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Abstract

This paper proposes a mathematical model and formalism to study coded
exposure (flutter shutter) cameras. The model includes the Poisson photon
(shot) noise as well as any additive (readout) noise of finite variance. This is an
improvement compared to our previous work that only considered the Poisson
noise. Closed formulae for the mean square error and signal to noise ratio of the
coded exposure method are given. These formulae take into account for the
whole imaging chain, i.e., the Poisson photon (shot) noise, any additive (readout)
noise of finite variance as well as the deconvolution and are valid for any
exposure code. Our formalism allows us to provide a curve that gives an absolute
upper bound for the gain of any coded exposure camera in function of the
temporal sampling of the code. The gain is to be understood in terms of mean
square error (or equivalently in terms of signal to noise ratio), with respect to a
snapshot (a standard camera).

Keywords: Coded exposure; computational photography; flutter shutter; motion
blur; mean square error (MSE); signal to noise ratio (SNR)
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1 Introduction
Since the seminal papers [1, 2, 3, 4, 5, 6] of Agrawal, Raskar et al. coded exposure

(flutter shutter) method has received a lot of follow ups [7, 8, 9, 10, 11, 12, 13, 14,

15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37,

38, 39]. In a nutshell, the authors proposed to open and close the camera shutter,

according to a sequence called “code”, during the exposure time. By this clever

exposure technique, the coded exposure method permits one to arbitrarily increase

the exposure time when photographing (flat) scenes moving at a constant velocity.

Note that with a coded exposure method only one picture is stored/transmitted. A

rich body of empirical results suggest that the coded exposure method allows for a

gain in terms of Mean Square Error (MSE) or Signal to Noise Ratio (SNR) compared

to a classic camera, i.e., a snapshot. Therefore, the coded exposure method seems

to be a magic tool that should equip all cameras.

We now briefly expose the different applications, variants and studies that sur-

round the coded exposure method. An application of the coded exposure method

to bar codes is given in [16, 35], to fluorescent cell image in [27], to periodic events

in [25, 34, 36], to multi-spectral imaging in [10] and to iris in [21]. Application to

motion estimation/deblurring are presented in [9, 19, 20, 26, 31, 33, 37, 38]. An

extension for space dependent blur is investigated in [28]. Methods to find better

or optimal sequences as investigated in [12, 13, 14, 22, 23, 39] or in [15] that aims

at adapting the sequence to the velocity. Diverse implementations of the method
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are presented in [17, 18, 24, 32]. The method is used for spatial/temporal trade-off

in [7, 8, 11]. A numerical and mathematical investigation of the gain of the method

is in [29, 30] but their camera model contains only photon (shot) noise and neglects

all other noise sources, contrarily to the model we shall develop in this paper.

Therefore, as far as we know, little is known on the coded exposure method from

a rigorous mathematical point of view and it seems useful for the applications to

build a theory able to shed some light on this promising coded exposure method.

For instance, to the best of our knowledge, little is know on the gain, in terms of

MSE and SNR, of this coded exposure method compared to a standard (snapshot)

camera. This paper proposes a mathematical model of photon acquisition by a light

sensor. The model can cope with any additive readout noise of finite variance in

addition to the Poisson photon (shot) noise. The model is compatible with the

Shannon-Whittaker framework, assumes that the relative camera scene velocity is

constant and known, that the sensor does not saturate, that the readout noise

has finite variance and that the coded exposure method allows for an invertible

transformation among the class of band limited functions (this means that the

observed image can be deblurred using a filter). Note that with this model the image

has a structure: the image is assumed to be band limited. This set of assumptions

represent an ideal mathematical framework that allows us to give a rigorous analysis

of the limits, in terms of MSE and SNR, of the coded exposure method. For instance,

it is clear that the MSE (resp. SNR) will increase (resp. decrease) if one needs to

estimate the velocity from the observed data, compared to the formulae we shall

prove in this theoretical paper.

To be thorough, a mathematical analysis of a camera requires to go rigorously from

the continuous observed scene to the discrete samples of the final restored image.

This is needed to mathematically analyse the whole image chain: from the photon

emission to the final restored image via the observed discrete samples measured

by the camera. As far as we know, the coded exposure method is very useful for

moving scenes. Consequently, we need a formalism capable of dealing with moving

scenes. Since the observed scene moves continuously with respect to the time we

adopt a continuous point of view. This means that we shall model the observed

scene as a function s. Loosely speaking, spxq give the light intensity at a spatial

position x. (By opposition, a discrete formalism would model the observed scene as

a vector of Rn but requires a more restrictive assumption, see below.) We shall rely

on the Shannon-Whittaker framework (see, e.g, [40]) to perform the mathematical

analysis of sampling-related questions. This framework requires the structure of

band limited (with a cut off frequency) signals or images and will allow us to

perform a rigorous mathematical analysis of the coded exposure method. Recall

that a discrete formalism would model the observed scene as a vector of Rn and the

convolution would use Toepliz matrices. Therefore, the scene would be assumed to

be periodic and also band limited for sampling purposes. Note that the continuous

formalism that we shall develop in this paper does not require to assume that the

observed scene s is periodic. (Most natural scenes are not periodic.) However, the

adaptation of the formalism that we shall develop in this paper to periodic band

limited scene is straightforward if needed for some application.

Our first goal is to provide closed mathematical formulae that give the MSE and

SNR of images obtained by a coded exposure camera. Therefore, we shall start by
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carefully model the photon acquisition by a light sensor then deduce a mathematical

model of the coded exposure method. The mathematical model of camera that we

shall develop in this paper has not, to the best of our knowledge, been developed

in the existing literature on the coded exposure method. Indeed, the model we

shall develop in this paper is able to cope with the Poisson photon (shot) noise in

addition to any additive (sensor readout) noise of finite variance and does not require

to assume that the observed scene is periodic. For example, the model developed

in [30] does not consider any additive (sensor readout) noise. The formulae that

give the MSE and SNR of the final crisp image

• Assumes the Shannon-Whittaker framework that i) requires band limited

(with a frequency cut off) images, and that ii) the pixel size is designed ac-

cording to the Shannon-Whittaker theory. In this paper, we prove the valid-

ity of the Shannon-Whittaker for non-stationary noises. (See also section 2.2

page 10.)

• Assumes that the relative camera scene velocity is constant and known.

• Assumes that the sensor does not saturate.

• Assumes that the additive (sensor readout) noise has zero mean and finite

variance. (This term contains, without loss of generality, the quantization

noise.)

• Assumes that the coded exposure allows for an invertible transformation

among the class of band limited functions. (This means that the observed

image can be deblurred using a filter.)

• Neglects the boundaries effects for the deconvolution. (The inverse filter of a

coded exposure camera has larger support than the inverse filter of a snapshot.

Thus, this slightly overestimates the gain of the coded exposure method with

respect to the snapshot.)

We assume that the sensor readout (additive) noise has zero mean. However, with

our formalism, the adaptation to non zero mean additive (sensor readout) noise is

straightforward if needed for some application. This zero-mean assumption for the

additive noise can be found in e.g. [41, 1st paragraph p. 269 and eqs. (22)-(25), p.

270]. It can also be found in [42, p. 2, 3rd paragraph] and [43, p. 554, column 2,

”noise model” paragraph] (for HDR sensors). It is also common for CMOS (3T)

APS sensors, see, e.g. [44, p. 179, paragraph 2] and certain infrared sensors (mi-

crobolometers), see, e.g. [45, p. 98] that states that these devices have the readout

noise of a CMOS device.

The paper is organized as follows. Section 2 gives a mathematical model of classic

cameras. This mathematical model is extended in section 3 to model coded exposure

cameras. Section 4 gives an upper bound for the gain of the coded exposure method,

in terms of MSE and SNR with respect to a snapshot, in function of the temporal

sampling of the code. The upper bound of corollary 4.2 page 17 is illustrated on

figure 2 page 18. In addition, table 1 page 17 provides numerical experiments illus-

trating these results. The annexes A-L contain several proofs of propositions that

are used throughout this paper. A glossary of notations is in annex M page 34. (In

the sequel latin numerals refer to the glossary of notations page 34.)
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2 A mathematical model of classic cameras
The goal of this section is to provide a mathematical model of the photon acquisition

by a light sensor and the formalism that we shall use to model the coded exposure

method in the sequel.

As usual in the coded exposure literature [2, 3, 9, 21, 22, 30, 35, 46] and for the sake

of the clarity we shall formalize the coded exposure method using a one dimensional

framework. In other words, the sensor array and the observed image are assumed

be one dimensional. One could think that this one dimensional framework is a

limitation of the theory. However, this one dimensional framework is no limitation.

Indeed, as we have seen, we assume that the image acquisition obeys the Shannon-

Whittaker sampling theory. This means that the frequency cut off is compatible

with the image grid sampling. The extension to any two dimensional grid (and

two dimensional images) is straightforward. (The sketch of the proof is in annex A

page 18.) Therefore, the one dimensional framework that we shall consider is no

limitation for the scope of this paper that proposes a mathematical analysis of

coded exposure cameras. A fortiori, the calculations of MSE and SNR that we

shall propose in this paper remain valid for two dimensional images. The noise is,

in general, non-stationary. This due both to the sensor (see, e.g., [47]) and to the

observed scene. In this paper, we also prove the validity of the Shannon-Whittaker

interpolation is valid for non-stationary noises. (See also section 2.2 page 10.) In

addition, we shall assume that the motion blur kernel is known, i.e., the relative

camera-scene velocity vector and the exposure code (or function) are known (this

kernel is called “PSF motion” in, e.g., [1] and is also assumed to be known [1, p.

