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Abstract—Since 2003, algebraic attacks have received a lot of
attention in the cryptography literature. In this context, algebraic
immunity quantifies the resistance of a Boolean function to the
standard algebraic attack of the pseudo-random generators using
it as a nonlinear Boolean function. A high value of algebraic
immunity is now an absolutely necessary cryptographic criterion
for a resistance to algebraic attacks but is not sufficient, because
of more general kinds of attacks so-called Fast Algebraic Attacks.
In view of these attacks, the study of the set of annihilators of
a Boolean function has become very important. We show that
studying the annihilators of a Boolean function can be translated
into studying the codewords of a linear code. We then explain how
to exploit that connection to evaluate or estimate the algebraic
immunity of a cryptographic function. Direct links between the
theory of annihilators used in algebraic attacks and coding theory
are established using an atypical univariate approach.

Keywords—Linear codes, Cyclic codes, Boolean functions, Alge-
braic immunity, Annihilators.

I. INTRODUCTION

Due to the great success of algebraic attacks [2], [3], the
notion of algebraic immunity has been introduced to measure
the ability of functions used as building blocks of key stream
generators to resist this new kind of attacks. The algebraic
immunity of a Boolean function is the smallest possible degree
of nonzero Boolean functions that can annihilate the Boolean
function or its complement (such a Boolean function is called
an annihilator of the Boolean function; Definition 1). Usually,
the annihilator of a Boolean function is described using a
multivariate approach, i.e. one searches for a Boolean function
g (in multivariate description) of low degree that annihilates
f . For an n-variable Boolean function, its algebraic immunity
is upper bounded by dn2 e (see [3]). Several constructions
of Boolean functions having high algebraic immunity have
been proposed in the literature. Among these, the one due
to Carlet and Feng [1] was obtained from the BCH bound
from coding theory. That work motivates to push further
the approach initiated in [1]. Indeed, it shows that it seems
possible to translate the problem of studying the annihilators
of a Boolean function into studying a linear code. Recently,
using a univariate approach, Helleseth and Ronjom [7] have
connected the problem of estimating algebraic immunity to
determining low-weight codewords in certain cyclic codes.

Interesting applications of their results can be found in [5]. In
this paper, we use the univariate representation of a Boolean
function. We present an alternative approach from a coding
theory point of view to study the algebraic immunity of a
Boolean function. As in [7], direct relations between the theory
of annihilators of Boolean functions and coding theory are
established. The paper is organized as follows. In Section II,
we give some preliminaries. In Section III, we present our
results. In particular, we associate annihilators of a Boolean
function to codewords of a cyclic code (Definition 3). Next,
we show that studying the annihilators of a Boolean function
can be translated into studying the codewords of a linear code.
We then prove that lower bounds on the algebraic immunity of
a Boolean function can be derived from the minimal distance
of that code (Theorem 2, Theorem 4). We also show that
one can recover from that lower bound a key result of Carlet
and Feng [1] leading to the construction of Boolean functions
achieving the maximum value of the algebraic immunity in
even dimension (Theorem 5).

II. NOTATION AND PRELIMINARIES

Let n be a positive integer. A Boolean function f is a map
from the vector space Fn

2 of all binary vectors of length n to
the finite field with two elements F2.

The Hamming weight of a Boolean function f on Fn
2 ,

denoted by wt(f), is the size of the support of the function,
that is, the cardinality of supp(f) = {x ∈ Fn

2 | f(x) = 1}.
The Hamming distance dH(f, g) between two functions f and
g is the size of the set {x ∈ Fn

2 | f(x) 6= g(x)}, which is
equal to wt(f ⊕ 1g).

