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Abstract. Bent functions are maximally nonlinear Boolean functions. They are wonderful
creatures introduced by O. Rothaus in the 1960’s and studied firstly by J. Dillon since 1974.
Using some involutions over finite fields, we present new constructions of bent functions in
the line of recent Mesnager’s works. One of the constructions is based on an arithmetical
problem. We discuss existence of such bent functions using Fermat hypersurface and Lang-
Weil estimations.
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1 Introduction

Bent functions are maximally nonlinear Boolean functions with an even number of variables. They
were introduced by Rothaus [35] in 1976 but already studied by Dillon [14] since 1974. For their own
sake as interesting combinatorial objects, but also for their relations to coding theory (e.g. Reed-
Muller codes, Kerdock codes), combinatorics (e.g. difference sets), design theory (any difference set
can be used to construct a symmetric design), sequence theory, and applications in cryptography
(design of stream ciphers and of S-boxes for block ciphers), they have attracted a lot of research
for four decades. Yet, their classification is still elusive, therefore, not only their characterization,
but also their generation are challenging problems. A non-exhaustive list of references dealing with
constructions of binary bent Boolean functions is [17] [25],[14], [3], [4], [15],[22],[16], [37], [23], [11],
[2], [10], [6], [30], [27], [28], [29], [8], [1], [34], [24], [31], [32]. Some open problems can be found in [7].
For a recent survey, see [9]. A book devoted especially to bent functions and containing a complete
survey (including variations, generalizations and applications) is [33].

Bent functions occur in pairs. In fact, given a bent function one can define its dual which is
again bent. Computing the dual of a given bent function is not an easy task in general. Recently,
the first author has derived in [31] several new infinite classes of bent functions defined over the
finite field F2n with their duals. All these families are obtained by selecting three pairwise distinct
bent functions from general classes and satisfying some conditions. In [32], the first author extends
the results of [31] and exhibits several new infinite families of bent functions, together with their
duals. Some of them are obtained via new infinite families of permutations that the author provides
with their compositional inverses. In [32] , secondary-like constructions of permutations leading to
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several families of bent functions have also been introduced. The paper is in the line of [31] and
[32]. Our objective is to provide more primary constructions of bent functions defined over the finite
field F22m ' F2m × F2m in bivariate representation in terms of the sum of the products of trace
functions.

This paper is organized as follows. Formal definitions and necessary preliminaries are introduced
in Section 2. In Section 3, we present an overview of the previous constructions of binary bent
functions related to our work. Next, in the line of [31] and [32] based on special permutations, we
investigate bent functions from involutions. We focus on monomial involutions and show how one
can derive bent functions. A main result is given by Theorem 2. Finally, in Section 5, we study
the existence of functions derived from Theorem 2. The problem of designing new primary bent
functions turns out to be an arithmetical problem that we study by giving solutions using arithmetic
and geometric tools.

2 Notation and Preliminaries

A Boolean function on the finite field F2n of order 2n is a mapping from F2n to the prime field

F2 . It can be represented as a polynomial in one variable x ∈ F2n of the form f(x) =
∑2n−1
j=0 ajx

j

where the aj ’s are elements of the field. Such a function f is Boolean if and only if a0 and a2n−1
belong to F2 and a2j = a2j for every j 6∈ {0, 2n − 1} (where 2j is taken modulo 2n − 1). This leads
to a unique representation which we call the polynomial form (for more details, see e.g. [6]). First,
recall that for any positive integers k, and r dividing k, the trace function from F2k to F2r , denoted
by Trkr , is the mapping defined for every x ∈ F2k as:

Trkr (x) :=

k
r−1∑
i=0

x2
ir

= x+ x2
r

+ x2
2r

+ · · ·+ x2
k−r

.

In particular, we denote the absolute trace over F2 of an element x ∈ F2n by Trn1 (x) =
∑n−1
i=0 x

2i .
We make use of some known properties of the trace function such as Trn1 (x) = Trn1 (x2) and for
every integer r dividing k, the mapping x 7→ Trkr (x) is F2k -linear.

The bivariate representation of Boolean functions makes sense only when n is an even integer. It
plays an important role for defining bent functions and is defined as follows: we identify F2n (where
n = 2m) with F2m × F2m and consider then the input to f as an ordered pair (x, y) of elements of
F2m . There exists a unique bivariate polynomial∑

0≤i,j≤2m−1

ai,jx
iyj

over F2m such that f is the bivariate polynomial function over F2m associated to it. Then the alge-
braic degree of f equals max(i,j) | ai,j 6=0(w2(i) +w2(j)). The function f being Boolean, its bivariate
representation can be written in the (non unique) form f(x, y) = Trm1 (P (x, y)) where P (x, y) is
some polynomial in two variables over F2m . There exist other representations of Boolean functions
not used in this paper (see e.g. [6]) in which we shall only consider functions in their bivariate
representation.



If f is a Boolean function defined on F2n , then the Walsh Hadamard transform of f is the
discrete Fourier transform of the sign function χf := (−1)f of f , whose value at ω ∈ F2n is defined
as follows:

∀ω ∈ F2n , χ̂f (ω) =
∑
x∈F2n

(−1)f(x)+Tr
n
1 (ωx).

Bent functions can be defined in terms of the Walsh transform as follows.

Definition 1. Let n be an even integer. A Boolean function f on F2n is said to be bent if its Walsh
transform satisfies χ̂f (a) = ±2

n
2 for all a ∈ F2n .