2]).

We now turn to the mathematical model of photons acquisition by a light sensor.

2.1 A mathematical model of photons acquisition by a light sensor

The goal of this subsection is to give a rigorous mathematical definition (see defi-

nition 2 page 10) of the samples produced by a pixel sensor that observes a moving

scene. This definition of the observed sample can cope with any additive zero mean

(sensor readout) noise of finite variance in addition to the standard Poisson photon

(shot) noise. Note that the model developed in [30] do not consider any additive

(sensor readout) noise. Therefore, the results of [30] do not include this more elab-

orated mathematical model. In particular, the advantages of the coded exposure

method in terms of MSE, with this more elaborated set up, are, to the best of our

knowledge, open questions.

We consider a continuous formalism in order to ease the transition from steady

scenes to scenes moving at an arbitrary real velocity. Another advantage of this

continuous formalism is that it allows us to avoid the implicit periodic assumption of

the observed scene needed if one uses Toeplitz matrices to represent the convolutions

see, e.g., [1, equation 2, p. 3]. (This is needed because, in general, natural scenes

are not periodic.)

We now sketch the construction of our camera model. We first consider the photon

emission, then include the optical and sensor kernels, then include the effect of the

exposure time and of the motion to our model. The lasts two steps consists in

adding the Poisson photon (shot) noise and the additive (sensor readout) noise to
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our camera model. The camera model that we shall consider in this paper is depicted

in figure 1.

Figure 1 Schematic diagram of our camera model. The observed scene emits light and moves at
velocity v P R. The light undergoes the blur of the optical system and is measured by a pixel
sensor. The pixel sensor produces a Poisson random variable (shot noise) that is further corrupted
by an additive (sensor readout) noise of finite variance to produce the observed sample.

We assume that the observed scene emits photons at a deterministic rate s defined

by

s : R ÝÑ p0,`8q

x ÞÝÑ spxq.

Here and in the sequel, the variable x P R represents the spatial position. (We

will precise the unit of x, i.e., the unit we shall use to measure distances when we

introduce the pixel sensor.) Intuitively, s represents the ideal crisp image, i.e., the

image that one would observed if there were no noise whatsoever, no motion, with

a perfect optical system (formally the point spread function is a Dirac-mass) and

the pixel sensor has an infinitesimal area. In a nutshell, spxq would be the gray-level

of the image at position x P R in the idealistic case mentioned above. The quantity

spxq can also be seen as the intensity of light emission at position x.

We now introduce the optical system in our model. The effect of the optical system

is described by its point spread function (PSF) denoted g, and we assume that g ě 0.

Formally, the effect of the point spread function is modeled by a convolution in space

(see, e.g., [48, equation 7.1 p. 171] see also, e.g. [1, equation 1, section 2]). Therefore,

in the noiseless case, if there is no motion, the grey level of the acquired image at

position x P R is, formally, described by

pg ˚ sqpxq (1)

where ˚ denotes the convolution (see (ix) for the definition). (Recall that here and

in the rest of the text, Latin numerals refer to the formulae in the final glossary

page 34.) We shall give the assumptions on g and s so that the quantity in (1) is

well defined later on.

A pixel sensor can be small but has nevertheless a positive area. Indeed, a pixel

sensor integrates the incoming light g ˚ s (the scene is observed through the optical
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system) on some surface element of the form rx1, x2s Ă R with x1 ă x2. Therefore,

formally, the output of a pixel sensor supported by rx1, x2s, in the noiseless case

and without motion, is

ż x2

x1

pg ˚ sqpyqdy. (2)

In the sequel we shall assume that all the pixel sensors of the sensor array have

the same length. Mathematically, we can normalize this length so that every pixel

sensors of the array have unit length. This corresponds to using the pixel sensor

length as unit to measure distances. Thus, this represents no limitation. Hence,

from now on the unit of x is the pixel sensor length. By definition, with this unit,

all the pixel sensor have lengths 1. Therefore, from now on when we speak of a pixel

sensor centered at x we mean that the pixel sensor is supported on the interval

rx´ 1
2 , x`

1
2 s. Hence, from (2) we deduce that the output of a pixel sensor supported

on the interval rx´ 1
2 , x`

1
2 s, that stares at the scene s through the optical system

modeled by g, is, in the noiseless case and without motion,

ż x` 1
2

x´ 1
2

pg ˚ sqpyqdy “ p1r´ 1
2 ,

1
2 s
˚ g ˚ s

looooooomooooooon

u

qpxq. (3)

Remark We implicitly assume a 100% fill factor for the sensor as the pixel sensor

is supported on r´ 1
2 ,

1
2 s and we have a pixel sensor at every unit. This is no loss of

generality for studying the gain of the flutter with respect to a snapshot. Indeed,

the fill factor impacts equally the snapshot and the flutter. In addition, the RMSE

calculations are carried out using the function u in (3) as reference and using an

unbiased estimator for u. Thus, all results we give in this paper hold if one replace

u by u “ 1r´ε,εs ˚ g ˚ s in (3) for any ε P p0, 1
2 s.

Consider the deterministic function formally defined by u :“ 1r´ 1
2 ,

1
2 s
˚g ˚s. The de-

terministic quantity upxq represents the grey level of the image at position x if there

were no noise and no motion. Indeed, u contains the kernels of the optical system

g and of the sensor. Note that the quantity upxq can also be seen as an intensity of

light emission received by a unit pixel sensor centered at x. With the formalism of,

e.g., [1, equation 1, section 2] 1r´ 1
2 ,

1
2 s

represents “hsensor” and g represents “hlens”.

We now introduce the exposure time in our model. Indeed, the sensor accumulates

the light during a time span of the form rt1, t2s Ă R, with t1 ă t2. We denote by ∆t

the positive quantity ∆t :“ t2´ t1 that we shall call exposure time. Thus, from (3),

the output of a pixel sensor centered at x that integrates on the time interval rt1, t2s

is, in the noiseless case

ż t2

t1

ż x` 1
2

x´ 1
2

pg ˚ sqpyqdydt “

ż t2

t1

upyqdt. (4)

Note that the quantity in (4) is the amount of light measured by the pixel sensor,

and it evolves linearly with the exposure time ∆t p“ t2 ´ t1q.

We now extend the above formalism to cope with moving scenes. Without loss of

generality (w.l.o.g.) we assume that the camera is steady while the scene s moves.
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The coded exposure method permits to deal with uniform motions. Therefore, we

assume that the scene s moves at a constant velocity v P R (measured in pixel per

second) during the exposure time interval rt1, t2s. This means that the scene evolves

with respect to the time as spx´vtq. Here and in the sequel the temporal variable is

denoted by t. Therefore, from (4) we deduce that the output of a pixel pixel sensor

centered at x and integrating on the time interval rt1, t2s is, in the noiseless case,

ż t2

t1

ż x` 1
2

x´ 1
2

pg ˚ sqpy ´ vtqdydt “

ż t2

t1

upx´ vtqdt. (5)

For example, suppose that we take a constant velocity v “ 1 in (5). In this case,

the output of a pixel sensor centered at x is, in the noiseless case,

ż t2

t1

ż x` 1
2

x´ 1
2

pg ˚ sqpy ´ tqdydt “
´

1rt1,t2s ˚ 1r´ 1
2 ,

1
2 s
˚ g ˚ s

¯

pxq “
`

1rt1,t2s ˚ u
˘

pxq,

where 1ra,bs represents the characteristic function of the interval ra, bs. (See (3) for

the last equality.) From this simple example we can qualitatively describe where the

exposure code will act. Indeed, by a clever exposure technique, the coded exposure

method will allow to replace the function 1rt1,t2s in the above formula by a more

general class of functions that does not need to be window functions. With the

formalism of, e.g., [1, equation 1, section 2] 1rt1,t2s represents “hmotion” for a classic

camera.

We now extend our model to cope with the Poisson photon (shot) noise and then

will add the readout noise. The photon emission follows a Poisson distribution see,

e.g., [49]. (If X is a random variable that follows a Poisson distribution then all

the possible realization of X are in N. In addition, the probability of the event

X “ k is PpX “ kq “ λke´λ

k! , where λ ą 0 is the intensity of the Poisson random

variable.) We assume that a pixel sensor is behave as a photon counter [1]. That is

to say, we assume that a pixel sensor integrates the photons that are emitted by the

moving observed scene s on some surface element of the form rx1, x2s on the time

span rt1, t2s and produces a sample. This sample follows a Poisson random variable.

From (5), this means that the sample produced by a pixel sensor supported by

rx1, x2s and that integrates on the time span rt1, t2s has law

P

˜

ż t2

t1

ż x` 1
2

x´ 1
2

pg ˚ sqpy ´ vtqdydt

¸

, (6)

where the notation Ppλq denotes a Poisson random variable of intensity λ. With (3)

the above equation can be rewritten as

P
ˆ
ż t2

t1

upx´ vtqdt

˙

. (7)

[1]Single photon avalanche detectors (SPADS) is a possible implementation of a

photon counter. Any light sensing device that produces, when the quantization is

neglected, a signal in biunivocal relationship with the photon count can be w.l.o.g.

assumed to be photon counter. The quantization noise will w.l.o.g. be included in

the additive (readout) noise later on.
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Thus, the value of this sample can be any realization a Poisson random variable

with intensity
şt2
t1
upx ´ vtqdt. Consequently, the probability that the sample has

value k P N when observing the scene s on the time span rt1, t2s with the pixel

sensor centered at x is

´

şt2
t1
upx´ vtqdt

¯k

exp
´

´
şt2
t1
upx´ vtqdydt

¯

k!
.

