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Abstract—Minimal linear codes are linear codes such that
the support of every codeword does not contain the support
of another linearly independent codeword. Such codes have
applications in cryptography, e.g. to secret sharing. We consider
here quasi-minimal, t-minimal, and t-quasi-minimal linear codes,
which are new variations on this notion.

Part of this work was done by the first two authors and
presented at 4th International Castle Meeting on Coding Theory
and Applications Palmela, Portugal, 15-18 September 2014; an
extended version with all proofs has been submitted to AMC
([CMR14]).
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I. INTRODUCTION AND NOTATION

A minimal codeword [Mas93], [Mas95] c of a linear code
C is a codeword such that its support (set of non-zero coor-
dinates) does not contain the support of another linearly inde-
pendent codeword. Minimal codewords are useful for defining
access structures in some secret sharing schemes. This led to
work on how to find codes where all codewords are minimal.
The problem of finding a code satisfying this condition, called
a minimal linear code has first been envisioned in [DY03]
and later studied in [SL12], [CCP13]. In [CCP13], another
motivation is a new proposal for secure two-party computation,
where it is required that minimal linear codes be used to ensure
privacy. Minimal codes are close to the notions of intersecting
and separating codes [CL85], [CELS03], [Ran13a], hashing
and parent-identifying codes [ACKL03], [CS04]. Such codes
have been suggested for applications to oblivious transfer
[BCS96], secret sharing [ABCH95], [AB98], [DY03], [SL12]
broadcast encryption or digital fingerprinting [Sch06].

We denote by |F | the cardinality of a set F . Let q = ph,
where p is a prime number and h ∈ N∗. An [n, k, d, dmax]q
code is a vector subspace of Fn

q of dimension k . The last
two parameters refer to the minimal (resp. maximal) Hamming
distance between two codewords of C, or, equivalently, the
minimal (resp. maximal) Hamming weight of a codeword of C;
they will be omitted when irrelevant. Normalized parameters
will be denoted by R = k/n, δ = d/n, δmax = dmax/n.

The support of a codeword c ∈ C is supp(c) = {i ∈
{1, . . . , n}|ci 6= 0}. The Hamming weight of a codeword
c ∈ C denoted by wt(c) is the cardinality of its support :

wt(c) = |supp(c)|. A codeword c covers a codeword c′ if
supp(c′) ⊂ supp(c).

II. t-MINIMAL AND t-QUASI-MINIMAL CODES

Minimal and quasi-minimal linear codes are defined by
conditions of non-inclusion or non-equality of the supports
of linearly independent codewords. We now strengthen these
notions by requesting that these conditions of non-inclusion or
non-equality be guaranteed by at least t ≥ 1 of the coordinates.

A. Definition and properties

Definition 1. • A codeword c is t-minimal if:
∀c′ ∈ C, (|supp(c′) \ supp(c)| < t) =⇒ c′ ∈ Fq · c.

• A codeword c is t-quasi-minimal if:
∀c′ ∈ C, (|supp(c′)4 supp(c)| < t) =⇒ c′ ∈ F×q · c.

Here 4 denotes symmetric difference A4B = (A \B) ∪
(B \A).

Note that for t = 1 this definition reduces to the notions
of minimality and quasi-minimality previously considered in
[CMP13]. It also makes sense when c is the zero codeword.

Definition 2. A linear code C is t-minimal (resp. t-quasi-
minimal) if every codeword c ∈ C is t-minimal (resp. t-quasi-
minimal).

Proposition 3. We have the following diagram of implications
between properties of C:

t-minimal =⇒ minimal =⇒ intersecting

⇓ ⇓ q>
2

=⇒
t-quasi-minimal =⇒ quasi-minimal

with the last one holding only for q > 2.

B. (Asymptotic) lower bounds

Theorem 4. Suppose τ < q−1
q2 and

R < 1− 1

2
((1− τ) logq(q2 − q + 1) +Hq(τ)).