The automorphism group of the set of bent functions (i.e., the group of permutations π on F2n

such that f ◦ π is bent for every bent function f) is the general affine group, that is, the group of
linear automorphisms composed by translations. The corresponding notion of equivalence between
functions is called affine equivalence. Also, if f is bent and ` is affine, then f + ` is bent. A class
of bent functions is called a complete class if it is globally invariant under the action of the general
affine group and under the addition of affine functions. The corresponding notion of equivalence is
called extended affine equivalence, in brief, EA-equivalence.

Bent functions occur in pair. In fact, given a bent function f over F2n , we define its dual function,
denoted by f̃ , when considering the signs of the values of the Walsh transform χ̂f (x) (x ∈ F2n) of

f . More precisely, f̃ is defined by the equation:

(−1)f̃(x)2
n
2 = χ̂f (x). (2.1)

Due to the involution law the Fourier transform is self-inverse. Thus the dual of a bent function is

again bent , and
˜̃
f = f . A bent function is said to be self-dual if f̃ = f .

Let us recall a fundamental class of Boolean bent functions. Bent functions from the Maiorana-
McFarland construction are defined over F2m × F2m by (2.2):

f(x, y) = Trm1 (φ(y)x) + g(y), (x, y) ∈ F2m × F2m (2.2)

where m is some positive integer, φ is a function from F2m to itself and g stands for a Boolean
function over F2m . We have the following well-known result (e.g. see [6], [33]).

Proposition 1. Let m be a positive integer. Let g be a Boolean function defined over F2m . Define
f over F2m × F2m by (2.2). Then f is bent if and only if φ is a permutation of F2m . Furthermore,
its dual function f̃ is

f̃(x, y) = Trm1 (yφ−1(x)) + g(φ−1(x)) (2.3)

where φ−1 denotes the inverse mapping of the permutation φ.

The class of bent functions given by (2.2) is the so-called Maiorana-McFarland class. It has been
widely studied because its Walsh transform can be easily computed and its elements are completely
characterized (e.g. see [6]).



3 Related previous constructions of bent functions

In [5] a secondary construction of bent functions is provided (building new bent functions from
already defined ones). It is proved there that if f1, f2 and f3 are bent, then if ψ := f1 + f2 + f3
is bent and if ψ̃ = f̃1 + f̃2 + f̃3, then g(x) = f1(x)f2(x) + f1(x)f3(x) + f2(x)f3(x) is bent, and
g̃ = f̃1f̃2 + f̃1f̃3 + f̃2f̃3. Next, the first author has completed this result by proving in [31] that the
converse is also true. The combined result is stated in the following theorem.

Theorem 1. ([31]) Let n be an even integer. Let f1, f2 and f3 be three pairwise distinct bent
functions over F2n such that ψ = f1 + f2 + f3 is bent . Let g be a Boolean function defined by

g(x) = f1(x)f2(x) + f1(x)f3(x) + f2(x)f3(x). (3.1)

Then g is bent if and only if ψ̃ + f̃1 + f̃2 + f̃3 = 0. Furthermore, if g is bent, then its dual function
g̃ is given by

g̃(x) = f̃1(x)f̃2(x) + f̃1(x)f̃3(x) + f̃2(x)f̃3(x), ∀x ∈ F2n .

In [31] and [32], the first author has studied functions g of the shape (3.1) and derived several new
primary constructions of bent functions.

To apply Theorem 1 to a 3-tuple of functions of the form (2.2) with g = 0, one has to choose
appropriately the maps φ involved in their expressions. The following result is proven in ([31]).

Corollary 1. Let m be a positive integer. Let φ1, φ2 and φ3 be three permutations of F2m . Then,

g(x, y) = Trm1 (xφ1(y))Trm1 (xφ2(y)) + Trm1 (xφ1(y))Trm1 (xφ3(y)) + Trm1 (xφ2(y))Trm1 (xφ3(y))

is bent if and only if

1. ψ = φ1 + φ2 + φ3 is a permutation,
2. ψ−1 = φ−11 + φ−12 + φ−13 .

Furthermore, its dual function g̃ is given by

g̃(x, y) = Trm1 (φ−11 (x)y)Trm1 (φ−12 (x)y)+Trm1 (φ−11 (x)y)Trm1 (φ−13 (x)y)+Trm1 (φ−12 (x)y)Trm1 (φ−13 (x)y).

Permutations satisfying (Am) were introduced by the first author in [32].

Definition 2. Let m be a positive integer. Three permutations φ1, φ2 and φ3 of F2m are said to
satisfy (Am) if the following two conditions hold

1. Their sum ψ = φ1 + φ2 + φ3 is a permutation of F2m .
2. ψ−1 = φ−11 + φ−12 + φ−13 .

Several new bent functions have been exhibited from monomial permutations (see [31]) and
from more families of new permutations of F2m (see [32]). Firstly, we list below the constructions
obtained by the first author in [31].

1. Bent functions obtained by selecting Niho bent functions :
– f(x) = Trm1 (λx2

m+1) + Trn1 (ax)Trn1 (bx); x ∈ F2n , n = 2m, λ ∈ F?2m and (a, b) ∈ F?2n × F?2n
such that a 6= b and Trn1 (λ−1b2

m

a) = 0.

f̃(x) = Trm1 (λ−1x2
m+1) +

(
Trm1 (λ−1a2

m+1) + Trn1 (λ−1a2
m

x)
)

×
(
Trm1 (λ−1b2

m+1) + Trn1 (λ−1b2
m

x)
)

+ 1.