This quantity is nothing but the probability that the pixel sensor counts k P N
photons during the time interval rt1, t2s.

With the formalism we introduced we can compute the SNR of the produced

image, just to verify that we retrieved the fundamental theorem of photography that

underlies statements like “the capture SNR increases proportional to the square root

of the exposure time” that can be found in, e.g., [2, p. 1, column 2, 1st paragraph].

To this aim, consider the case where v “ 0, t1 “ 0, t2 “ ∆t in (7). If the observed

value obspxq at position x P R follows P
´

ş∆t

0
upxqdt

¯

we have Epobspxqq “ ∆tupxq.

This means that, in expectation, the number of photon caught by the pixel sensor

centered at x increases linearly with the exposure time. If we time normalize the

obtained quantity and consider, formally, a random variable uestpxq that follows
Pp

ş∆t
0
upxqdtq

∆t we obtain E puestpxqq “ upxq. This means that uestpxq estimates upxq

without bias. In addition, we have var puestpxqq “
∆tupxq

∆t2
“

upxq
∆t . Consider the SNR

on the spatial interval r´R,Rs given by
1

2R

şR
´R

Epuestpxqqdx
b

1
2R

şR
´R

varpuestpxqqdx
. This definition of the

SNR can be found in, e.g, [48, equation 1.39, p. 42], [46, equation 15, p. 4], [2,

equation 1, p. 2562]. We have

1
2R

şR

´R
E puestpxqq dx

b

1
2R

şR

´R
var puestpxqq dx

“

1
2R

şR

´R
upxqdx

b

1
2R

şR

´R
upxq
∆t dx

“

b

1
2R

şR

´R
upxqdx

∆t
.

Therefore, assuming that µ the “mean signal level” [48, p. 42] (µ relates to ī0 in,

e.g., [2, section 2])

R` Q µ :“ lim
RÑ`8

1

2R

ż R

´R

upxqdx

is finite we can define the SNR by

SNRpuestq :“
limRÑ`8

1
2R

şR

´R
E puestpxqq dx

b

limRÑ`8
1

2R

şR

´R
var puestpxqq dx

.

Thus, we have SNRpuestq “
?
µ∆t. For example, if the mean photon emission µ

doubles then the SNR is multiplied by a factor
?

2. (And we retrieve the fundamental

theorem of photography namely the SNR Ñ `8 when ∆ Ñ `8.) Note that if we

have no control over the photon emission then the only sure way to increase the

SNR with a given camera is to increase the exposure time ∆t. Similarly, we can

define the MSE by

MSEpuestq :“ lim
RÑ`8

1

2R

ż R

´R

E
´

|uestpxq ´ upxq|
2
¯

dx,
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whenever the limit exists, and we have MSE puestq “ µ∆t.

We are now in position to extend our model to include the additive (readout)

noise. Here and in the sequel the additive (readout) noise of a pixel sensor centered

at x is modelled by a zero mean real random variable of finite variance denoted by

ηpxq. Therefore, from (6), the output of the pixel sensor centered at x that integrates

photons on the time span rt1, t2s can be, formally, any realization of the sum of the

random variables

P

˜

ż t2

t1

ż x` 1
2

x´ 1
2

pg ˚ sqpy ´ vtqdydt

¸

` ηpxq, (8)

or equivalently (see (3)),

P
ˆ
ż t2

t1

upx´ vtqdt

˙

` ηpxq. (9)

Recall that the deterministic quantity upxq represents the grey level of the image

at position x if there were no noise and no motion as it is seen by a pixel sensor

centered at x. The quantity
şt2
t1
upx´ vtqdt represents the amount of light received

on the time interval rt1, t2s by a steady pixel sensor centered at x that gathers the

light emitted by the observed scene that moves at velocity v P R.

We now give a mathematical framework to make precise the above formulae.

We shall assume that the scene s P L1
locpRq so that the convolution in (3) page 6

is well defined. We shall assume that the PSF g belongs to the Schwartz class

that, hereinafter, we shall denote SpRq. In addition, we shall assume that the

PSF g P SpRq furnishes a cut off frequency. This assumption is needed by the

Shannon-Whittaker sampling theory. We shall assume that the frequency cut off

of g is π, i.e., g is r´π, πs band limited. In other words, ĝpξq “ 0 for any ξ P R

such that |ξ| ą π, where, here and in the sequel, we denote by ĝ or Fpgq the

Fourier transform of g (see (xiv) for the definition of the Fourier transform) and

(here and elsewhere) ξ P R represents the (Fourier) frequency coordinate. One

could think that this r´π, πs is a limitation for the theory. However, it is not.

The choice of r´π, πs in the following definition is thoroughly justified in annex B

page 20.

Definition 1 (The observable scene u.)

We call observable scene any non negative deterministic function u of the form

u “ 1r´ 1
2 ,

1
2 s
˚ g ˚ s. Recall that the 1r´ 1

2 ,
1
2 s

denotes the characteristic function

of the interval r´ 1
2 ,

1
2 s and is related to the normalized pixel sensor. The PSF

satisfies g P SpRq, g ě 0, and is r´π, πs band limited. The (non negative) photon

emission intensity is denoted s P L1
locpRq. We have that u P L1

locpRq and we assume

that u satisfies µ :“ limTRÑ`8
1

2R

şR

´R
upxqdx P R`. In addition, we assume that

ũ :“ u´ µ P L1pRq X L2pRq.

Note that u is the sum of the constant µ and of ũ P L1pRq. Thus, we have u P S1pRq

(the space of tempered distributions). This means that u enjoys a Fourier transform

in S1pRq, see, e.g., [50, p. 173], see also [51, p. 23]. In addition, u and ũ inherit the

frequency cut off of the PSF g. Therefore, u and ũ are r´π, πs band limited. In

addition note that the assumption ũ P L2pRq is w.l.o.g. Indeed, since ũ P L1pRq, from
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Riemann-Lebesgue theorem (see e.g., [52, prop. 2.1]), we have that ˆ̃u is continuous.

In addition, since ũ is r´π, πs is band limited we have that ˆ̃u is continuous and has

compact support. We deduce that ˆ̃u P L2pRq. Therefore, we obtain that ũ P L2pRq

w.l.o.g.

We can now give a definition of the observed sample at a pixel centered at x P R

that we shall denote obspxq.

Definition 2 (Observed sample of a of pixel that includes any additive

(sensor readout) noise of finite variance in addition to the Poisson photon

(shot) noise.)

We assume that the observed sample produced by a unit pixel sensor centered at

x P R is corrupted by an additive noise ηpxq that we shall call readout noise. We

assume that Epηpxqq “ 0 and that varpηpxqq “ σr ă `8. Hereinafter, we shall

denote this observed sample by obspxq. From (9), we have that obspxq satisfies, for

any x P R,

obspxq „ P
ˆ
ż t2

t1

upx´ vtqdt

˙

` ηpxq, (10)

where rt1, t2s is the time exposure interval, the observable scene u is defined by

definition 1 page 9 and moves at velocity v P R. The notation X „ Y means that

the random variables X and Y have the same law.

In the sequel we will need to compute MSEs as well as SNRs. Therefore, we will

need to compute expected values and variances of the observed samples. Thus, we

need to justify the validity of these operations. This is done in annex C page 20.

The definition 2 entails that obspxq, the observed sample of a pixel sensor centered

at position x, is a measurable function (a random variable see, e.g., [53, p. 168])

for which it is mathematically possible to compute, e.g., the expectation and the

variance.

The images produced by a digital camera are discrete. In addition, the image

obtained by a coded exposure camera requires to undergo a deconvolution to get

the final crisp image. The calculation of the adequate deconvolution filter requires

a continuous model. Thus, we now turn to the sampling and interpolation in order

to go comfortably from the discrete observations to the latent continuous image.

2.2 Sampling and interpolation

This section recalls the principles of the Shannon-Whittaker interpolation that ap-

plies to, e.g., images that have the band limitedness structure. Consider a r´π, πs

band limited deterministic function f P L1pRq X L2pRq. From the values fpnq for

n P Z the Shannon-Whittaker interpolation of f is

ÿ

nPZ

fpnqsincpx´ nq (where sincpxq “ sinpπxq
πx )

and the above series converges uniformly to fpxq for any x P R (see, e.g., [40, p. 354]).

We recall that annex B page 20 proves that it is no loss to assume that u is r´π, πs

band limited. However, the sample obspxq defined in definition 2 page 10 produced

by the sensor is noisy. Indeed, the sample obspxq contains the Poisson photon (shot)
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noise and the additive sensor readout noise. This means that R Q x ÞÑ obspxq is not

a deterministic function and that obs does not belong to any Lebesgue space. The

Shannon-Whittaker theorem is usually applied to deterministic functions. Some

generalization exists in the case where the observed samples are corrupted by an

additive noise, see, e.g., [54, p. 111], or to sample wide sense stationary stochastic

signals, see, e.g., [54, p. 148]. However, the Poisson photon shot noise is not additive.