In coding theory and cryptography, the most usual represen-
tation of these functions is the algebraic Normal Form (ANF)
defined as

f(x1, · · · , xn) =
⊕

I⊆{1,...,n}

aI

(∏
i∈I

xi

)
where the aI ’s are in F2. The terms

∏
i∈I xi are called

monomials. The algebraic degree of a Boolean function f

1We denote by ⊕ the addition in F2 (but we denote by + the addition in
the field F2n and in the vector space Fn

2 , since there will be no ambiguity)
and by + the addition in Z.



equals the global degree of its (unique) ANF, that is, the
maximum degree of those monomials whose coefficients are
nonzero.

There is another common way to write down Boolean
functions, that is, another representation using a finite field.
To this end, we identify Fn

2 with F2n , the Galois field of
characteristic 2 with 2n elements. Another representation of
Boolean functions using such an identification is to view any
Boolean function as a polynomial in one variable over F2n of
the form f(x) =

∑2n−1
j=0 ajx

j . This representation exists for
every function from F2n to F2n and such function f is Boolean
if and only if a0 and a2n−1 belong to F2 and a2j = a2j for
every j 6= 0, 2n − 1, where 2j is taken modulo 2n − 1.

The degree of f is then equal to the maximum 2-weight of
exponent j for which aj 6= 0. Recall that the 2-weight w2(j)
of an integer j is the number of 1’s in its binary expansion.

Equation systems derived from stream ciphers are too dif-
ficult to solve directly. The criterion that any cipher should
be highly nonlinear usually makes sure that the equations
describing the encryption process look complex. Some ciphers
(such as filter and combiner generators based on linear and
nonlinear feedback shift registers) may be described by a single
Boolean function with a time-variable input.

Because of standard algebraic attacks ([2], [3], [9]), the
study of the set of annihilators of a Boolean function has
become very important. An element of such sets is defined as
follows.

Definition 1. Let f be a Boolean function defined over F2n .
A nonzero Boolean function p is called an annihilator of f if
f(x)p(x) = 0 for every x ∈ F2n .

The purpose of an annihilator is to reduce the number of
variables in solving a multivariate nonlinear equation system.
It has been highlighted that an important property of a Boolean
function is the lowest possible degree of its annihilators or of
the annihilators of its complement, that is called the algebraic
immunity. In fact, the algebraic immunity consists on one way
of measuring how hard it is to solve the equations describing
some ciphers.

Definition 2. The algebraic immunity of f , denoted by AI(f),
is the minimum value of d such that f or its complement
1+f admits an annihilator of algebraic degree d. If we denote
LDA(f) the lowest algebraic degree of nonzero annihilators
of f , then AI(f) = min(LDA(f),LDA(1 + f)).

Clearly, the algebraic immunity of a Boolean function f
is less than or equal to its algebraic degree since 1 ⊕ f is
an annihilator of f . As shown in [3], the algebraic immu-
nity of any n-variable function is upper bounded by dn/2e.
Moreover, it was shown in [4] that the Hamming weight of
a Boolean function f with given algebraic immunity satisfies
:
∑AI(f)−1

i=0

(
n
i

)
≤ wt(f) ≤

∑n−AI(f)
i=0

(
n
i

)
. In particular, if

n is odd and f has optimum algebraic immunity then f is
balanced.

Let us now recall the basic notation and facts about linear
codes. A q-ary linear code of length n and dimension k is a
linear subspace C with dimension k of the vector space Fn

q ,

where Fq is the finite field with q elements. The Hamming
weight (for short, weight) of a vector v is the number of its
nonzero entries and is denoted wt(v). The Hamming distance
dist(v, w) between two vectors v and w is the weight of
v+w. The minimum distance of a linear code is the minimum
Hamming distance between two of its vectors; its equals the
minimum nonzero weight of its vectors. A linear code C is
said to be cyclic if any cyclic shift of a vector belongs to
C, that is, whenever (c0, c1, · · · , cn−1) is in C then so is
(cn−1, c0, · · · , cn−2).

III. ALGEBRAIC IMMUNITY FROM CODING POINT OF
VIEW

In [7], the authors have presented a direct connection
between the annihilators used in algebraic attacks and the
minimum distance of a specific 2n-ary code. More precisely,
they have proved the following main result.