– g(x) = Trm1 (x2
m+1) + Trn1

(∑2r−1−1
i=1 x(2

m−1) i
2r +1

)
+ Trn1 (λx)Trn1 (µx); x ∈ F2n , n = 2m,

(λ, µ) ∈ F?2m × F?2m (λ 6= µ).

g̃(x) = Trm1

((
u(1 + x + x2

m

) + u2
n−r

+ x2
m)

(1 + x + x2
m

)
1

2r−1

)
× Trm1

(
(λ + µ)(1 + x +

x2
m

)
1

2r−1

)
+ Trm1

((
u(1 + x+ x2

m

) + u2
n−r

+ x2
m

+ λ
)
(1 + x+ x2

m

)
1

2r−1

)
× Trm1

((
u(1 + x + x2

m

) + u2
n−r

+ x2
m

+ µ
)
(1 + x + x2

m

)
1

2r−1

)
; where u ∈ F2n satisfying

u+ u2
m

= 1.

2. Bent functions obtained by selecting bent Boolean functions of Maiorana-McFarland’s class :

– f(x, y) = Trm1 (a1y
dx)Trm1 (a2y

dx) + Trm1 (a1y
dx)Trm1 (a3y

dx) + Trm1 (a2y
dx)Trm1 (a3y

dx);
where (x, y) ∈ F2m×F2m , d is a positive integer which is not a power of 2 and gcd(d, 2m−1) =
1, ai’s are pairwise distinct such that b := a1 + a2 + a3 6= 0 and a−e1 + a−e2 + a−e3 = b−e

where e = d−1 (mod 2m − 1).

f̃(x, y) = Trm1 (a−e1 xey)Trm1 (a−e2 xey)+Trm1 (a−e1 xey)Trm1 (a−e3 xey)+Trm1 (a−e2 xey)Trm1 (a−e3 xey).
– g(x, y) = Trm1 (a−11x11y)Trm1 (a−11c−11x11y)
Trm1 (a−11x11y)Trm1 (c11a−11x11y) + Trm1 (a−11c−11x11y)Trm1 (c11a−11x11y); where (x, y) ∈
F2m × F2m , a ∈ F?2n with n = 2m is a multiple of 4 but not of 10, c ∈ F2m is such that
c4 + c+ 1 = 0.

g̃(x, y) = Trm1 (aydx)Trm1 (acydx)+Trm1 (aydx)Trm1
(
ac−1ydx

)
+Trm1 (acydx)Trm1

(
ac−1ydx

)
;

with d = 11−1 (mod 2n − 1).
– h(x, y) = (Trm1 (a1y

dx)+g1(y))(Trm1 (a2y
dx)+g2(y))+(Trm1 (a1y

dx)+g1(y))(Trm1 (a3y
dx)+

g3(y)) + (Trm1 (a2y
dx) + g2(y))(Trm1 (a3y

dx) + g3(y)); where m = 2r, gcd(d, 2m − 1) = 1,
a1, a2 and a3 are three pairwise distinct elements of F2m such that b := a1 + a2 + a3 6= 0
and a−e1 + a−e2 + a−e3 = b−e and for i ∈ {1, 2, 3}, gi ∈ Dm := {g : F2m → F2 | g(ax) =
g(x),∀(a, x) ∈ F2r × F2m}.

h̃(x, y) = (Trm1 (a−e1 xey)+g1(xe))(Trm1 (a−e2 xey)+g2(xe))+(Trm1 (a−e1 xey)+g1(xe))(Trm1 (a−e3 xey)+
g3(xe)) + (Trm1 (a−e2 xey) + g2(xe))(Trm1 (a−e3 xey) + g3(xe)) where e = d−1 (mod 2m − 1).

3. Self-dual bent functions obtained by selecting functions from Maiorana-McFarland completed
class3 :

– g(x) = Tr4k1 (a1x
2k+1)Tr4k1 (a2x

2k+1)+Tr4k1 (a1x
2k+1)Tr4k1 (a3x

2k+1)+Tr4k1 (a2x
2k+1)Tr4k1 (a3x

2k+1);
where x ∈ F24k , k ≥ 2, a1, a2, a3 be three pairwise distinct nonzero solutions in F24k of the

equation λ2
3k

+ λ = 1 such that a1 + a2 + a3 6= 0.

4. Bent functions obtained by selecting functions from PSap :

– f(x, y) = Trm1 (a1y
2m−2x)Trm1 (a2y

2m−2x) + Trm1 (a1y
2m−2x)Trm1 (a3y

2m−2x)
+ Trm1 (a2y

2m−2x)Trm1 (a3y
2m−2x); where (x, y) ∈ F2m × F2m , the ai’s are pairwise distinct

in F2m such that a1 + a2 + a3 6= 0.

f̃(x, y) = f(y, x).

3 The Maiorana-McFarland completed class is the smallest class containing the class of Maiorana-
McFarland which is globally invariant under the action of the general affine group and under the addition
of affine functions.



5. Bent functions obtained by combining Niho bent functions and self-dual bent functions :
– f(x) = Tr2k1 (x2

2k+1) + Tr4k1 (ax)Tr2k1 (x2
2k+1) + Tr4k1 (ax)Tr4k1 (λ2(x+ β)2

k+1) + Tr4k1 (ax);

where x ∈ F24k (k ≥ 2), λ2 ∈ F24k such that λ2 + λ2
23k = 1, a ∈ F?24k is a solution of a2

2k

+

λ2
2−k

a2
−k

+ λ2a
2k = 0 and β ∈ F24k such that Tr4k1 (βa) = Tr2k1 (a2

2k+1) + Tr4k1 (λ2a
2k+1).

f̃(x) = Tr2k1 (x2
2k+1)+

(
Tr2k1 (x2

2k+1)+Tr4k1 (λ2x
2k+1)+Tr4k1 (βx)

)
×
(
Tr4k1 (a2

k

x)+Tr2k1 (a2
2k+1)

)
.