Then there exists an asymptotic family of [n, k] codes that are
t-minimal, with k ∼ Rn and t ∼ τn.



Theorem 5. Suppose τ < 2q−2
q2 and

R < 1− 1

2
((1− τ) logq(q2/2− q + 1) +Hq(τ) + logq(2)).

Then there exists an asymptotic family of [n, k] codes that are
t-quasi-minimal, with k ∼ Rn and t ∼ τn.

C. A construction

Proposition 6. Let C1 be t1-minimal (resp. t1-quasi-minimal)
and C2 be t2-minimal (resp. t2-quasi-minimal). Then C1⊗C2

is t1t2-minimal (resp. t1t2-quasi-minimal).

Proof: We view codewords of C1 ⊗C2 as matrices with
rows in C2 and columns in C1. So given two codewords
m,m′ ∈ C1 ⊗ C2, we let ri, r′i ∈ C2 be their i-th row and
cj , c′j ∈ C1 their j-th column, respectively.

First we deal with minimality. Suppose

|supp(m′) \ supp(m)| < t1t2.

Set
I = {i; |supp(r′i) \ supp(ri)| ≥ t2},

J = {j; |supp(c′j) \ supp(cj)| ≥ t1}.

Then necessarily we have |I| < t1 and |J | < t2.
Now since C2 is t2-minimal, for each i 6∈ I , there is λi ∈ Fq

such that r′i = λir
i. This implies that for each j, we have

supp(c′j)\supp(cj) ⊂ I , so |supp(c′j)\supp(cj)| ≤ |I| < t1,
which means J = ∅. By symmetry we also get I = ∅.

To conclude it suffices to show all λi with ri 6= 0 are equal.
So suppose ri1 , ri2 6= 0. By Proposition 3, C2 is intersecting,
so we can choose j ∈ supp(ri1) ∩ supp(ri2). Then, since
J = ∅ and C1 is t1-minimal, there is µj ∈ Fq such that
c′j = µjc

j . Looking at the (i1, j) and (i2, j) entries, this gives
λi1 = µj = λi2 , as claimed.

Now we deal with quasi-minimality. For q = 2 the result is
already known, since t-quasi-minimality just means minimum
distance at least t. So we can suppose q > 2. We then proceed
exactly as above, with symmetric difference 4 replacing
ordinary set difference \, and with the λi in F×q instead of
Fq . In the last step we will need C2 to be intersecting, which
is true for q > 2 by Proposition 3 again.

D. A sufficient condition

Theorem 7. Let C be a linear [n, k, d, dmax]q code;
if (q− 1)d > (q− 2)dmax + q(t− 1)/2, then C is t-quasi-

minimal.

Proof: Let C be a linear [n, k, d]q code and let c, c′ be two
linearly independent codewords of C such that |supp(c′) 4
supp(c)| < t. Let α be a primitive element of Fq . Then,
w.l.o.g., after a suitable permutation of coordinates, one can
write c and c′ by blocks, in the following way (where η
and θ denote blocks of nonzero elements with total length
|η|+ |θ| ≤ t):
c = β0|| . . . ||βq−2||η||0||0|| and c′ =

α0β0|| . . . ||αq−2βq−2||0||θ||0.

Let Ai be the size of the (possibly empty) block βi. Then

wt(αjc) =
q−2∑
i=0

Ai + |η| and wt(c′) =
q−2∑
i=0

Ai + |θ|. We also

have, for j = 0, . . . , q − 2, Sj := d(αjc, c′) =
∑
i 6=j

Ai + |η|+

|θ| ≥ d. If we sum all these inequalities and set S :=
∑
Sj ,

we get

(q − 1)d ≤ S = (q − 2)
q−2∑
i=0

Ai + (q − 1)(|η| + |θ|) =

(q − 2)(wt(c) + wt(c′))/2 + q(|η|+ |θ|)/2 ≤ (q − 2)dmax +
q(t− 1)/2,

a contradiction. Thus, c and c′ cannot exist and C is t-quasi-
minimal.
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