Theorem 1. ([7]) Let f(x) be a Boolean function (in univari-
ate form). Then any annihilator of f(x) belongs to the 2n-ary
cyclic code with generator polynomial Gf (x) given by

Gf (x) = gcd(f(x) + 1, x2
n−1 + 1).

The previous result shows that the annihilators of f belong
to a 2n-ary cyclic code with generator polynomial determined
by f . A direct consequence of Theorem 1 is the following
corollary related to the notion of algebraic immunity. More
precisely, the next corollary shows that the problem of estimat-
ing the algebraic immunity is closely connected to determining
low-weight height codewords in cyclic codes. The weight
height of a polynomial p given by p(x) =

∑2n−2
i=0 aix

i is
equal to max{wt(i) | ai 6= 0}. Thus, the weight height is
equal to the highest 2-weight of an i where the coefficient ai
is nonzero.

Corollary 1. ([7]) The algebraic immunity of a Boolean func-
tion function is equal to the minimal weight height of a code-
word g(x) in the cyclic codes generated by gcd(f(x), x2

n−1+
1) and gcd(f(x) + 1, x2

n−1 + 1) where g(x)2 ≡ g(x)
(mod x2

n−1 + 1) and the weight height of a polynomial
p(x) =

∑2n−2
i=0 cix

i denoted by wh(p) is defined as wh(p) =
max{wt(i) | ci 6= 0}.

In the following, we adopt a different univariate approach
from a coding point of view for evaluating or estimating the
algebraic immunity of a cryptographic function. To this end,
we provide a new connection between the annihilators and
some cyclic codes.

In this section, given a subset S of F2n , we shall denote by
S? the subset S \ {0}. Let f be a Boolean function on F2n

and p : F2n → F2 be an annihilator of f (see Definition 1).
One can represent p as a polynomial in one variable over F2n :
p(x) =

∑2n−1
i=0 aix

i. We now introduce two linear codes over
F2n .

Definition 3. Given a subset S of F2n , let C(S) be the set
of all tuples (a0, a1, a2, · · · , a2n−2, a2n−1) of F2n

2n such that∑2n−1
i=0 aix

i = 0 for every x ∈ S. Let C(S) be the set



of all tuples (a1, a2, · · · , a2n−2, a2n−1) of F2n−1
2n such that∑2n−1

i=1 aix
i = 0 for every x ∈ S.

Lemma 1. Let S ⊂ F2n . Then C(S) is a linear code of length
2n and C(S) is a cyclic code of length 2n − 1.

Proof: The linearity of the codes simply comes from the
fact that the common zeros of two polynomials are zeros of
their sum. Suppose now that p(x) =

∑2n−1
i=1 aix

i vanishes
on S, that is, p(x) = 0 for every x ∈ S. Note now that
xp(x) =

∑2n−1
i=1 aix

i+1 =
∑2n−1

i=2 ai−1x
i + a2n−1x

2n =

a2n−1x +
∑2n−1

i=2 ai−1x
i = 0 for every x ∈ S, that is,

(a2n−1, a1, · · · , a2n−2) is a codeword of C(S) proving that
it is a cyclic code.

Clearly, (a0, a1, . . . , a2n−1) is a codeword of C(supp(f)).
Conversely, one has to take care that not all the codewords
of C(supp(f)) can be associated to an annihilator of f .
Indeed,

∑2n−1
i=0 aix

i has to be the representation of a Boolean
function, that is, one must have that a0, a2n−1 are in F2 and
a2i mod 2n−1 = a2i for every i ∈ {1, . . . , 2n − 2}.

Let us denote B the set of all vectors
(a0, a1, · · · , a2n−2, a2n−1) ∈ F2 × F2n−2

2n × F2 such
that a2i mod 2n−1 = a2i for every integer i ranging from 1
to 2n − 2. Note that C(supp(f)) ∩ B is a linear sub-code of
C(supp(f)). By the above we have

Lemma 2. Let f : F2n → F2 . Then the map which asso-
ciates to each codeword (a0, a1, · · · , a2n−1) the polynomial∑2n−1

i=0 aix
i is a linear isomorphism from C(supp(f)) ∩ B to

the set of annihilators of f .