Secondly, we list below the infinite families of bent functions from new permutations and their
duals provided by the first author in [32].

1. Let m be a positive integer. Let L be a linear permutation on F2m . Let f be a Boolean function
over F2m such that L0

f := {α ∈ F2m | Dαf = 0} is of dimension at least two over F2 . Let

(α1, α2, α3) be any 3-tuple of pairwise distinct elements of L0
f such that α1 + α2 + α3 6= 0.

Then the Boolean function g defined in bivariate representation on F2m × F2m by g(x, y) =

Trm1 (xL(y)) + f(y)
(
Trm1 (L(α1)x)Trm1 (L(α2)x)

+ Trm1 (L(α1)x)Trm1 (L(α3)x) + Trm1 (L(α2)x)Trm1 (L(α3)x)
)

is bent and its dual function g̃ is

given by g̃(x, y) = Trm1 (L−1(x)y)

+ f(L−1(x))
(
Trm1 (α1y)Trm1 (α2y) + Trm1 (α1y)Trm1 (α3y) + Trm1 (α2y)Trm1 (α3y)

)
.

2. Let m = 2k. Let a ∈ F2k and b ∈ F2m such that b2
k+1 6= a2. Set α = b2

k+1 +a2 and ρ = a+ b2
k

.
Let g1, g2 and g3 be three Boolean functions over F2k . Then the Boolean function h defined in
bivariate representation on F2m × F2m by

h(x, y) = Trm1 (axy + bxy2
k

) + Trm1 (xg1(Trmk (ρy)))Trm1 (xg2(Trmk (ρy)))

+Trm1 (xg1(Trmk (ρy)))Trm1 (xg3(Trmk (ρy)))

+Trm1 (xg2(Trmk (ρy)))Trm1 (xg3(Trmk (ρy)))

is bent and its dual function h̃ is given by

h̃(x, y) = Trm1

(
α−1(axy + bx2

k

y)
)

+Trm1

(
α−1(a+ b)yg1 (Trmk (x))

)
Trm1

(
α−1(a+ b)yg2 (Trmk (x))

)
+Trm1

(
α−1(a+ b)yg1 (Trmk (x))

)
Trm1

(
α−1(a+ b)yg3 (Trmk (x))

)
+Trm1

(
α−1(a+ b)yg2 (Trmk (x))

)
Trm1

(
α−1(a+ b)yg3 (Trmk (x))

)
.

3. Let n be a multiple of m where m is a positive integer and n 6= m. Let φ1, φ2 and φ3 be
three permutations over F2m satisfying (Am). Let (a1, a2, a3) be a 3-tuple of F?2m such that
a1 + a2 + a3 6= 0. Set

g(x, y) = Trn1 (xφ1(y))Trn1 (xφ2(y)) + Trn1 (xφ1(y))Trn1 (xφ3(y))

+ Trn1 (xφ2(y))Trn1 (xφ3(y))

if (x, y) ∈ F2n × F2m and

g(x, y) = Trn1 (a1xy
2n−2)Trn1 (a2xy

2n−2) + Trn1 (a1xy
2n−2)Trn1 (a3xy

2n−2)

+ Trn1 (a2xy
2n−2)Trn1 (a3xy

2n−2)



if (x, y) ∈ F2n × F2n \ F2m . Then g is bent and its dual function g̃ is defined by

g̃(x, y) = Trn1 (φ−11 (x)y)Trn1 (φ−12 (x)y) + Trn1 (φ−11 (x)y)Trn1 (φ−13 (x)y)

+ Trn1 (φ−12 (x)y)Trn1 (φ−13 (x)y)

if (x, y) ∈ F2m × F2n and

g̃(x, y) = Trn1 (a1x
2n−2y)Trn1 (a2x

2n−2y) + Trn1 (a1x
2n−2y)Trn1 (a3x

2n−2y)

+ Trn1 (a2x
2n−2y)Trn1 (a3x

2n−2y)

if (x, y) ∈ F2n \ F2m × F2n .
4. Let n be a multiple of m where m is a positive integer and n 6= m. Let φ1, φ2 and φ3 be three

permutations over F2m satisfying (Am). Let a ∈ F?2m and c ∈ F2n such that c4 + c+ 1 = 0. Let
d be the inverse of 11 modulo 2n − 1. Set

g(x, y) = Trn1 (xφ1(y))Trn1 (xφ2(y)) + Trn1 (xφ1(y))Trn1 (xφ3(y))

+ Trn1 (xφ2(y))Trn1 (xφ3(y))

if (x, y) ∈ F2n × F2m and

g(x, y) = Trn1 (axyd)Trn1 (acxyd) + Trn1 (axyd)Trn1 (ac−1xyd)

+ Trn1 (acxyd)Trn1 (ac−1xyd)

if (x, y) ∈ F2n × F2n \ F2m . Then g is bent and its dual function g̃ is defined by

g̃(x, y) = Trn1 (φ−11 (x)y)Trn1 (φ−12 (x)y) + Trn1 (φ−11 (x)y)Trn1 (φ−13 (x)y)

+ Trn1 (φ−12 (x)y)Trn1 (φ−13 (x)y)

if (x, y) ∈ F2m × F2n and

g̃(x, y) = Trn1 (a−11x11y)Trn1 (a−11c−11x11y) + Trn1 (a−11x11y)Trn1 (a−11c11x11y)

