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Abstract. Minimal linear codes are linear codes such that the support
of every codeword does not contain the support of another linearly in-
dependent codeword. Such codes have applications in cryptography, e.g.
to secret sharing. We pursue here their study and construct asymptot-
ically good families of minimal linear codes. We also push further the
study of quasi-minimal and almost-minimal linear codes, relaxations of
the minimal linear codes.



1 Introduction

A minimal codeword [Mas93,Mas95] c of a linear code C is a codeword
such that its support (set of non-zero coordinates) does not contain the
support of another linearly independent codeword. Minimal codewords
are useful for defining access structures in secret sharing schemes using
linear codes. Determining the set of minimal codewords is hard for general
linear codes, although this has been studied for some classes of specific
linear codes. This led to work on how to find codes where all codewords are
minimal, in order to facilitate the choice of access structures. The problem
of finding a code satisfying this condition, called a minimal linear code
has first been envisioned in [DY03] and later studied in [SL12,CCP13].

Interestingly, in [CCP13], the motivation for finding minimal linear
codes is no longer secret sharing but in a new proposal for secure two-
party computation, where it is required that minimal linear codes are
used to ensure privacy.

It is pointed out in [CCP13] that minimal codes are close to the no-
tions of intersecting and separating codes [CL85,CELS03]. Such codes
have been suggested for applications to oblivious transfer [BCS96], secret
sharing [AB98,DY03,SL12] or digital fingerprinting [Sch06].

We will focus here on the non-binary case, where the notion of minimal
codes is more restrictive than that of separating codes. Secret-sharing and
secure two-party computations both crucially hinge on a large alphabet;
thus, one cannot rely on the well-understood binary case only.

We thus pursue in Section 2 the study of [CCP13] on bounds and cri-
teria for minimal linear codes and exhibit families of minimal codes with
better rates (asymptotically non-zero). In Section 3, we relax the notion of
minimal codes and introduce quasi-minimal linear codes. Quasi-minimal
linear codes are codes where two non-zero codewords have the same sup-
port if and only if they are linearly dependent. This slight relaxation
enables to exhibit families with improved non-zero asymptotic rates. Fi-
nally, we consider yet another generalization to almost-minimal codes,
where the property is allowed to fail for a small proportion of codewords.

2 Minimal Codes – Bounds and Constructions

2.1 Definitions – Notations

We denote by |F | the cardinality of a set F . Let q = ph, where p is a prime
number and h ∈ N∗. An [n, k, d, dmax]q code is a vector subspace of Fnq
of dimension k with minimum distance d and maximum distance dmax.



The last two parameters refer to the minimal (resp. maximal) Hamming
distance between two codewords of C, or, equivalently, the minimal (resp.
maximal) Hamming weight of a codeword of C; they will be omitted
when irrelevant. Normalized parameters will be denoted by R = k/n, δ =
d/n, δmax = dmax/n.

The support of a codeword c ∈ C is supp(c) = {i ∈ {1, . . . , n}|ci 6=
0}. The Hamming weight of a codeword c ∈ C denoted by wt(c) is the
cardinality of its support : wt(c) = |supp(c)|. A codeword c covers a
codeword c′ if supp(c′) ⊂ supp(c).

Definition 1 (Minimal codeword). [Mas93] A codeword c is minimal
if it only covers Fq · c, i. e. if ∀c′ ∈ C, (supp(c′) ⊂ supp(c)) =⇒ (c, c′)
linearly dependent.

Definition 2 (Minimal linear code). [DY03] A linear code C is min-
imal if every non-zero codeword c ∈ C is minimal.

For a complete treatment and general references in coding theory, we
refer to the book of MacWilliams and Sloane [MS77].

2.2 Bounds

Two non-constructive bounds on the rates of minimal codes are exhibited
in [CCP13]. We recall them without proofs.

Theorem 1 (Maximal Bound). [CCP13] Let C a minimal linear [n, k, d]
q-ary code, then R ≤ logq(2).

Theorem 2 (Minimal Bound). [CCP13] For any R, 0 ≤ R = k/n ≤
1
2 logq(

q2

q2−q+1
), there exists an infinite sequence of [n, k] minimal linear

codes.

2.3 A sufficient condition

There exists a sufficient condition on weights for a given linear code to be
minimal. More precisely, if the weights of a linear code are close enough
to each other, then each nonzero codeword of the code is a minimal vector
as described by the following statement.

Proposition 1. [AB98] Let C be an [n, k, d, dmax] code. If d
dmax

> q−1
q

then C is minimal.