Therefore, the first generalization is not applicable. In addition, from definition 1

page 9 we deduce that the autocorrelation function E pobspxqobspyqq is not a func-

tion of the variable x´ y. This means that the samples of a coded exposure camera

cannot be seen as the samples of a wide sense stationary stochastic process (see,

e.g., [55, p. 17] for the definition). In addition, the sensor itself can introduce non

stationary noise, see, e.g., [47]. Thus, to the best of our knowledge, the existing

generalizations of the Shannon-Whittaker theorem are not sufficient to treat the

observed samples of a coded exposure camera (defined in definition 2 page 10).

Consequently, in the sequel, we shall carefully prove that

“obspxq “
ÿ

nPZ

obspnqsincpx´ nq” (where sincpxq “ sinpπxq
πx .) (11)

is mathematically feasible for the obs defined in definition 2 page 10.

Therefore, in the sequel, we assume that the observed samples are obtained from

a sensor array and that the sensor array is designed according to the Shannon-

Whittaker sampling theory. Thus, we assume that the samples obspxq are obtained

at a unit rate, i.e., for x P Z. Consequently, we shall denote the observed samples

by obspnq. This means that, in the sequel, we shall neglect the boundaries effect

due to the deconvolution. This is another way to get rid of the boundaries effects

without assuming that the observed scene is periodic as required by linear algebra

(with Toepliz matrices) model based (see, e.g., [1, 2, 3, 12, 5, 25, 29, 30]).

(This is needed because most natural scenes are not periodic.) Note that this

slightly overestimates the gain of the coded exposure method with respect to the

snapshot. Indeed, the support of the coded exposure function is larger than the

support of the exposure function of a snapshot. This means that in practice the

boundaries artifacts due to the deconvolution are stronger with the coded exposure

method.

Hereinafter, we assume that the sequence of random variables pηpnqqnPZ are mutu-

ally independent, identically distributed and independent from the shot noise, i.e.,

independent from P
´

şt2
t1
upn´ vtqdt

¯

where n P Z. This independence assumption

represents no limitation for the model. Indeed, a photon can only be sensed once.

In addition, the additive (sensor readout) noise comes from an inaccurate reading

of the sample value that does not depends on the light intensity emission or on the

Poisson photon (shot) noise.

We have defined the observed samples produced by a light sensor in definition 2

page 10. This definition includes both the Poisson photon (shot) noise and an ad-

ditive (readout) noise of finite variance. We now turn to the mathematical formal-

ization of the coded exposure method.
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3 A mathematical model of coded exposure camera that includes
any additive (sensor readout) noise of finite variance in
addition to the Poisson photon (shot) noise

The goal of this section is to formalize the coded exposure method. In this section,

we consider invertible “exposure codes” and provides the MSE and SNR of these

exposure strategies. The study yields to theorem 3.4 page 15.

The coded exposure (flutter shutter) method permits to modulate, with respect to

the time, the photons flux caught by the sensor array. Indeed, the Agrawal, Raskar et

al. coded exposure method [1, 2, 3, 4, 5, 6] consists in opening/closing the camera

shutter on sub-intervals of the exposure time. In such a situation the exposure

function that controls when the shutter is open or closed is binary and piecewise

constant. Since it is piecewise constant it is possible to encode this function using

an “exposure code”. (We give a mathematical definition of these objects page 12.)

Note that neither the model nor the results of [30] can be used in this paper.

Indeed, in [30] the additive (sensor readout) noise is neglected. Therefore, the for-

malism of [30] does not hold with the more elaborated set up that we shall consider

here. Indeed, this paper considers any additive sensor readout noise of finite variance

in addition to the Poisson photon (shot) noise.

As we have seen, in their seminal work [1, 2, 3, 4, 5, 6], Agrawal, Raskar et

al. propose to use binary exposure codes. Yet, mathematically, one could envisage

smoother exposure codes that are not binary. Indeed, with a bigger searching space

for the exposure code the MSE and SNR can be expected to be better than with

the smaller set of binary codes. Therefore, in the sequel, we shall assume that the

exposure codes have values in r0, 1s. The value 0 means that the shutter is closed

while the value 1 means the shutter is open and, e.g., 1
2 means that half of the

photons are allowed to reach the sensor. We do not consider the practical feasibility

of these non binary exposure codes as this is out of the scope of this paper which

proposes a mathematical framework and formulae.

We first formalize the fact that the exposure code method modulates temporally

the flux of photons that are allowed to reach the sensor by giving an adequate

definition of an “exposure function” that, hereinafter, we shall denote α. To be

precise, the gain αptq at time t is defined as the proportion of photons that are

allowed to travel to the sensor. We then give the formula of the observed samples

taking the exposure function into account (see definition 4 page 13).

Definition 3 (Exposure function, exposure code.)

We call exposure function any function α of the form

α : R ÝÑ r0, 1s

t ÞÝÑ
ř`8

k“´8 αk1rk∆t,pk`1q∆tqptq.
(12)

We assume that ak P r0, 1s, for any k, that pakqk P `
1pZq and that ∆t ą 0. The

sequence pakqk is called exposure code.

Remark It is easy to see that α P L1pRq X L2pRq X L8pRq and that the above

definition can cope with finitely supported codes, e.g., the Agrawal, Raskar et al.

code [5, p. 5] and patent application [6].
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We have defined the exposure function that controls with respect to the time

the camera shutter. We now give the formula of the observed samples of a coded

exposure camera.

Let α be an exposure function and upx ´ vtq a scene moving at velocity v P R.

Recall that αptq is nothing but the percentage of photons allowed to reach the sensor

at time t. Therefore, from definition 2 page 10, we deduce that obspnq, the observed

sample at a position n P Z, is a random variable that satisfies, for any n P Z,

obspnq „ P
ˆ
ż 8

´8

αptqupn´ vtqdt

˙

` ηpnq „ P
ˆˆ

1

|v|
α
´

¨

v

¯

˚ u

˙

pnq

˙

` ηpnq.

This yields

Definition 4 (Observed samples of a coded exposure camera.)

Let α be an exposure function. We call observed samples at position n of the scene

u (defined in definition 1 page 9) moving at velocity v P R the random variable

obspnq „ P
ˆˆ

1

|v|
α
´

¨

v

¯

˚ u

˙

pnq

˙

` ηpnq. (13)

Recall that the random variables obspnq observed for n P Z are mutually indepen-

dent (see page 11). From definition 1 page 9 we have that u is of the form L1pRq plus

constant and is band limited. From definition 3 page 12 we have that α P L1pRq.
We obtain that the convolution in (13) is well defined everywhere. In addition, note

that the pixels are read only once as in, e.g., [1, 2, 3, 4, 5, 6]. (Only one image is

observed, stored and transmitted.)

Proposition 3.1 Let obs be as in definition 4. For any n P Z, we have

E pobspnqq “

ˆ

1

|v|
α
´

¨

v

¯

˚ u

˙

pnq and var pobspnqq “

ˆ

1

|v|
α
´

¨

v

¯

˚ u

˙

pnq`σ2
r . (14)

Proof The proof is a direct consequence of definition 4 page 13.

Remark (The motion blur of a standard camera is not invertible as soon

as its support exceeds two pixels.)

A standard camera can be seen as a coded exposure camera if the exposure function

α is of the form α “ 1r0,∆ts, where ∆t ą 0 is the exposure time measured in

second(s). Consider the idealistic noiseless case where, from (13), one would observe

E pobspnqq “

ˆ

1

|v|
1r0,∆ts

´

¨

v

¯

˚ u

˙

pnq. (15)

From definition 1 page 9 u is r´π, πs band limited. Therefore, we deduce that the

convolution in (15) is non invertible as soon as the Fourier transform of 1
|v|1r0,∆ts

`

¨
v

˘

is zero on r´π, πs. For any ξ P R, we have F
´

1
|v|1r0,∆ts

`

¨
v

˘

¯

pξq “ F
`

1r0,∆ts
˘

pξvq.

In addition, from the definition of the Fourier transform (xiv), for any ξ P R we

have

F
`

1r0,∆ts
˘

pξq “ ∆tsinc

ˆ

ξ∆t

2π

˙

e
´iξ∆t

2 . (16)
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Therefore, for any ξ P R, we have F
´

1
|v|1r0,∆ts

`

¨
v

˘

¯

pξq “ ∆tsinc
´

ξv∆t
2π

¯

e
´iξv∆t

2 .

From the definition (xvi) of the sinc function, we deduce that the convolution in (15)

is not invertible as soon as the blur support |v|∆t satisfies |v|∆t ě 2. Since, the

velocity v is measured in pixel(s) per second, and the exposure time ∆t is measured

in second(s) we deduce that as soon as the blur support |v|∆t exceeds two pixels

the motion blur of a standard camera is not invertible.

The observed samples of any coded exposure camera are formalized in definition 4

page 13. We wish to compute the MSE and SNR of a deconvolved crisp image with

respect to the continuous observable scene u. To this aim a continuous deconvolved

crisp signal uest must be defined from the observed samples obspnq observed for

n P Z. Thus, we 1) prove the mathematical feasibility of the Shannon-Whittaker

interpolation “obspxq “
ř

nPZ obspnqsincpx ´ nq”, 2) deduce the conditions on the

exposure function α for the existence of an inverse filter γ that deconvolves the

observed samples, 3) define the final crisp image uest and 4) give the formulae for

the MSE and SNR of uest. The study yields to theorem 3.4 page 15.