We now show the link between C(supp(f)) and
C(supp(f)?) when f(0) = 1.

Lemma 3. Let f : F2n → F2 . Suppose f(0) = 1. Then
C(supp(f)) = {0} × C(supp(f)?).

Proof: Note first that C(supp(f)) ⊃ {0} × C(supp(f)?).
It remains therefore to prove the converse inclusion. Let
(a0, a1, . . . , a2n−1) be a codeword of C(supp(f)). One has∑2n−1

i=0 aix
i = 0 for every x ∈ supp(f). This implies

that a0 = 0 since 0 ∈ supp(f). Therefore, we have that∑2n−1
i=1 aix

i = 0 for every x ∈ supp(f)? yielding that
(a0, a1, a2, . . . , a2n−1) is a codeword of {0} × C(supp(f)?).

A quite natural question is then what happens when f(0) =
0. To this end, note that, for every element (1, a1, . . . , a2n−1)
of C(S), we have

∑2n−1
i=1 aix

i = 1 for every x ∈ S.

Lemma 4. Let f : F2n → F2 . Suppose f(0) = 0.
Let (c1, . . . , c2n−1) be any element of F2n−1

22n
such that∑2n−1

i=1 cix
i = 1 for every x ∈ S. Set c = (c1, . . . , c2n−1) ∈

F2n−1
22n

. Then

C(supp(f)) = {0}×C(supp(f))∪{1}×{c+a, a ∈ C(supp(f))}.
Proof: Let a = (a0, a1, . . . , a2n−1) be a codeword of

C(supp(f).
• Suppose that a0 = 0. Then

∑2n−1
i=1 aix

i = 0 for every
x ∈ supp(f), that is, (a1, . . . , a2n−1) ∈ C(supp(f)).

• Suppose that a0 = 1. Then,
∑2n−1

i=1 aix
i = 1 for

every x ∈ supp(f) which is equivalent to say that∑2n−1
i=1 (ai + ci)x

i = 0 for every x ∈ supp(f) , that
is, (a1, . . . , a2n−1) + (c1, . . . , c2n−1) is in C(supp(f)).

Let us now state the following result about the algebraic
immunity deduced from the analysis of the code C(supp(f)).
Theorem 2. Let f : F2n → F2 . Let δ be the minimum
distance of C(supp(f)). Let d be a positive integer such that∑d

i=0

(
n
i

)
< δ. Then there is no nonzero annihilator of f

of algebraic degree less than or equal to d, that is, any
annihilator of f is of algebraic degree at least d+ 1.

Proof: Any annihilator p can be represented as p(x) =∑2n−1
i=0 aix

i. Suppose that p is an annihilator of algebraic
degree at most d, that is, ai = 0 for every i of 2-
weight greater than d. It is associated to a codeword c =
(a0, · · · , a2n−2, a2n−1) of C(supp(f)) where ai = 0 for every
i such that w2(i) ≥ d+1. Therefore, c has at most

∑d
i=0

(
n
i

)
nonzero components, that is, the weight of c is less than δ. It
implies that c is the null codeword proving thus that f has no
nonzero annihilator of algebraic degree less than or equal to
d.

The preceding theorem leads thus to a lower bound for
LDA(f).

Corollary 2. Let f : F2n → F2 . Let δ be the minimum distance
of C(supp(f)). Let e be the lowest positive integer such that∑e

i=0

(
n
i

)
≥ δ. Then LDA(f) ≥ e.

Proof: It holds that
∑e−1

i=0

(
n
i

)
< δ ≤

∑e
i=0

(
n
i

)
. Then,

according to Theorem 2, the algebraic degree of a nonzero
annihilator f is at least e.