Remark 1. Note that the stronger sufficient condition d
n > q−1

q fails to
provide asymptotically good codes; indeed, by the Plotkin bound ([MS77],
for any code, not necessarily linear, of length n, size M and distance d,
if d > (q − 1)n/q, then M ≤ d/(d− (1− q−1)).

On the other hand, for δ < 1 − q−1, the classical Varshamov-Gilbert
bound [Gil52] guarantees the existence of asymptotic families of codes
with non zero rate R(δ, q).

2.4 Infinite constructions

The general idea is to concatenate a q-ary “seed” or inner code (e.g. a
simplex) with an infinite family of algebraic-geometric (AG) codes (the
outer codes) [TV91], in such a way as to obtain a high enough minimum
distance and conclude by Proposition 1.

In practice, we can take the seed to be the simplex code Sq,r[n =
(qr−1)/(q−1), k = r, d = dmax = qr−1]q (with δ > (q−1)/q), set r = 2m
and concatenate with AG[N,K = NR,D = N∆,Dmax = N∆max]q2m .
These codes exist lying almost on the Singleton bound, namely satisfying
R+∆ = 1− (qm − 1)−1 > (q − 1)/q.

This concatenation results in the family C[nN, kK, dD]q with maxi-
mum distance at most dmaxN . If dD/dmaxN = ∆ > (q−1)/q, this family
is minimal by Proposition 1.

It is not hard to check that, for example, choosing q large and α small
enough, m ≥ 2, ∆ = (q − 1)/q + α,R = 1/q − 1/(qm − 1)− α > 0, this is
the case.

To summarize, we construct infinite families of codes withR = 2m(1/q−
1/(qm−1)−α)(q−1)/(q2m−1) ≈ 2m/q2m satisfying δ/δmax > (q−1)/q,
thus minimal. Note that, by the Plotkin bound, they necessarily satisfy
δ < (q − 1)/q, so the fact that δmax < 1 is crucial.

3 Quasi-minimal codes

We now relax the notion of minimal codes to that of quasi-minimal codes.
Minimality prevents a codeword from having its support included in the
support of a linearly independent codeword, whereas quasi-minimality
only prevents two linearly independent codewords from having the same
support.

3.1 Definitions and Properties

Definition 3 (Quasi-minimal codeword). A codeword c is quasi-minimal
if ∀c′ ∈ C, (supp(c′) = supp(c)) =⇒ (c, c′) linearly dependent.



Definition 4 (Quasi-minimal linear code). A linear code C is quasi-
minimal if every non-zero codeword c ∈ C is quasi-minimal.

Quasi-minimality is clearly a weaker requirement than minimality. For
instance, every binary code is obviously quasi-minimal.

3.2 Constructions

We now give a construction based on the Kronecker (tensor) product of
codes, which yields infinite families of quasi-minimal codes with relatively
slowly decreasing rates.

Proposition 2. The product C1⊗C2 of a quasi-minimal [n1, k1, d1, (dmax)1]q
code C1 and of a quasi-minimal [n2, k2, d2, (dmax)2]q code C2 is a quasi-
minimal [n1 × n2, k1 × k2, d1 × d2, dmax ≥ (dmax)1 × (dmax)2]q code.

Proof. The parameters are easy to check. For the quasi-minimality, let
c 6= 0, c′ be two codewords of C1⊗C2. By definition of the tensor product,
they can both be written as n1 × n2 matrices where rows are codewords
of C1 and columns are codewords of C2. More generally, the square of the
[q+1, 2, q]q simplex code is a [(q+1)2, 4, q2]q minimal code. Let us assume
that supp(c) = supp(c′). For i = 1, . . . , n1, j = 1, . . . , n2 let c1i (resp. c

′1
i )

be the ith row of c (resp. c′) and c2j (resp. c
′2
j ) be the jth column of c

(resp. c′). For every i, supp(c1i ) = supp(c
′1
i ), so ∃λi such that c

′1
i = λic

1
i .

With the same reasoning on the columns, for every j, there exists λj such
that c

′2
j = λjc

2
j . Then, all the λi’s and λj ’s are equal and there exists λ

such that c′ = λc, so c and c′ are linearly dependent. Thus, C1 ⊗ C2 is
quasi-minimal. ut

3.3 A sufficient condition

We now prove a sufficient condition for quasi-minimality, weaker than the
one for minimality. This will then allow us to construct improved infinite
classes of asymptotically good quasi-minimal codes by concatenation.

Theorem 3. Let C be a linear [n, k, d, dmax]q code; if d/dmax ≥ (q −
2)/(q − 1), then C is quasi-minimal.