The mathematical feasibility of the Shannon-Whittaker interpolation is formalized

by

Proposition 3.2 (Mathematical feasibility of the Shannon-Whittaker in-

terpolation of the observed samples obspnq n P Z.)

Let obs be as in definition 4. For any x P R, the series

obspxq “
`8
ÿ

n“´8

obspnqsincpx´ nq (17)

converges in quadratic mean. In addition, for any x P R, we have

E pobspxqq “

ˆ

1

|v|
α
´

¨

v

¯

˚ u

˙

pxq; (18)

var pobspxqq “
`8
ÿ

n“´8

„ˆ

1

|v|
α
´

¨

v

¯

˚ u

˙

pnq sinc2
px´ nq



` σ2
r ă `8.(19)

Proof See annex D page 20.

We now treat the step 2). We cannot recur to a Wiener filter to define γ. Indeed,

due to the Poisson photon (shot) noise, the noise in of our observations obspnq

defined in definition 4 page 13 is not additive. Therefore, the Wiener filter is not

defined (see, e.g., [56, p. 205], [55, p. 95], [57, p. 159] see also [58, p. 252] for a

definition). Instead of using a Wiener filter we shall propose a filter designed so

that the restored crisp image uest is unbiased. This is also the set up considered in,

e.g, [1, section 3.1, page 6]. We now provide the condition under which an inverse

filter γ will yield to an unbiased the restored crisp image uest.

If the exposure function α defined in definition 3 page 12 satisfies α̂pξvq “ 0 for

some ξ P r´π, πs the convolution in (18) is not invertible and some information is

destroyed. Therefore, it is no more possible to retrieve any observed scene u. (In

a discrete setting, that would mean that the Toepliz matrix associated with the
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convolution kernel is not invertible.) Thus, if α̂pξvq ‰ 0 for some ξ P r´π, πs there

exists no inverse filter γ capable of giving back an arbitrary observed scene u. Hence,

we assume that the exposure function α satisfies α̂pξvq ‰ 0 for any ξ P r´π, πs.

Under that condition the convolution
´

1
|v|α

`

¨
v

˘

¯

˚ u in (18) is invertible because u

is r´π, πs band-limited. Therefore, we have

Definition 5 (Admissible α and definition of the inverse filter γ.)

Let α as in definition 3 (page 12). If α satisfies α̂pξvq ‰ 0 for any ξ P r´π, πs then the

inverse filter γ, that deconvolves the observed samples (and will be proved to give

back a crisp image), exists and is defined by (its inverse Fourier transform (xiv))

γpxq :“ F´1

ˆ

1r´π,πspξq

α̂pξvq

˙

pxq. (20)

Remark From definition 5, we deduce that R Q ξ ÞÑ γ̂pξq is bounded and has

compact support. Hence, we have γ̂ P L1pRq X L2pRq and therefore γ P L2pRq.

In addition, from Riemann-Lebesgue theorem we have that γ is continuous and

bounded. Consequently, γ is r´π, πs band-limited and C8pRq, bounded, and belongs

to L2pRq.

We now treat the step 3). The mathematical feasibility of deconvolved crisp signal

uest is formalized by

Proposition 3.3 (Validity/Existence of the crisp deconvolved image

uest.)

Let obs be as in definition 4 and α, γ be as in definition 5. For any x P R, the

series

uestpxq :“
8
ÿ

n“´8

obspnqγpx´ nq (21)

converges in quadratic mean. In addition, for any x P R, we have

E puestpxqq “ upxq; (22)

var puestpxqq “
8
ÿ

n“´8

var pobspnqq pγpx´ nqq2 ă `8. (23)

This proposition means that uest is an unbiased estimator of the observable scene

u.

Proof See annex F page 23.

We now treat the step 4). We have

Theorem 3.4 (MSE and SNR of the coded exposure method.)

Let uest be as in proposition 3.3. Consider a scene upx ´ vtq (see definition 1

page 9) that moves at velocity v P R and let σ2
r be the (finite) variance of the
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additive (readout) noise. The MSE and SNR of the final crisp image uest satisfy

MSEcoded exp.pαq:“lim
RÑ`8

1

2R

ż R

´R

E
´

|uestpxq ´ upxq|
2
¯

dx“
1

2π

ż π

´π

µ}α}L1pRq ` σ
2
r

|α̂pξvq|
2 dξ; (24)

SNRcoded exp.pαq:“
limRÑ`8

1
2R

şR

´R
E puestpxqq dx

b

limRÑ`8
1

2R

şR

´R
var puestpxqq dx

“
µ

c

1
2π

şπ

´π

µ}α}L1pRq`σ
2
r

|α̂pξvq|2
dξ

. (25)

Proof See annex I page 28.

We now connect the formulae in theorem 3.4 with the existing literature on the

coded exposure method. We have that the mean photon emission µ relates to ī0 in,

e.g., [2, section 2]. In addition, from (25), we have that for fixed exposure function α

and additive (readout) noise variance σ2
r the SNR evolves proportionally to

c

µ

1`
σ2
r
µ

with the mean photon emission µ. In particular, from (25), if σ2
r “ 0 and for a

fixed α we deduce that the SNR evolves proportionally to
?
µ and we retrieve the

fundamental theorem of photography. Note that it is equivalent to minimize (24) or

to maximize (25) with respect to the exposure function α. Therefore, in the sequel

we choose w.l.o.g. to use formula (24) and to evaluate the performance of the coded

exposure method in terms of MSE. The calculation for the SNR can be immediately

deduced. As an easy application of theorem 3.4, we have the following corollary that

provides the MSE of any invertible snapshot, i.e. that satisfies |v|∆t ă 2 (see the

discussion on page 13) where ∆t is the exposure time. This corollary will also be

needed to compare the coded exposure method and the snapshot, in terms of MSE,

in section 4.

Corollary 3.5 (MSE of a snapshot with an exposure time of ∆t.)

Let uest, v, upx´ vtq and σ2
r be as in theorem 3.4 and ∆t be such that |v|∆t ă 2.

The MSE of a snapshot with exposure time ∆t is

MSEsnap.p∆tq“ lim
RÑ`8

1

2R

ż R

´R

E
´

|uestpxq ´ upxq|
2
¯

dx“
1

2π

ż π

´π

µ∆t` σ2
r

ˇ

ˇ

ˇ
∆tsinc

´

ξv∆t
2π

¯
ˇ

ˇ

ˇ

2 dξ. (26)

Proof The proof is immediate combining (16) page 13 and (24).

We now turn to section 4 that proposes a theoretical evaluation of the gain of the

coded exposure method, with respect a snapshot.

4 An upper bound of performance for coded exposure cameras
This section study the gain, in terms of MSE, of the coded exposure method, with

respect to a snapshot, as a function of the exposure code sampling rate. The study

yields to a theoretical bound that is formalized in theorem 4.1 page 17 and corol-

lary 4.2 page 17. The bound is valid for any exposure code provided |v|∆t ď 1. (We

recall that the exposure code sampling rate ∆t is defined in definition 3 page 12.)

This means that the proposed bound is an upper bound for the gain of any coded

exposure camera, provided |v|∆t ď 1. We have
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Theorem 4.1 (A lower bound for the MSE of coded exposure cameras.)

Let uest, v, upx´ vtq and σ2
r be as in theorem 3.4. The MSE of any coded exposure

camera satisfies, as soon as |v|∆t ď 1,

MSEany flutterpαq ě|v|

»

—

–

µ

2π

ż π

´π

dξ

sinc2
´

ξ|v|∆t
2π

¯`σ2
r |v|

¨

˝

1

2π

ż π

´π

dξ

sinc
´

ξv∆t
2π

¯

˛

‚

2
fi

ffi

fl

. (27)

Proof See annex J page 29.

We also have

Corollary 4.2 (Upper bound of any coded exposure camera in terms of

MSE with respect to a snapshot)

Let uest, v, ∆t, upx´ vtq and σ2
r be as in theorem 4.1. We have

MSEoptimal snapshot

MSEany fluttterpαq
ď

MSEsnapshotp∆tq

MSEany fluttterpαq
ď

˜

1
2π

şπ

´π

ˇ

ˇ

ˇ

ˇ

ξ

2 sinp ξ2 q

ˇ

ˇ

ˇ

ˇ

2

dξ

¸

ˆ

1
2π

şπ

´π
dξ

sincp ξv∆t
2π q

˙2 . (28)

Proof See annex K page 32

Corollary 4.2 directly provides an upper bound for the gain, of the coded exposure

method, in terms of MSE with respect to a snapshot. Given our hypothesis this

bound is valid for any code as soon as |v|∆t ď 1. We now depict, in figure 2, the

upper bound of corollary 4.2 varying the quantity |v|∆t. Note that the quantity

|v|∆t is inversely proportional to the temporal frequency sampling of the exposure

code. Note that the curve is an upper bound. Thus, the actual gain of the coded

exposure method is below this curve.

We now illustrate numerically corollary 4.2 in figure 3 and table 1.

Table 1 This table provides the evolution of the RMSE varying the intensity of the mean photon
emission for a fixed additive (readout) noise variance. The additive (readout) noise is Gaussian with
zero mean and variance σ2

r “ 100. A mean photon count of k means that the camera collects k
photons if it integrates 1 second. The scene moves, w.l.o.g. at velocity v “ 1 pixel per second. The
snapshot integrates during 1 second. The exposure code used is the Agrawal, Raskar et al.
code [5, 6]. This code permits to collect more photons than the snapshot but the deconvolution
kernel is more severe than the deconvolution kernel of the snapshot.