+ Trn1 (a−11c−11x11y)Trn1 (a−11c11x11y)

if (x, y) ∈ F2n \ F2m × F2n .
5. Let n be a multiple of m where m is a positive integer and n 6= m. Let φ1, φ2 and φ3 be three

permutations over F2m satisfying (Am). Let α ∈ F?2m . Let d be a positive integer such that d
and 2n − 1 are coprime. Denote by e the inverse of d modulo 2n − 1. Set

g(x, y) = Trn1 (xφ1(y))Trn1 (xφ2(y)) + Trn1 (xφ1(y))Trn1 (xφ3(y))

+ Trn1 (xφ2(y))Trn1 (xφ3(y))

if (x, y) ∈ F2n × F2m and g(x, y) = Trn1 (αxyd) if (x, y) ∈ F2n × F2n \ F2m . Then g is bent and
its dual function g̃ is defined by

g̃(x, y) = Trn1 (φ−11 (x)y)Trn1 (φ−12 (x)y) + Trn1 (φ−11 (x)y)Trn1 (φ−13 (x)y)

+ Trn1 (φ−12 (x)y)Trn1 (φ−13 (x)y)

if (x, y) ∈ F2m × F2n and g̃(x, y) = Trn1 (α−exey) if (x, y) ∈ F2n \ F2m × F2n .



6. Let n = 2m where m is a positive integer. Let φ1, φ2 and φ3 be three permutations over F2m

satisfying (Am). Let d be a positive integer such that d+1 and 2n−1 are coprime. Let λ ∈ F?2m .
Set

g(x, y) = Trn1 (xφ1(y))Trn1 (xφ2(y)) + Trn1 (xφ1(y))Trn1 (xφ3(y))

+ Trn1 (xφ2(y))Trn1 (xφ3(y))

if (x, y) ∈ F2n × F2m and g(x, y) = Trn1

(
λxy (Trnm(y))

d
)

if (x, y) ∈ F2n × F2n \ F2m . Then g is

bent and its dual function g̃ is defined by

g̃(x, y) = Trn1 (φ−11 (x)y)Trn1 (φ−12 (x)y) + Trn1 (φ−11 (x)y)Trn1 (φ−13 (x)y)

+ Trn1 (φ−12 (x)y)Trn1 (φ−13 (x)y)

if (x, y) ∈ F2m × F2n and g̃(x, y) = Trn1

(
λ−

1
d+1x (Trnm(x))

− d
d+1 y

)
if (x, y) ∈ F2n \ F2m × F2n .

4 More constructions of bent functions

In this section, we provide from classes of involutions more primary constructions of bent functions
in the line of [31] and [32].

An involution is a special permutation, but the involution property includes the bijectivity as it
appears in the classical definition.

Definition 3. Let F be any function over F2n . We say that F is an involution if F ◦ F (x) =
x, for all x ∈ F2n .

In a recent work, Charpin, Mesnager and Sarkar [12] have provided a mathematical study of
these involutions. The authors have considered several classes of polynomials and characterized
when they are involutions (especially monomials as well as linear involutions) and presented several
constructions. New involutions from known ones have also been derived. The following result is an
easy consequence of Theorem 1 showing that one can derive bent functions from involutions.

Corollary 2. Let m be a positive integer. Let φ1, φ2 and φ3 be three involutions of F2m . Then,

g(x, y) = Trm1 (xφ1(y))Trm1 (xφ2(y)) + Trm1 (xφ1(y))Trm1 (xφ3(y)) + Trm1 (xφ2(y))Trm1 (xφ3(y))

is bent if and only if ψ = φ1 + φ2 + φ3 is an involution.
Furthermore, its dual function g̃ is given by g̃(x, y) = g(y, x).

Remark 1. Notice that this gives a very handy way to compute the dual (namely, transpose the
two arguments), in stark contrast with the univariate case.

Using a monomial involution (see [12]), a first construction of a new family of bent functions is
given by the following statement.

Theorem 2. Let n be an integer. Let d be a positive integer such that d2 ≡ 1 (mod 2n−1). Let Φ1,
Φ2 and Φ3 be three mappings from F2n to F2n defined by Φi(x) = λix

d for all i ∈ {1, 2, 3} , where
the λi ∈ F?2n are pairwise distinct such that λd+1

i = 1 and λ0
d+1 = 1, where λ0 := λ1 + λ2 + λ3. Let

g be the Boolean function defined over F2n × F2n by



g(x, y) = Trn1 (Φ1(y)x)Trn1 (Φ2(y)x) + Trn1 (Φ2(y)x)Trn1 (Φ3(y)x) + Trn1 (Φ1(y)x)Trn1 (Φ3(y)x). (4.1)

Then the Boolean function g defined over F2n × F2n by (4.1) is bent and its dual is given by
g̃(x, y) = g(y, x).

Proof. Set fi(x, y) := Trn1 (Φi(y)x) for all i ∈ {1, 2, 3}. The function fi belongs to Maiorana-
McFarland’s class. Moreover, Φi(y) = λiy

d is a polynomial over F2m which is an involution if

and only if λd+1
i = 1 and d2 ≡ 1 (mod 2n − 1). Indeed, we have Φi(Φi(y)) = λd+1

i yd
2

, hence

λd+1
i yd

2

= y if and only if λd+1
i ≡ 1 and yd

2 ≡ y (mod y2
n

+y), that is, d2 ≡ 1 (mod 2n−1). Using

the same arguments,
∑3
i=1 Φi is an involution since we have (λ1 + λ2 + λ3)d+1 = 1 by hypothesis.