We are now going to consider a particular case. Let α be
a primitive element of F2n . Let l and t be two nonnegative
integers. Denote then V (α; l; t) = {αl, αl+1, · · · , αl+t−1}. Let
us now recall a classical result about the minimum distance of
cyclic codes (Bose-Ray Chaudhuri-Hocquenghem, [8, Theo-
rem 8]).

Theorem 3. ([8]) Let α be a primitive element of F2n . Let r
be a nonnegative integer and t a positive integer greater or
equals 2. Let C ⊂ F2n be a cyclic code having t consecutive
zeros αr, αr+1, · · · , αr+t−1. Then the minimum distance of C
greater than t.

Theorem 3 is usually called the BCH bound. Now, using
the previous notation, one can prove the following result.

Theorem 4. Let f : F2n → F2 . Let l be a nonnegative integer
and δ be a positive integer. Suppose that supp(f) ⊃ V (α; l; t−
1) with t ≥ 2. Then LDA(f) ≥ e where e is the lowest possible
integer such

∑e
i=0

(
n
i

)
≥ t− 1.

Proof: Note that C(supp(f)) contains {0}×C(supp(f)?).
Now, C(supp(f)?) is a cyclic code having t − 1 consecutive
zeros. According to Theorem 3, the minimum distance of
C(supp(f)?) is greater than t− 1.

Let us now establish a lower bound on the minimum
distance δ′ of C(supp(f)) involving the minimum distance δ



of C(supp(f)?). If f(0) = 1 then, according to Theorem 3, we
have δ′ = δ. Let us now consider the case where f(0) = 0. By
definition, δ′ = mina,a′∈C(supp(f)),a 6=a′ dist(a, a′). Theorem 4
show that C(supp(f)) can be decomposed as C(supp(f)) =
{0} × C(supp(f)) ∪ {1} × {c + a, a ∈ C(supp(f))} where
c ∈ S = {(c1, . . . , c2n−1) ∈ F2n

22n
|
∑2n−1

i=1 cix
i =

1 for every x ∈ supp(f)}. Now,
• suppose that a = (0, a1, . . . , a2n−1) and a′ =

(0, a′1, . . . , a
′
2n−1) 6= a are in {0} × C(supp(f)), then

dist(a, a′) = wt(a + a′) = wt((a1 + a′1, . . . , a2n−1 +
a′2n−1)) ≥ δ.

• suppose that a = (1, a1, . . . , a2n−1) and a′ =
(1, a′1, . . . , a

′
2n−1) 6= a with c + (a1, . . . , a2n−1) and

c+ (a′1, . . . , a
′
2n−1) belonging to c+ C(supp(f)), then

dist(a, a′) = wt((a1 + a′1, . . . , a2n−1 + a′2n−1)) ≥ δ.
• suppose that a = (0, a1, . . . , a2n−1) ∈ {0}×C(supp(f))

and a′ = (1, a′1, . . . , a
′
2n−1) with c + (a′1, . . . , a

′
2n−1)

belonging to c + C(supp(f)). Then dist(a, a′) = 1 +
wt((a1 + a′1 + c1, . . . , a2n−1 + a′2n−1 + c2n−1)). Note
then that (a1+a′1+c1, . . . , a2n−1+a

′
2n−1+c2n−1) ∈ S

since
∑2n−1

i=1 (ai+a
′
i+ci)x

i = 1 for every x ∈ supp(f).
Let us now study the Hamming weights of the elements
of S. To this end, note that, since 0 6∈ supp(f), we have,
for every c ∈ S,

∑2n−1
i=1 cix

i = 1,∀x ∈ supp(f) if and
only if, x

∑2n−1
i=1 cix

i = x,∀x ∈ supp(f) if and only
if, (c2n−1 + 1)x +

∑2n−1
i=2 ci−1x

i = 0,∀x ∈ supp(f)
that is, (c2n−1 + 1, c1, . . . , c2n−2) ∈ C(supp(f)). Then
wt(c) ≥ wt((c2n−1 + 1, c1, . . . , c2n−2))− 1 ≥ δ − 1.