Mean photon
count per second 36 64 100 225 625 1200 2500 4900 104

Readout noise
variance σ2

r 100 100 100 100 100 100 100 100 100
RMSE flutter 42.4 31.83 25.09 16.52 9.84 7.12 4.94 3.57 2.49

RMSE snapshot 38.75 25.40 18.44 10.88 5.96 4.22 2.89 2.09 1.47

5 Limitations and Discussion
We have proposed a mathematical model of coded exposure cameras. The model

includes the Poisson photon (shot) noise and any additive readout noise of finite

variance. The model is based on the Shannon-Whittaker framework that assumes
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Figure 2 This figure depicts the upper bound proved in corollary 4.2. The x-axis represents the
quantity |v|∆t that is inversely proportional to the frequency sampling of the exposure function.
The x-axis varies in the interval r0, 1s because corollary 4.2 page 17 is valid in this range. The
y-axis represents the upper bound of the gain, in terms of root mean square error, of the flutter
with respect to a snapshot with an exposure time ∆t “ 1

|v|
. Note that the curve is an upper

bound. Thus, the actual gain of the coded exposure method is below this curve.

band limited images. This formalism has allowed us to give closed formulae for

the Mean Square Error and Signal to Noise Ratio of coded exposure cameras. In

addition, we have given an explicit formula that gives an absolute upper bound for

the gain of any coded exposure cameras, in terms of Mean Square Error, with respect

to a snapshot. The calculations take into account the whole imaging chain that

includes Poisson photon (shot) noise, any additive (readout) noise of finite variance

in addition to the deconvolution. Our mathematical model doesn’t allow us to prove

that the coded exposure method allows for very large gains compared to an optimal

snapshot. This may be the result of an imperfect model of our mathematical coded

exposure camera. Indeed, our model assumes that the sensor does not saturate, that

the relative camera scene velocity is known, that the scene has finite energy and

is observed through an optical system that provides a cut off frequency, that the

additive (readout) noise has a finite variance and neglects the boundaries effects

due to the deconvolution. How the results change if one has to, e.g., estimate the

velocity is, to the best of our knowledge, an open question.
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Appendix A: Validity of the one dimensional framework
Without loss of generality, we express the coordinates of the two dimensional camera scene velocity vector using the

sampling axis grid as Galilean reference frame. Therefore, in this reference frame, the angle θ between the two

dimensional velocity vector and, e.g., the x-axis of the sampling grid is known. Consider the rotation re-sampling

operator of angle ´θ on L2
pR2
q. This rotation operator re-sample the image so that the motion is parallel to one

of the grid axis, e.g., the x-axis. The motion blur is a one dimensional phenomenon. Therefore, we can apply the

motion blur model to each line of the image parallel to the x-axis. Thus, from the mathematical viewpoint, the

motion blur is mathematically equivalent to a one dimensional convolution of a exposure function by the one

dimensional observed stochastic scene. Indeed, the whole convolution/deconvolution model is applied to each line of
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Figure 3 In this experiment, we assume that the scene s moves at velocity v “ 1 pixel per second.
The additive (readout) noise is Gaussian with a standard deviation equal to 10. We also assume
that the scene emits 625 photons per seconds (for other values see table 1 pagee 17). On the top
left panel: the observed image using the Agrawal, Raskar et al. code [5, 6]. On the top right panel:
the observed image for snapshot an exposure time of 1 second, i.e., the blur support is 1 pixel. On
the bottom left panel: the reconstructed image for the Agrawal, Raskar et al. code [5, 6]. On the
bottom right panel: the reconstructed image for the snapshot (blur support of 1 pixel). This
means that for the Agrawal, Raskar et al. code the blur has a support of 52 pixels. In other words,
this code permits to increase the exposure time by a factor 52 compared to the snapshot. The
RMSE using the Agrawal, Raskar et al. code is equal to 9.84. The RMSE of the snapshot is equal
to 5.96. We refer to table 1 for different values of mean photon count and additive (readout)
noise variance. This simulation is based on a variant of [29].
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the image parallel to the x-axis. In addition, the image rotation operator is isometric in L2
pR2
q. Therefore, the

calculations of MSE and SNR as if the images were one dimensional signals hold for two dimensional images by easy

expectation and variance calculations. This means that the theorems that we shall prove in the sequel are valid for

two dimensional images.

Appendix B: It is enough to study only r´π, πs band limited functions

This section justifies that it is enough to consider only r´π, πs band limited functions. As we have seen page 4, it is

enough to model the coded exposure method as if the images were one dimensional signals. For the sake of the

clarity, consider momentarily that the deterministic function f represents a sound. (This example is illustrative of

our situation because u defined in definition 1 page 9 is one dimensional.) Since we consider a sound f , we also

momentarily consider that the unit of the variable x in (xiv) is the second (denoted s). From the definition of f̂

(see (xiv)) we deduce that ξ is in Hz
2π (Hz denotes Hertz). If f̂ satisfies f̂pξq “ 0 for any ξ P R such that |ξ| ą π,

i.e., is r´π, πs band limited then the maximal frequency of f is π
2π in Hz. Therefore, from the Shannon-Whittaker

sampling theorem, f is well sampled with one sample every second.

Consider now an arbitrary function f and a positive real number c. If f is sampled with one sample every 1
c s then,

from the Shannon-Whittaker sampling theorem, one can recover any r´cπ, cπs band limited functions. This means

that f must not contain any frequency above πc
2π in Hz. In other words, by diminishing adequately the sampling

step one can recover any band limited function. Consider another time unit s
c , and a zoomed version of f defined

by f̃p¨q :“ f
`

¨
c

˘

. As we have seen, if we have access to the samples ¨ ¨ ¨ , f
´

´1
c

¯

, f
`

0
c

˘

, f
`

1
c

˘

, f
`

2
c

˘

, ¨ ¨ ¨ or

equivalently that we have access to ¨ ¨ ¨ , f̃p´1q, f̃p0q, f̃p1q, f̃p2q, ¨ ¨ ¨ then f and therefore f̃ are well sampled

from the Shannon-Whittaker theory point of view. One the one hand, f is r´cπ, cπs band limited with an arbitrary

positive constant c. This means that
ˆ̃
fpξq “ 0 as soon as |cξ| ą |cπ|. Therefore, from its definition,

ˆ̃
f is r´π, πs

band limited. In other words, f can be seen as a r´π, πs band limited function provided we use an adequate time

scale, i.e., use an adequate unit to measure the time. This time scale is given by the Shannon-Whittaker sampling

theorem and, implicitly, implies that ξ is measured in π
2πc Hz. Therefore, if we assume that the sampling system

respects the Shannon-Whittaker theorem we can without loss of generality assume that f is r´π, πs, where the

frequencies of f does not exceed π
2πˆ“sampling step in s” Hz.

In conclusion, we assume that the couple optical system/sensor array are designed according to the

Shannon-Whittaker sampling theory. Therefore, the adequate unit for the distances x P R is the distance between

pixel centers. With this unit of distance the signal is r´π, πs band limited, where the frequencies are measured in
π

2π“pixel length” Hz. Therefore, the physical frequency cut off is arbitrary. This means that the theory we shall develop

covers any band limited function, and any positive fill factors. Our hypothesis is that, the couple optical

system/sensor permits to obtain well sampled signal in the sense of the Shannon-Whittaker sampling theorem.

Mathematically, we can, w.l.o.g. assume that the cut off frequency comes from the PSF g as in definition 1 page 9

that is g is r´π, πs band limited.

Appendix C: Measurability

We need to prove that the samples are random variables, i.e., measurable functions (see, e.g., [53, p. 168], see

also [59, p. 44]). For any x P R let the random variables ηpxq be defined by ηpxq : pΩ, Tη,Pηq Ñ pR,BorpRqq
where, Ω :“ R is the sample space, BorpRq is the Borel sigma algebra on R, Tη is chosen as the smallest

sigma-algebra on Ω that makes ηpxq measurable i.e, Tη “ tηpkq´1B : B P BorpRqu. The Poisson random

variables are defined on Ppλq : pN, TN,PPoissonpλqq Ñ pR,BorpRqq, where TN is the smallest sigma-algebra (in

the sense of the inclusion) that contains N. Assume that at a pixel sensor centered at x P R we have
şt2
t1
upx´ vtqdt “ λ. From equation (10) (page 10) and for any x P R, obspxq is the sum of a Poisson and of an

additive random variables Ppλq ` ηpxq : pΩ, T ,Pq Ñ pR,BorpRqq. Therefore, obs is measurable with the

sigma-algebra T “ tpPpλq ` ηpkqq´1B : B P BorpRqu.

Appendix D: Proof of proposition 3.2 page 14

We first give a lemma and its corollary that will be useful for the proof and then give the construction details.

Lemma D.1 The deterministic function R Q x ÞÑ
´

1
|v|α

`

¨
v

˘

˚ u
¯

pxq is r´π, πs band limited,

uniformly bounded and for any x P R we have

ˆ

1

|v|
α

ˆ

1

v

˙

˚ u

˙

pxq “

ˆ

1

|v|
α

ˆ

¨

v

˙

˚ ũ

˙

pxq ` µ

ż

R
αptqdt. (29)

Proof See annex E page 23.

