 5 presents the PER obtained with the DNN-HMM baseline, and the VTLN

approaches: the VTLN applied to MFCC during training and testing (row VTLN-

normalisation), the MFCC feature vector augmented with the the warping factors

obtained in a standard way (row Warp + MFCC), the MFCC features augmented

with the posterior probabilities of the warping factors (row Warp-post + MFCC),

the MFCC features augmented with the posterior probabilities of the warping fac-

tors averaged at utterance level (row Warp-post (utt) + MFCC) and the joint opti-

misation of the DNN-warp and the DNN-HMM (row Warp-post + MFCC (joint)).

To compute the vectors Warp-post (utt) + MFCC the posterior probability of

each warping factor is averaged over utterances to obtain a vector of averaged

posterior probabilities. This experiment allows to study independently the effects

of having a soft or hard decision on the warping factor selection and the effects of
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Evaluation Set

ChildIt APASCI(f) APASCI(m)
ChildIt

+ APASCI

Baseline 15·56% 10·91% 8·62% 14·32%

VTLN-normalisation 12·80% 10·41% 7·91% 12·00%

Warp + MFCC 14·51% 10·48% 9·63% 13·46%

Warp-post + MFCC 14·10% 10·89% 8·34% 13·12%

Warp-post (utt)+ MFCC 13·43% 9·66% 8·06% 12·45%

Warp-post + MFCC (joint) 12·52% 11·23% 8·98% 11·98%

Table 5. Phone error rate achieved with VTLN approaches to DNN-HMM.

the time unit used to compute the warping factors. The impact of having a hard or

soft decision on the warping factors is studied comparing Warp + MFCC to Warp-

post (utt) + MFCC. While the effects of the time unit used to compute warping

factors are studied comparing Warp-post + MFCC to Warp-post (utt) + MFCC.

On the evaluation set including all the target groups of speakers (ChildIt +

APASCI) the VTLN normalisation approach improves the baseline performance by

19% PER relative (from 14.32% to 12.00% PER with p < .001). The system working

with MFCC features augmented with warping factor improves the baseline by 6%

PER relative (from 14.32% to 13.46% PER with p < .001). The system working

with the MFCC feature vector augmented with the posterior probabilities of the

warping factors improves the baseline by 9% relative (from 14.32% to 13.12% PER

with p < .001) and the system working with the MFCC feature vector augmented

with the posterior probabilities of the warping factors averaged at utterance level

improves the baseline by 15% relative (from 14.32% to 12.45% PER with p < .001).

In this latter system however, the averaging operation over utterances of variable

length take place between the DNN-warp and the DNN-HMM. Back-propagating

the gradient through the variable length averaging in not trivial to implement in

practice. Therefore the system Warp-post (utt) is not used for joint optimisation.

The system performing joint optimisation of the DNN-warp and the DNN-HMM

improves the baseline by 19% relative (from 14.32% to 11.98%). The performance

differences between the best two system (VTLN-normalisation and Warp-post +

MFCC (joint)) is not statistically significant.

VTLN normalisation allows to consistently obtain PER among the best for each

group of speakers. The Warp-post + MFCC (joint) overall improvement is mainly

due to the large improvement on the children evaluation set, 24% relative (from

15.56% to 12.52% with p < .001) whereas it mildly degrades performance on other

groups of speakers. This is probably due to the fact that the training set is unbal-
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anced towards children (7h:15m in ChildIt against 2h:40m for each adult group),

therefore, performing the joint optimisation biases the system in favour of children’s

speech.

Using directly warping factors obtained in a standard way (row Warp + MFCC),

that is augmenting MFCC with a feature vector having a component in correspon-

dence of each possible warping factor with value 1 for the selected warping factor

and 0 for all the other warping factors, consistently performs among the worst

system and is outperformed by the system using the MFCC augmented with the

posterior probabilities of the warping factors. This seems to indicate that the ASR

can benefit from the flexibility introduced by the posterior probabilities of the warp-

ing factors, in contrast with the hard decision that is the standard warping factors

estimation. To perform best however, these estimations have to be conditioned ei-

ther by averaging at utterance level or by using joint-optimisation. Note that both

of these constraints are not compatible in the present framework.