That implies that δ′ ≥ δ−1 yielding that δ′ ≥ t−1. One then
concludes by Theorem 2.

When supp(f) = V (α; 0; 2n−1 − 1) = {1, α, · · · , α2n−2},
it is proved in [1] that the algebraic immunity of f is optimal,
that is, AI(f) = dn2 e. We now prove than one can recover
that result from Theorem 4 when n is even.

Theorem 5. Let f : F2n → F2 . Let n be an even integer
greater than 2. Suppose that supp(f) = V (α; 0; 2n−1 − 1) =
{1, α, · · · , α2n−2} where α is a primitive element of F2n . Then
AI(f) = n

2 .

Proof: Theorem 4 states that LDA(f) ≥ e where e is
the lowest possible integer such that

∑e
i=0

(
n
i

)
≥ 2n−1 − 2.

Now, note that
∑n

2
i=0

(
n
i

)
≥ 2n−1 − 2 >

∑n
2−1
i=0

(
n
i

)
for

every even positive integer n ≥ 4. We then deduce from
Theorem 4 that LDA(f) ≥ n

2 when n is even and greater
than 2. Now supp(1 + f) = {0, α2n−1, · · · , α2n−2} ⊃
V (α; 2n−1−1; 2n−1). Therefore, if we apply Theorem 4 again,
we conclude than LDA(1 + f) ≥ e where e is the lowest
possible integer such that

∑e
i=0

(
n
i

)
≥ 2n−1 − 1. If n ≥ 4

is even, one has
∑n

2
i=0

(
n
i

)
≥ 2n−1 − 1 >

∑n
2−1
i=0

(
n
i

)
and

therefore LDA(1 + f) ≥ n
2 . We conclude that AI(f) = n

2 .
We hence recover the result of [1].

Remark 1. Let f be chosen as in Theorem 4 but with n odd
greater than 1. Theorem 4 states that LDA(f) ≥ e where e is
the lowest possible integer such that

∑e
i=0

(
n
i

)
≥ 2n−1 − 2.

Now, note that
∑dn2 e−1

i=0

(
n
i

)
≥ 2n−1 − 2 >

∑dn2 e−2
i=0

(
n
i

)
for

every odd integer n ≥ 3. We can then deduce from Theorem
4 that LDA(f) ≥ dn2 e − 1. Now, let us turn our attention
on 1 + f . If we apply Theorem 4 again, we conclude than
LDA(1 + f) ≥ e where e is the lowest possible integer such
that

∑e
i=0

(
n
i

)
≥ 2n−1 − 1. When n is odd integer greater

than 1, we have that
∑dn2 e−1

i=0

(
n
i

)
≥ 2n−1−1 >

∑dn2 e−2
i=0

(
n
i

)
.

Thus, LDA(1+f) ≥ dn2 e−1 if n is odd proving that AI(f) ≥
dn2 e − 1 in that case.

IV. CONCLUSION

As in [7], direct links between the theory of annihilators
used in algebraic attacks and coding theory are established in
this paper using an atypical univariate approach. We firstly
provide a new connection between the annihilators and some
cyclic codes. We explain how to translate the study of the
algebraic immunity of a Boolean function into studying the
properties of particular cyclic codes. We show that, from the
knowledge of the minimum distance of those cyclic codes,
lower bounds can be derived on the algebraic immunity of
the associated Boolean functions. The results presented in this
paper highlight that it could be an alternative way for studying
the algebraic immunity of Boolean functions. The new con-
nections given in the paper can give new Boolean functions
with good algebraic immunity by selecting Boolean functions
in univariate representation such that the corresponding cyclic
codes have good distance properties. Moreover, it should be
possible to make use of some well-known linear codes to
construct Boolean functions with good algebraic immunity.
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