Corollary D.2 The deterministic function Z Q n ÞÑ var pobspnqq is uniformly bounded.

Proof The proof is immediate from proposition 3.1 and lemma D.1.

For any n P Z, consider the centered random variables

˜obspnq :“ obspnq ´ E pobspnqq . (30)
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The proof is in three steps. The step a) proves that, for any x P R, the series

`8
ÿ

n“´8

˜obspnqsincpx´ nq

converges in quadratic mean. The step b) proves that, for any x P R, the series

`8
ÿ

n“´8

E pobspnqq sincpx´ nq

converges to a deterministic constant. These two steps entail that the series in (17) (page 14) converges, for any

x P R, in quadratic mean. The step c) provides explicit formulae for the expectation and variance of (17). (These

calculations will be needed for the computation of MSE and SNR of the deconvolved crisp image. We now turn to

the proof of step a).)

Step a): From (30), for any n P Z, we have

Ep ˜obspnqq “ 0; var
´

˜obspnq
¯

“ E

ˆ

ˇ

ˇ

ˇ

˜obspnq
ˇ

ˇ

ˇ

2
˙

“ var pobspnqq . (31)

Consider the finite sums of independent random variables

õ
N
pxq :“

N
ÿ

´N

˜obspnqsincpx´ nq. (32)

Note that hereinafter, õN denotes the N -th term of the sequence defined in (32). For any N ěM and any x P R,

we have that

E

ˆ

ˇ

ˇ

ˇ
õ
N
pxq ´ õ

M
pxq

ˇ

ˇ

ˇ

2
˙

“
ÿ

Mă|n|ďN

E

ˆ

ˇ

ˇ

ˇ

˜obspnq
ˇ

ˇ

ˇ

2
˙

sinc
2
px´ nq. (33)

Therefore, combining (31) and (33) we deduce that

E

ˆ

ˇ

ˇ

ˇ
õ
N
pxq ´ õ

M
pxq

ˇ

ˇ

ˇ

2
˙

“
ÿ

Mă|n|ďN

var pobspnqq sinc
2
px´ nq, (34)

for any x P R. From corollary D.2 page 20 we have that supn varpobspnqq ă `8. Hence, from (34) we have

E

ˆ

ˇ

ˇ

ˇ
õ
N
pxq ´ õ

M
pxq

ˇ

ˇ

ˇ

2
˙

ď

ˆ

sup
n

var pobspnqq

˙

ÿ

Mă|n|ďN

sinc
2
px´ nq, (35)

for any x P R. The series
ř`8
n“´8 sinc2

px´ nq converges for any x P R. Consequently, from (35), for any x P R
and ε ą 0 we deduce that there exists M0 P N such that if M0 ďM ď N we have

E

ˆ

ˇ

ˇ

ˇ
õ
N
pxq ´ õ

M
pxq

ˇ

ˇ

ˇ

2
˙

ă ε. (36)

Therefore, from the Cauchy criterion (see, e.g., [60, thm 6.6.2 p. 194]) we deduce that, for any x P R, the series
˜obspxq “

ř`8
n“´8

˜obspnqsincpx´ nq converges in quadratic mean to a limit that we can therefore call ˜obspxq.

This concludes step a). We now turn to step b) that proves that, for any x P R, the series
ř`8
n“´8 E pobspnqq sincpx´ nq converges to a deterministic constant.

Step b): From proposition 3.1 page 13, for any x P R, we have

N
ÿ

n“´N

E pobspnqq sincpx´ nq “
N
ÿ

n“´N

ˆ

1

|v|
α

ˆ

¨

v

˙

˚ u

˙

pnqsincpx´ nq. (37)

Combining (29) page 20 and (37), we have that, for any x P R,

N
ÿ

n“´N

E pobspnqq sincpx´nq “
N
ÿ

n“´N

ˆ

1

|v|
α

ˆ

¨

v

˙

˚ ũ

˙

pnqsincpx´nq`µ

„
ż

R
αptqdt

 N
ÿ

n“´N

sincpx´nq. (38)
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We first deal with of the first term on the right hand side (RHS) of (38). From definition 1 page 9 we have

ũ P L1
pRq and ũ is r´π, πs band limited. From definition 3 page 12 α P L1

pRq. Therefore, from Young inequality

(see, e.g., [61, p. 525]) we have that
´

1
|v|α

`

¨
v

˘

˚ ũ
¯

P L1
pRq and is r´π, πs band limited since ũ is band limited

in this range. Hence, we deduce (see, e.g., [40, p. 354]) that, for any x P R, there holds

`8
ÿ

n“´8

ˆ

1

|v|
α

ˆ

¨

v

˙

˚ ũ

˙

pnqsincpx´ nq “

ˆ

1

|v|
α

ˆ

¨

v

˙

˚ ũ

˙

pxq. (39)

We now deal with of the second term on the RHS of (38). For any x P R, we have
ř`8
n“´8 sincpx´ nq “ 1.

Thus, combining (38) and (39) we have that, for any x P R, there holds

`8
ÿ

n“´8

Epobspnqqsincpx´ nq “

ˆ

1

|v|
α

ˆ

¨

v

˙

˚ ũ

˙

pxq ` µ

„
ż

R
αptqdt



. (40)

From definition 1 page 9, for any x P R, we have that upxq “ ũpxq ` µ. In addition,
ş

8

´8
1
|v|αp

t
v qµdt “ µ

ş

8

´8
αptqdt. Hence, from (40) we obtain that, for any x P R, there holds

`8
ÿ

n“´8

E pobspnqq sincpx´ nq “

ˆ

1

|v|
α

ˆ

¨

v

˙

˚ u

˙

pxq. (41)

This concludes step b).

We now combine the steps a) and b). Combining (17) and (30) page 20, the series

`8
ÿ

n“´8

obspnqsincpx´ nq “
`8
ÿ

n“´8

˜obspnqsincpx´ nq `
`8
ÿ

n“´8

E pobspnqq sincpx´ nq

converges, for any x P R, in quadratic mean to a limit that we can therefore call obspxq. Indeed, from step a), it is

the sum of the quadratic mean convergent series
řN
n“´N

˜obspnqsincpx´ nq and, from (41), of the deterministic

constant
´

1
|v|α

`

¨
v

˘

˚ u
¯

pxq. Consequently, we deduce that, for any x P R, the series defined in (17) page 14

converges in quadratic mean. Thus, for any x P R, we call obspxq this limit. We now turn to step c) that gives

explicit formulae for the expectation and variance of the quadratic mean convergent series obspxq defined in (17).

Step c): The convergence in quadratic mean implies the convergence of the two firsts moments (see [59, Ex 5.6

(a)-(b), p. 158]). Therefore, for any x P R we have

E

¨

˝

N
ÿ

n“´N

obspnqsincpx´ nq

˛

‚

NÑ8
ÝÝÝÝÑ E

˜

8
ÿ

n“´8

obspnqsincpx´ nq

¸

; (42)

var

¨

˝

N
ÿ

n“´N

obspnqsincpx´ nq

˛

‚

NÑ8
ÝÝÝÝÑ var

˜

8
ÿ

n“´8

obspnqsincpx´ nq

¸

. (43)

In addition, the linearity of the expectation and the independence of the observed samples obspnq imply that, for

any x P R,

E

¨

˝

N
ÿ

n“´N

obspnqsincpx´ nq

˛

‚“

N
ÿ

n“´N

Epobspnqqsincpx´ nq; (44)

var

¨

˝

N
ÿ

n“´N

obspnqsincpx´ nq

˛

‚“

N
ÿ

n“´N

varpobspnqqsinc
2
px´ nq. (45)

Therefore, combining (42) with (44) and the definition (17) page 14 of obspxq we have

N
ÿ

n“´N

Epobspnqqsincpx´ nq
NÑ8
ÝÝÝÝÑ Epobspxqq, (46)

for any x P R. Similarly, combining (43) with (45) and the definition (17) page 14 of obspxq we have that

N
ÿ

n“´N

varpobspnqqsincpx´ nq
NÑ8
ÝÝÝÝÑ varpobspxqq, (47)
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for any x P R. Combining (41) and (46) we have that, for any x P R,

Epobspxqq “

ˆ

1

|v|
α

ˆ

¨

v

˙

˚ u

˙

pxq.

Hence, we proved (18) (page 14). From proposition 3.1 page 13 and (47) we deduce that, for any x P R,

N
ÿ

n“´N

„ˆ

1

|v|
α

ˆ

¨

v

˙

˚ u

˙

pnq ` σ
2
r



sinc
2
px´ nq

NÑ8
ÝÝÝÝÑ varpobspxqq. (48)

Since, for any x P R, we have
ř`8
n“´8 sinc2

px´ nq “ 1, from (48) we deduce that, for any x P R,

varpobspxqq “
`8
ÿ

n“´8

„ˆ

1

|v|
α

ˆ

¨

v

˙

˚ u

˙

pnqsinc
2
px´ nq



` σ
2
r . (49)

Hence, we proved (19) (page 14). In addition, from corollary D.2 page 20, we deduce that, for any x P R,

varpobspxqq is finite. This concludes our proof.

Appendix E: Proof of lemma D.1 page 20
From its definition 1 page 9 the deterministic function ũ “ u´ µ is r´π, πs band limited. Therefore, we deduce

that the function R Q x ÞÑ
´

1
|v|α

`

¨
v

˘

˚ ũ
¯

pxq is r´π, πs band limited. In addition, since up¨q “ ũp¨q ` µ (see

definition 1) we deduce that, for any x P R, (29) holds. We now prove that u is uniformly bounded.