5.1.4 Combination of approaches

Combining several approaches is a common way to improve systems performance

and robustness. It is decided here to combine the different approaches introduced

up until this point to exploit their potential complementarity. It was chosen to ei-

ther combine the different approaches at features level (standard VTLN normalised

features and the posterior probabilities of the warping factors are combined at the

input of the DNN) or to use acoustic features augmented with the posterior prob-

abilities of the warping factors as inputs to a DNN with age-gender adaptation.

Table 6 presents the PER obtained with the DNN-HMM baseline, the age/gender

adaptation approach in combination with model selection (row Model selection),

VTLN approaches (rows VTLN-normalisation and Warp-post + MFCC) and the

combination of the aforementioned approaches: age/gender adaptation performed

on a system trained with VTLN-normalised features (row VTLN (model selection)),

on a system working with the MFCC feature vector augmented with the posterior

probabilities of the warping factors (row Warp-post + MFCC (model selection))

and on a system trained on VTLN-normalised feature vector augmented with the

posterior probabilities of the warping factors (row Warp-post + VTLN (model se-

lection)). Joint optimisation is not applied at this stage as the unbalanced training

corpus results in biased training and the corpora used here are too small to truncate

them to produce a balanced heterogeneous corpus.

On the evaluation set including all the target groups of speakers (ChildIt +

APASCI) the combination of approaches outperform all the individual approaches

presented until here. The combination Warp-post + MFCC (model selection) im-

proves the baseline by 30% relative (from 14.32% PER to 10.98% PER with

p < .001). Warp-post + VTLN improves the baseline by 20% relative (from 14.32%

PER to 11.90% PER with p < .001) and VTLN (model selection) improves the

baseline by 35% relative (from 14.32% PER to 10.61% PER with p < .001). The

combination of the three approaches presented in this paper (Warp-post + VTLN

(model selection)) improves the baseline by 34% relative (from 14.32% PER to
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Evaluation Set

ChildIt APASCI(f) APASCI(m)
ChildIt

+ APASCI

Baseline 15·56% 10·91% 8·62% 14·32%

Model selection 12·43% 9·65% 7·61% 11·59%

Warp-post + MFCC 14·10% 10·89% 8·34% 13·12%

Warp-post + MFCC 11·71% 9·23% 7·28% 10·98%

(model selection)

VTLN-normalisation 12·80% 10·41% 7·91% 12·00%

VTLN (model selection) 11·31% 9·14% 7·19% 10·61%

Warp-post + VTLN 12·64% 10·28% 8·14% 11·90%

Warp-post + VTLN 11·34% 9·04% 7·32% 10·68%

(model selection)

Table 6. Phone error rate achieved with combination of approaches.

10.68% PER with p < .001). The difference between VTLN (model selection) and

Warp-post + VTLN (model selection) is not statistically significant. When com-

pared to the best system until now (Model selection), the combination of different

approaches improves from 5% relative (Warp-post + MFCC (model selection) with

p < .001) to 9% relative (VTLN (model selection) with p < .001). The combination

Warp-post + VTLN on the other hand does not significantly improve the perfor-

mance compared to Model selection. Therefore, this approach will not be considered

for further experiments.

The combination of different approaches allows to consistently improve the PER

on every group of speakers. On the ChildIt corpus, the best performance are ob-

tained with the system based on VTLN normalised features (VTLN (model selec-

tion) and Warp-post + VTLN (model selection)) which improve by up to 38% PER

relative compared to the baseline (p < .001) and 10% PER relative (p < .001)

compared to the best system until now (Model selection). On the adult corpora the

difference between the performances of the three different combinations of several

approaches is not statistically significant. On female speakers, different combina-

tion of several approaches allow to improve the baseline by up to 21% PER relative

(p < .001) and improve the performance of the best system to date (Model selection)

by up to 7% relative (p < .01). On male speakers, different combination of several

approaches allow to improve the baseline by up to 20% PER relative (p < .001)

and improve the performance of the best system to date (Model selection) by up
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Adaptation Evaluation Set

Set ChildIt IBN(f) IBN(m) ChildIt+IBN

Baseline 12·83% 10·61% 11·02% 11·98%

Model selection 10·89% 10·33% 10·99% 10·93%

ChildIt + general model 10·89% 10·61% 11·02% 11·00%

Table 7. Word error rate achieved with the DNN-HMM trained on a mixture of

adult and children’s speech and adapted to specific age/gender groups.

to 5% relative (p < .05). The combination Warp-post + MFCC (model selection)

represents the best single-pass decoding system presented here.