Now, since Φi (resp.
∑3
i=1 Φi) is in particular a permutation over F2n , for every i ∈ {1, 2, 3} the

Boolean function fi (resp. ψ :=
∑3
i=1 fi) is bent whose dual function equals f̃i (resp. ψ̃) defined

by f̃i(x, y) = Trn1 (yΦ−1i (x)) = Trn1 (yΦi(x)), ∀(x, y) ∈ F2n × F2n (resp. ψ̃(x, y) = Trn1 (y(Φ1 + Φ2 +
Φ3)−1(x)) = Trn1 (y(Φ1 + Φ2 + Φ3)(x))). Therefore, the condition of bentness given in Theorem 1
holds, which completes the proof.

Remark 2. Note that if we multiply λ1, λ2, λ3 by a same non-zero constant a say, λi = 1
aµi for

all i ∈ {1, 2, 3}, then the functions g constructed via the λi and those h constructed via the µi are
linked by the relation h(x, y) = g(ax, y). Therefore the functions g and h are affinely equivalent.

The existence of bent functions given in Theorem 2 is a non-trivial arithmetical problem and is
discussed in the next session.

Using similar arguments as previously, we derive in Proposition 2 and Proposition 3 more con-
structions of bent functions based on some involutions of F2n (see [12]) as application of Corollary
2.

Proposition 2. Let n = rk be an integer with k > 1 and r > 1. For i ∈ {1, 2, 3}, let γi be an
element of F?2n such that Trnk (γi) = 0 and Φi be a mapping defined over F2n by

Φi(x) = x+ γiTr
n
k (x).

Then the Boolean function g defined over F2n × F2n by (4.1) is bent and its dual function is
given by g̃(x, y) = g(y, x).

Proposition 3. Let n = 2m be an even integer. Let h1, h2, h3 be three linear mappings from F2m

to itself. For i ∈ {1, 2, 3}, let Φi be a mapping from F2n to itself defined by

Φi(x) = hi(Tr
n
m(x)) + x.

Then the Boolean function g defined over F2n × F2n by (4.1) is bent and its dual function is
given by g̃(x, y) = g(y, x).

Remark 3. Set Φ′i(x) = hi(Tr
n
m(x)) + x2

m

. Let g′ be the Boolean function derived from (4.1) using
the Φ′i’s. Then g′ is bent and its dual is given by g̃′(x, y) = g′(y, x). Clearly the functions g (given
by the previous theorem) and g′ are affinely equivalent.



5 Finding primary bent functions from Theorem 2

5.1 Discussion

We now turn to the question of finding values n, d and λi which can be used in Theorem 2 and further
satisfying certain ”non-obviousness” conditions to be laid out below. In other words, we are looking
for n, d such that d2 ≡ 1 (mod 2n− 1) and λi ∈ F?2n such that λd+1

i = 1 with λ0 +λ1 +λ2 +λ3 = 0
and perhaps some additional constraints such as λi 6= λj for i 6= j. We further refine the problem
by introducing the quantity e := lcm(d+ 1, N)/(d+ 1) = N/ gcd(d+ 1, N) where N := 2n − 1; the
significance of this quantity is that for λi to be a (d + 1)-th root of unity in F2n , a necessary and
sufficient condition is that λi be a nonzero e-th power, say λi = Zei (because there are gcd(r,N)
solutions to rx = 0 in Z/NZ, namely the multiples of N/ gcd(r,N)).

So, discussing on the value of e, we now have two problems: the arithmetical problem, namely,
finding for which values of n, d we have d2 ≡ 1 (mod 2n − 1) with N/ gcd(d + 1, N) = e; and the
algebraic problem, namely, finding Z0, . . . , Z3 nonzero such that Ze0 +Ze1 +Ze2 +Ze3 = 0 (and perhaps
some additional constraints for non-obviousness).

In the sequel, we shall denote by G(e) ≤ F?2n the cyclic group of e-th powers.

5.2 The arithmetical problem

Given an odd positive integer e, we ask upon what conditions we can find n, d such that d2 ≡ 1
(mod 2n − 1) with N/ gcd(d+ 1, N) = e for N := 2n − 1.

Let us temporarily forget about N being 2n − 1 (except that it is odd). Now if N = pv11 · · · pvss
where the pi are distinct odd primes, finding d such that d2 ≡ 1 (mod N) amounts, by the Chinese
remainder theorem, to choosing εi ∈ {±1}, and taking d ≡ εi (mod pvii ) (thus, there are 2s possible
values of d with d2 ≡ 1 (mod N)). Then clearly N/ gcd(d + 1, N) is the product of the pvii where
i ranges over those indices such that εi = +1. So if we fix e (a positive odd integer) and look
for appropriate values of N , we find that there exists a d (necessarily unique) such that d2 ≡ 1
(mod N) and N/ gcd(d+ 1, N) = e iff N is the product of e by a positive odd integer prime to it,
in other words, N odd and N ≡ te (mod e2) where t is prime to e (and defined modulo e).

Now if we fix an odd positive integer e, and if we choose for t one of the ϕ(e) invertible classes
mod e (where ϕ is Euler’s totient function), we are interested in those n such that 2n ≡ 1 + te
(mod e2). Not much more can be said about this in general unless we know something about the
multiplicative order of 2 mod e2, but at least we can discuss the small values of e:

Proposition 4. – For e = 3: there exists d such that d2 ≡ 1 (mod 2n−1) with N/ gcd(d+1, N) =
e (again with N := 2n − 1) iff n ≡ 2 or n ≡ 4 (mod 6).