Proof. Let C be a linear [n, k, d]q code and let c, c′ be two linearly indepen-
dent codewords of C such that supp(c) = supp(c′). Let α be a primitive
element of Fq. Then, w.l.o.g., one can write c and c′ by blocks, in the
following way: c = β0|| . . . ||βq−2||0 and c′ = α0β0|| . . . ||αq−2βq−2||0. Let



Ai be the size of the (possibly empty) block βi. Then wt(c) = wt(c′) =
q−2∑
i=0

Ai ≥ d. We also have, for j = 0, . . . , q − 2, d(αjc, c′) =
∑
i 6=j

Ai ≥ d.

If we sum all these inequalities, we get (q − 2)
q−2∑
i=0

Ai ≥ (q − 1)d, hence

wt(c) ≥ q−1
q−2d > dmax, a contradiction. Thus, c and c′ cannot exist and C

is quasi-minimal. ut

Example 1. For q = 3, consider the code G[11, 5, 6, 9]3 obtained by short-
ening the extended ternary Golay code([MS77]). It is quasi-minimal by
the previous theorem. Its (Kronecker) square is G2, a [121, 25, 36,≥ 81]3
quasi-minimal code by the previous proposition, although is does not sat-
isfy the sufficient condition of Theorem 3.

Now, the celebrated non-constructive Varshamov-Gilbert bound im-
plies the existence of infinite families of semi-constructive quasi-minimal
codes with rate R = 1 − hq( q−2q−1) > 0. This is still far from the upper
bound, derived analogously to the minimal case:

Theorem 4 (Maximal Bound). Let C be a quasi-minimal linear [n, k, d]q
code, then R ≤ logq(2).

3.4 Infinite constructions of quasi-minimal codes

Again, we concatenate a q-ary inner code (e.g. a simplex) with an infinite
family of algebraic-geometric (AG) codes to get a high enough minimum
distance and conclude by Theorem 3.

Continue taking for seed Sq,r[n = (qr − 1)/(q − 1), k = r, d = dmax =
qr−1]q, set r = 2m and concatenate with AG[N,K = NR,D = N∆]q2m ,
obtaining the family C[nN, kK, dD]q. Analogously to the minimal case,
If dD/dmaxN = ∆ > (q − 2)/(q − 1), this family is quasi-minimal by
Theorem 3.

Example 2. – Take q = 4,S4,4[85, 4, 64]4, ∆ = 2/3+α,R = 4/15, result-
ing in an infinite construction of [n, 16n/1275] quaternary codes.

– For q = 3, we can improve on the simplex code seed: indeed, take the
already considered C[11, 5, 6, 9]3 as inner code and AG[N,NR,N∆]35
with R+∆ = 191/208. Choose ∆ = 3/4, R = 35/208; then concatena-
tion results in an infinite construction of quasi-minimal [n,≈ 0.076n]
ternary codes.



4 Almost-minimal codes

Definition 5 (Almost-minimal linear code). A linear code C is said
(ε)almost-minimal if at most q2εk pairs of codewords are bad, for some
fixed ε with 0 ≤ ε < 1/2.

We now extend some results of [CMP13] to almost-minimal codes.

Theorem 5 (Maximal Bound). Let C an almost- minimal linear [n, k, d]
q-ary code, then R ≤ logq(2)/(1− ε) + o(1).

Proof. By definition, at most qεk+1 codewords can share the same sup-
port. Thus, |C| = qk ≤ qεk+12n and R = k/n ≤ logq(2)/(1− ε) + o(1).

Theorem 6 (Minimal Bound). For any positive R = k/n such that

R ≤ 1
2−2ε logq(

q2

q2−q+1
) + o(1), there exists an infinite sequence of [n, k]

almost-minimal linear codes.

Proof. Let us fix n and k. For a ∈ Fnq , such that |supp(a)| = i, there are
qi − q linearly independent vectors b such that supp(b) ⊂ supp(a). The

pair (a, b) belongs to

[
n− 2
k − 2

]
linear [n, k] codes, where

[
x
k

]
denotes the

q-ary Gaussian binomial coefficient. There are less than
n∑
i=0

(
n
i

)
(q − 1)i(qi − q) = (1 + (q − 1)q)n − qn+1 ≤ (q2 − q + 1)n such

ordered bad (a, b) pairs. As long as q2εk
[
n
k

]
≥
[
n− 2
k − 2

]
(q2 − q + 1)n ,

there are linear [n, k] codes containing no more than q2εk bad pairs, i. e.

almost-minimal codes. For k/n ≤ 1
2−2ε logq(

q2

q2−q+1
) + o(1), this quantity

is positive.

Open problem

Is it true that the best achievable rate of (quasi, almost) minimal
codes is a decreasing function of q? A weaker statement holds: if q divides
q′, then a q′- (quasi, almost) minimal code yields a q-ary (quasi, almost)
minimal code with the same rate.
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