5.2 Word recognition

The experiments presented here are designed to verify that results obtained for

phone recognition can be replicated in terms of WER and on a more “realistic”

set-up where the adult speech training corpus (IBN corpus) is larger than the

children speech training corpus (ChildIt). During the experiments the language

model weight is tuned on the development set and used to decode the test set.

Variations in recognition performance were again validated using the matched-pair

sentence test (Gillick and Cox, 1989).

5.2.1 Age/gender adapted DNN-HMM

Table 7 presents the WER obtained with a DNN-HMM baseline trained on the cor-

pus composed of ChildIt and IBN (row Baseline). These performance are compared

with the performance obtained with age/gender adaptation (row Model selection)

and with the performance obtained with a system performing model selection be-

tween age adapted systems for child speakers and the general baseline for adult

speakers (row ChildIt + general model).

On the evaluation set including all the target groups of speakers (ChildIt + IBN)

the age-gender adaptation improves the performance of the baseline by 10% WER

relative (from 11.98% to 10.93% with p < .001). When targeting child speakers,

the age adaptation improves the performance of the baseline by 18% relative (from

12.83% to 10.89%with p < .001). On the other hand, when targeting adult speakers,

the age-gender adaptation does not significantly improve the WER compared to

the baseline. This is due to the fact that the adult corpus is now considerably

larger than for the experiments on PER (52h : 00m for IBN against 5h : 19m for

APASCI). This allows effective training to be achieved on the adult groups with

the general corpus and benefits from age-gender adaptation are limited. Therefore
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for simplicity’s sake, in the remainder of the paper, the approach (row ChildIt

+ general model) is considered instead of age-gender adaptation for all groups of

speakers (Model selection). The performance difference between Model selection and

ChildIt + general model is not statistically significant.

5.2.2 VTLN based approaches and combination of different approaches

Table 8 presents the WER performance for a) VTLN based approaches: VTLN ap-

plied to MFCC during training and testing (row VTLN-normalisation), the MFCC

features augmented with the posterior probabilities of the warping factors (row

Warp-post + MFCC) and the joint optimisation of the DNN-warp and the DNN-

HMM (row Warp-post + MFCC (joint)); b) the combination of several approaches

introduced here: VTLN-normalised feature vector augmented with the posterior

probabilities of the warping factors and joint optimisation (rowWarp-post + VTLN

(joint)), age adaptation for child speakers performed on a system working with the

MFCC feature vector augmented with the posterior probabilities of the warping

factors with joint optimisation (row Warp-post + MFCC (joint/ChildIt + general

model)) and on a system trained on VTLN-normalised feature vector augmented

with the posterior probabilities of the warping factors with joint optimisation (row

Warp-post + VTLN (joint/ChildIt + general model)). These systems are compared

to the baseline and to ChildIt + general model.

The approach combining VTLN-normalised features and posterior probabilities

aims at testing the complementary between VTLN-normalisation that operates at

utterances level and posterior probabilities that are obtained at frame level. While

estimating VTLN factors on a longer time unit (utterance) should allow for a more

accurate average estimation, the “true” warping factor might be fluctuating over

time (Miguel, Lieida, Rose, Buera, and Ortega, 2005; Maragakis and Potamianos,

2008). Combining VTLN normalisation at utterance level and posterior probabili-

ties estimated at frame level should help overcoming this problem.

On the evaluation set including all the target groups of speakers (ChildIt + IBN)

the VTLN based approaches (Warp-post + MFCC and VTLN-normalisation) per-

form similarly (11.57% and 11.58% WER). They improve the performance baseline

by 3.5%WER relative (p < .001) but both the methods are outperformed by ChildIt

+ general model by 5% WER relative (p < .001). The experiments on the children

corpus tend to confirm this improvement. Indeed, the systems Warp-post + MFCC

and VTLN-normalisation improve the baseline performance by 6% WER relative

(from 12.83% to 12.11% with p < .001) and 5% WER relative (from 12.83% to

12.21% with p < .001), respectively. Both the approaches are still outperformed

on the children corpus by ChildIt + general model (p < .001). The performance

difference between the VTLN based approaches, the baseline and ChildIt + general

model on adult corpora are in general not statistically significant.