– For e = 5: there exists d such that d2 ≡ 1 (mod 2n − 1) with N/ gcd(d+ 1, N) = e (again with
N := 2n − 1) iff n is congruent mod 20 to one of the following values: 4, 8, 12, 16.

– For e = 7: there exists d such that d2 ≡ 1 (mod 2n − 1) with N/ gcd(d+ 1, N) = e (again with
N := 2n − 1) iff n is congruent mod 21 to one of the following values: 3, 6, 9, 12, 15, 18.

Proof. In each case, we compute the order of 2 mod e2, namely 6 for e = 3, resp. 20 for e = 5, and
21 for e = 7, and we then simply compute 2n mod e2 for each value of n modulo this order, keeping
those which are congruent to 1 + te for t prime to e.



5.3 The algebraic problem: generalities

We now turn to the ”algebraic problem”: given e a positive odd integer and n such that e divides
N := 2n − 1, we wish to find Z0, . . . , Z3 nonzero such that Ze0 + Ze1 + Ze2 + Ze3 = 0.

The latter equation defines (in 3-dimensional projective space P3
F2n

) a smooth algebraic surface of
a class known as Fermat hypersurfaces, which have been studied from the arithmetic and geometric
points of view (see, e.g., [13, §2.14]). The equation has obvious solutions: if {i0, i1, i2, i3} = {0, 1, 2, 3}
is a labeling of the indices and ω, ω′ two e-th roots of unity, then any solution to ωZi0 + Zi1 = 0
and ω′Zi2 + Zi3 = 0 satisfies Ze0 + Ze1 + Ze2 + Ze3 = 0: these are known as the standard lines on
the Fermat surface, corresponding to cases where two of the λi are equal. Solutions which do not
lie on one of the lines are known as nonobvious solutions. We now comment on their existence and
explicitly construct some.

5.4 Using the Lang-Weil estimates

Assume e ≥ 3 (some odd integer) is arbitrary but fixed. We show that nonobvious solutions exist
for n large enough, albeit in a nonconstructive way.

The polynomial Ze0 + Ze1 + Ze2 + Ze3 is irreducible over the algebraic closure of F2. (Indeed, if it
could be written as PQ with P,Q nonconstant, then all its partial derivatives would vanish where
P = Q = 0, and nontrivial such points would exist because elementary dimension theory, e.g. [19,
theorem I.7.2], guarantees that over an algebraically closed field, r homogeneous polynomials in > r
variables always have a nontrivial common zero. But on the other hand it is clear that the partial
derivatives of Ze0 +Ze1 +Ze2 +Ze3 never all vanish unless all the Zi vanish. In geometric terms, what
we are saying is that a smooth projective hypersurface is geometrically irreducible.)

Because of this, we can apply the Lang-Weil estimates [20, theorem 1], and conclude that the
number of solutions to Ze0 + Ze1 + Ze2 + Ze3 = 0 (in projective 3-space, i.e., up to multiplication by
a common constant) over F2n is q2 + O(q3/2) where q := 2n and the constant implied by O(q3/2)
is absolute. Even if we deduct the at most O(q) points located on each of the curves Zi = 0 and
standard lines, we are still left with the same estimate for the number of solutions. This proves:

Proposition 5. For any odd e ≥ 3, there exists n0 such that if n ≥ n0, there exist Z0, . . . , Z3 ∈ F2n

all nonzero and not located on the standard lines (ωZi0 + Zi1 = 0) ∧ (ω′Zi2 + Zi3 = 0), such that
Ze0 + Ze1 + Ze2 + Ze3 = 0.

In particular, if d is such that d2 ≡ 1 (mod 2n − 1) and (2n − 1)/ gcd(d+ 1, 2n − 1) = e, and if
we let λi = Zei , Theorem 2 applies, and no two of the λi are equal.

5.5 A lower bound on the number of solutions

Denote by N(s, e, g) the number of solutions of

xe1 + · · ·xes = g, xi ∈ F2n , g ∈ F?2n .

By Theorem 5.22 in [21] (see also [38]), we have:

N(s, e, g) ≥ 2n(s−1) − (e− 1)s2n(s−1)/2.

In particular, in the cases of interest to us, namely s = 2, 3, g ∈ G(e):



– N(2, e, g) ≥ 2n − (e− 1)22n/2 > 0, for 2n > (e− 1)4.
– N(3, e, g) ≥ 22n − (e− 1)32n > 0, for 2n > (e− 1)3.

Since we are interested only in nontrivial solutions, we should substract at most 2e fromN(2, e, g)
and 3e22n from N(3, e, g) respectively. Once we know there are solutions, there exist deterministic
algorithms for finding them, running in polynomial time in terms of e and n (see Theorem A3 in
[39]).

5.6 A semi-explicit construction

Proposition 6. If N > e(2e+ 1), there exist non trivial zero sums of 4 terms in G(e).

Proof. Consider all the M :=
(|G(e)|

2

)
pairs {a, b} of elements in G(e). If M > N , two different pairs

must have the same sum, providing a non-trivial 4-term 0-sum of elements of G(e). This occurs as
soon as N > e(2e+ 1).

Remark 4. Let ci + a = cj + b be such a sum; upon normalization, we get: c+ cj−i+1 + a′ + b′ = 0.
That is, we can fix freely one element (c) in the sum.