During these experiment, the corpora were unbalanced towards adults (52h : 00m

for IBN against 7h : 15m for ChildIt). Joint optimisation is performed on a balanced

training set in order to avoid introducing a bias in favour of the adult corpora. The

balanced corpus is composed of 7h of adult female and 7h of adult male speech
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Evaluation Set

ChildIt IBN(f) IBN(m) ChildIt+IBN

Baseline 12·83% 10·61% 11·02% 11·98%

ChildIt + general model 10·89% 10·61% 11·02% 11·00%

Warp-post + MFCC 12.11% 10·52% 11·07% 11·57%

Warp-post + MFCC (joint) 11·81% 10·49% 11·01% 11·33%

Warp-post + MFCC 11·06% 10·49% 11·01% 10·97%

(joint / ChildIt + general model)

VTLN-normalisation 12·21% 10·58% 11·25% 11·58%

Warp-post + VTLN (joint) 10·83% 10·49% 11·07% 10·86%

Warp-post + VTLN 11·07% 10·49% 11·07% 10·96%

(joint / ChildIt + general model)

Table 8. Word error rate achieved with several VTLN approaches to DNN-HMM.

randomly selected from the IBN corpus. On the evaluation set composed of all

target groups, joint optimisation improves the Warp-post + MFCC performance

by 2% WER relative (from 11.57% to 11.33% with p < .001). The performance

improvement in each speaker group is not statistically significant.

The combination Warp-post + MFCC (joint/ChildIt + general model) improves

the Warp-post + MFCC (joint) performance by 3% WER relative (from 11.33%

to 10.97% p < .001). The combination Warp-post + VTLN (joint) improves the

VTLN-normalisation performance by 7% WER relative (from 11.58% to 10.86%

p < .001). Both these combinations improve the baseline performance by 11%WER

relative (p < .001). The difference between the three combinations (Warp-post +

MFCC (joint/ChildIt + general model), Warp-post + VTLN (joint) and Warp-post

+ VTLN (joint/ChildIt + general model)) and the ChildIt + general model is not

statistically significant. This tendency confirms in each target groups of speakers.

Among the approaches proposed in the paper, ChildIt + general model andWarp-

post + VTLN (joint) perform equally well. However, their potential applications

are different. Indeed, ChildIt + general model is the most simple approach but

lacks flexibility and is difficult to generalise to new groups of speakers as a new

DNN would have to be adapted to each new group of speakers. The VTLN based

approach Warp-post + VTLN (joint) on the other end, does not rely on model

adaptation/selection and is more general than ChildIt + general model. The draw-

back of this approach, however, is that it requires a two-pass decoding whereas

ChildIt + general model operates in a single-pass granted that the age or gender

group group is known during decoding.
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6 Conclusions

In this paper we have investigated the use of the DNN-HMM approach to speech

recognition targeting three groups of speakers, that is children, adult males and

adult females. Two different kinds of approaches have been introduced here to cope

with inter-speaker variability: approaches based on DNN adaptation and approaches

relying on VTLN. The combination of the different approaches to take advantage

of their complementarity has then been investigated.

The different approaches presented here have been tested extensively in terms of

PER on small corpora first. Systems based on VTLN have been shown to provide

a significant improvement compared to the baseline (up to 19% relative) but were

still outperformed by the DNN adaptation (23% relative improvement compared to

the baseline). The combination of several techniques on the other hand effectively

takes advantage of the complementarity of the different approaches introduced in

this paper and improves the baseline performance by up to 35% relative PER.

Besides, the combination of several techniques is shown to consistently outperform

each approach used separately.

Then, the best performing approaches have been validated in terms of WER on

a more “realistic” set-up where the adult speech corpus (IBN) used for training

is larger than the training children’s speech corpus (ChildIt). DNN adaptation is

then proved effective for the under-resourced target group (children) but not sig-

nificantly on the target group with sufficient training data (adults). The trend ob-

served on PER persists and approaches based on VTLN have been shown to provide

a significant improvement compared to the baseline (5% to 6% relative) but were

still outperformed by the DNN adaptation approach (10% relative improvement

compared to the baseline). The combination of different approaches improves the

baseline performance by up to 11% WER relative. The two best performing systems

introduced here (ChildIt + general model and Warp-post + VTLN (joint)) perform

equally well but can have different applications. Indeed, ChildIt + general model

is the most simple system but lacks flexibility whereas the VTLN based system

Warp-post + VTLN (joint) is more general but it requires a two-pass decoding.

Extensions of this work could consider, for comparison or combination with the

here proposed approaches, state-of-the-art approaches based on speaker identity

models such as I-vectors, speaker codes, linear input networks and linear output

networks.
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