5.7 From three to four e-powers

Let a + b + c = 0 be a non-trivial zero sum of 3 elements of G(e) (e-th powers). By cubing this
equation, we get: c3 = a3 + b3 + ab(a+ b) = a′ + b′ + abc, i.e., a non-trivial zero sum of 4 elements
in G(e)!

Remark 5. This generalizes to any characteristic p 6= 3, but since now we have: −c3 = a3+b3−3abc,
we need −1 and 3 to be e-th powers (a sufficient condition being that e does not divide (p− 1), in
which case all elements of Fp are e-th powers).

6 The case e = 3

We now specialise to the case e = 3 and delve further into the study of explicit solutions.

6.1 Explicit parametrization in the case e = 3

if e = 3, the equation Z3
0 +Z3

1 +Z3
2 +Z3

3 = 0 defines a smooth cubic surface (here, a diagonal one),
and the 27 sets of simultaneous equations `ω,i0,i1|ω′,i2,i3 := (ωZi0 + Zi1 = 0) ∧ (ω′Zi2 + Zi3 = 0)
(with {i0, i1, i2, i3} = {0, 1, 2, 3} and ω, ω′ any two cube roots of unity) define the 27 lines on that
cubic surface. We refer to [19, V.§4] as well as [26, chap. IV] and the references therein for general
background on cubic surfaces and their configuration of 27 lines.

Geometrically (i.e., over an algebraically closed field), a smooth cubic surface is isomorphic to
the blowup of the projective plane in six points in general position: see [19, loc. cit.] or [18, p. 480
& 545]: in practice, this means that the points on the cubic surface correspond to points on the
projective plane, except for the six exceptional points which must be replaced by their set of tangent
directions (and correspond to six pairwise skew lines on the cubic surface); in particular, the cubic



surface is rational, meaning that its points can be (almost bijectively) parametrized by rational
functions. The same analysis can be performed for a cubic surface over an arbitrary field provided
we can find six pairwise skew lines which are (collectively) defined over the base field. This is the
case for Z3

0 + Z3
1 + Z3

2 + Z3
3 = 0 over any field, as we can simultaneously “blow down” the two

lines `ω0,0,1|ω0,2,3, for ω0 ranging over the two primitive cube roots of unity, and their image under
cyclic permutations of (Z1, Z2, Z3), all six of which are pairwise skew. Explicitly, in characteristic
two, if we blow them down to the points (1 : ω0 : 1) and corresponding cyclic permutation of the
coordinates (U : V : W ), we get the parametrization:

Z0 = UV 2 + VW 2 +WU2

Z1 = U2V + V 2W +W 2U + V 3 +W 3

Z2 = U2V + V 2W +W 2U + U3 +W 3

Z3 = U2V + V 2W +W 2U + U3 + V 3

satisfying Z3
0 + Z3

1 + Z3
2 + Z3

3 = 0, whose inverse is given (projectively, i.e., up to constants) by

U = Z2
0 + Z2

1 + Z1Z2 + Z2Z3 + Z2
3

V = Z2
1 + Z0Z2 + Z2

2 + Z0Z3 + Z2
3

W = Z0Z1 + Z0Z2 + Z1Z2 + Z0Z3 + Z1Z3 + Z2Z3 + Z2
3

(or any one obtained by cyclically permuting both Z1, Z2, Z3 and U, V,W ).
The gist of the above explanations is that, if over any field of characteristic two, we substitute

any values U, V,W other than the six exceptional points (1 : ω0 : 1), (1 : 1 : ω0), (ω0 : 1 : 1) in the
first set of equations above, we obtain a solution to Z3

0 +Z3
1 +Z3

2 +Z3
3 = 0; if furthermore the point

(U : V : W ) is not located on one of the fifteen plane lines through two of the exceptional points
(e.g., U = V , V = W , U = W , etc.) or one of the six conics through five of them, the resulting
(Z0, Z1, Z2, Z3) will not be on one of the lines of the cubic surface (i.e., it will be nonobvious in
the terminology used above), and if (U : V : W ) is furthermore chosen outside of the plane cubics
UV 2 + VW 2 + WU2 = 0 etc. (given by the equations for the Zi themselves), the point will have
nonzero coordinates so we can use it in construction given in Theorem 2.

(The equations themselves can be checked without any appeal to the machinery of algebraic
geometry: for example, using symetries, it is straightforward that, in characteristic two, (UV 2 +
VW 2 +WU2)3 + (U2V +V 2W +W 2U +V 3 +W 3)3 + (U2V +V 2W +W 2U +U3 +W 3)3 + (U2V +
V 2W+W 2U+U3+V 3)3 = 0; and one can similarly check that substituting the first set of equations
in the second recovers U, V,W up to a common factor, namely U4V +UV 4+U2V 2W+UVW 3+W 5.)

6.2 An explicit example

We present an explicit example with n = 10 and d = 340. To this end, we represent F210 modulo the
minimal polynomial m(x) := x10+x6+x5+x3+x2+x+1. Let ξ ∈ F210 be the class of x mod m(x).
Then for example taking U = 1, V = ξ, W = 1 + ξ in the equations above gives Z0 = ξ3 + ξ2 + 1,
Z1 = ξ3 + ξ2, Z2 = ξ2 + 1 and Z3 = ξ, whose cubes, viz., λ0 = ξ9 + ξ8 + ξ7 + ξ4 + ξ3 + ξ2 + 1,
λ1 = ξ9 + ξ8 + ξ7 + ξ6, λ2 = ξ6 + ξ4 + ξ2 + 1 and λ3 = ξ3 all satisfy λ341i = 1 (and sum up to 0).
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