From the remark page 12 we have α P L1
pRq. Recall that from definition 1 we have ũ P L1

pRq. Hence, from

Young inequality (see, e.g., [61, p. 525]) we deduce that
´

1
|v|α

`

¨
v

˘

˚ ũ
¯

P L1
pRq. Therefore, by

Riemann-Lebesgue theorem (see e.g., [52, prop. 2.1]) we have that R Q ξ ÞÑ F
`

α
`

¨
v

˘

˚ ũ
˘

pξq is continuous. In

addition, from definition 1 we have that ũ is r´π, πs band limited. Therefore, R Q ξ ÞÑ F
´

1
|v|α

`

¨
v

˘

˚ ũ
¯

pξq is

compactly supported. Hence, we deduce that F
´

1
|v|α

`

¨
v

˘

˚ ũ
¯

P L1
pRq. Thus, by Riemann-Lebesgue theorem we

have that 1
|v|α

`

¨
v

˘

˚ ũ is uniformly bounded. It follows from (29) that 1
|v|α

`

¨
v

˘

˚ u is uniformly bounded. This

concludes our proof.

Appendix F: Proof of proposition 3.3 page 15
We first prove (21) (page 15) then (22) and (23).

We need to recur, again, to a convergence argument prove the validity of (21) (page 15). Therefore, for any x P R,

we set

u
N
estpxq : “

N
ÿ

n“´N

obspnqγpx´ nq. (50)

Note that hereinafter, uNestpxq denotes the N -th term of the sequence defined in (50). From definition 5 page 15,

we deduce that γ satisfies

γ
2
pxq ď

C

1` x2
@x P R. (51)

Hence, from (51) γ obeys the same decay as the sinc. Thus, we deduce that the rest of the proof follows exactly

the same arguments as for the construction of obspxq leading to proposition 3.2 page 14. Therefore, we obtain that,

for any x P R, uNestpxq “
řN
n“´N obspnqsincpx´ nq converges, in quadratic mean, to a limit that we can

therefore call uestpxq. This proves (21) (page 15). Quadratic mean convergence implies the convergence of the two

firsts moments (see [59, Ex 5.6 (a)-(b), p. 158]). Therefore, we again obtain that, for any x P R,

E
´

u
N
estpxq

¯

NÑ`8
ÝÝÝÝÝÑ E puestpxqq ; (52)

var
´

u
N
estpxq

¯

NÑ`8
ÝÝÝÝÝÑ var puestpxqq . (53)

It remains to prove (22) and (23) (page 15). To this aim the next lemma will be useful

Lemma F.1 (The inverse filter γ gives back an unbiased estimator of u.)

Let α and γ be as in definition 5 (page 15). For any x P R, we have

`8
ÿ

n“´8

ˆ

1

|v|
α

ˆ

¨

v

˙

˚ u

˙

pnqγpx´ nq “ upxq. (54)
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Proof The proof is in annex G page 24.

Combining proposition 3.1 page 13 and (50), for any x P R, we have

EpuNestpxqq “
N
ÿ

n“´N

„ˆ

1

|v|
α

ˆ

¨

v

˙

˚ u

˙

pnq



γpx´ nq. (55)

From lemma F.1 page 23 we deduce that, for any x P R,

EpuNestpxqq
NÑ8
ÝÝÝÝÑ upxq. (56)

Combining (52) and (56) we retrieve (22). The independence of obspnq implies that, for any x P R,

var
´

u
N
estpxq

¯

“
řN
´N var pobspnqq γ2

px´ nq. Hence, from (53), for any x P R, we have that

var puestpxqq “
ř`8
´8

var pobspnqq γ2
px´ nq. We now justify that var puestpxqq is finite for any x P R. From

corollary D.2 page 20, we have supn var pobspnqq ă `8. Thus, it remains to show that
ř`8
n“´8 γ

2
px´ nq is

finite for any x P R. From definition 5 we have that γ is r´π, πs band-limited. In addition, from (51) page 23 we

have that γ2
P L1

pRq. Hence, we deduce that γ2 is such that xγ2pξq is supported on r´2π, 2πs. Moreover, from

the definition of γ 5 (page 15) we have

xγ2p2πq “ pγ̂ ˚ γ̂q p2πq “

ż π

´π

1r´π,πs p2π ´ ξq

α̂pvξqα̂ pvp2π ´ ξqq
dξ. (57)

The integrand in (57) is non zero only on the zero Lebesgue measure set tπu. Therefore, we have xγ2p2πq “ 0.

Similarly, we have xγ2p´2πq “ 0. Thus, from the Poisson formula (see annex L page 34) we deduce that

`8
ÿ

n“´8

xγ2p2πnq “ xγ2p0q “
`8
ÿ

n“´8

γ
2
px´ nq “ }γ}

2
L2pRq ă `8, (58)

since, from remark page 15 we have that γ P L2
pRq. This concludes our proof.

Appendix G: Proof of lemma F.1 page 23
The proof is based on the Poisson summation formula (see annex L page 34) and on the following lemma

Lemma G.1 (Poisson like formula for the inverse filter γ.)

Let α and γ be as in definition 5 (page 15). For any x P R, we have
ř`8
n“´8 γpx´ nq “

1
ş

R αpxqdx
.

Proof The proof is in annex H page 27.

We now give the calculations details.

The proof is in three steps. The step a) proves that, for any x P R,

8
ÿ

n“´8

ˆ

1

|v|
α

ˆ

¨

v

˙

˚ ũ

˙

pnqγpx´ nq “

ˆˆ

1

|v|
α

ˆ

¨

v

˙

˚ ũ

˙

˚ γ

˙

pxq. (59)

The step b) proves that, for any x P R,

ˆˆ

1

|v|
α

ˆ

¨

v

˙

˚ ũ

˙

˚ γ

˙

pxq “ ũpxq. (60)

The step c) combines the steps a) and b) with lemma G.1 page 24 and (29) page 20 to deduce (54). We now turn

to step a).

Step a): For any x P R, we have

8
ÿ

n“´8

ˆ

1

|v|
α

ˆ

¨

v

˙

˚ ũ

˙

pnqγpx´ nq “

ż

`8

´8

ˆ

1

|v|
α

ˆ

¨

v

˙

˚ ũ

˙

pyqγpx´ yqdy. (61)

To justify (61), consider the intermediate function fx defined by

fxpyq “

ˆ

1

|v|
α

ˆ

¨

v

˙

˚ ũ

˙

pyqγpx´ yq for any y P R. (62)
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With the help of the function fx defined in (62), the left hand side of (61) rewrites as

8
ÿ

n“´8

ˆ

1

|v|
α

ˆ

¨

v

˙

˚ ũ

˙

pnqγpx´ nq “
8
ÿ

n“´8

fxpnq. (63)

Using the Poisson summation formula (see annex L page 34) we will prove that

8
ÿ

n“´8

fxpnq
?
“ f̂xp0q. (64)

Provided (64) holds, the equality in (61) follows from the definition of the Fourier transform f̂xp0q “
ş

R fxpyqdy.

Indeed, from the definition (62) of fx we have
ş

R fxpyqdy “
´

1
|v|α

`

¨
v

˘

˚ ũ
¯

pyqγpx´ yqdy which coincides with

the RHS of (61). Therefore, provided we prove that (64) holds the equality in (61) holds. We now turn to the

validity of (64).

Using the Poisson summation formula (see annex L page 34), we now justify (64). In order to apply the Poisson

formula we first need to prove that fx P L
1
pRq and band limited. From Cauchy-Schwartz inequality (see, e.g., [61,

p. 140]) we have

}fx}L1pRq ď

›

›

›

›

1

|v|
α

ˆ

¨

v

˙

˚ ũ

›

›

›

›

L2pRq

}γ}L2pRq. (65)

In addition, from Young inequality (see, e.g., [61, p. 525]), we have

›

›

›

›

1

|v|
α

ˆ

¨

v

˙

˚ ũ

›

›

›

›

L2pRq

ď

›

›

›

›

1

|v|
α

ˆ

¨

v

˙
›

›

›

›

L2pRq

}ũ}L1pRq. (66)

Therefore, combining (65) and (66) we have

}fx}L1pRq ď }α}L2pRq}ũ}L1pRq}γ}L2pRq. (67)

Furthermore, from definition 1 page 9 we have ũ P L1
pRq, from remark page 12 we have α P L2

pRq and from the

remark page 15 we have γ P L2
pRq. Therefore, from (67) we deduce that fx P L

1
pRq. From its definition 1 ũ is

band limited. Therefore, from its definition (62), we deduce that fx is band limited. This means that we can apply

the Poisson formula to fx. The Poisson summation formula (see annex L page 34) applied to fx entails

`8
ÿ

n“´8

fxpnq “
ÿ

m

f̂xp2mπq. (68)

Recall that we need to prove that (64) holds. Therefore, we need to prove that the term m “ 0 is the only non zero

term in the RHS of (68). From the definition (62) of fx we have

f̂xpξq “ ppα̂p¨vqˆ̃up¨qq ˚ γ̂p¨qe
´ixξ

qpξq, (69)

for any ξ P R. From definition 1 we have that u is r´π, πs band-limited. This implies that the function

R Q ξ ÞÑ α̂pξvqˆ̃upξq is r´π, πs band limited. From its definition 5 γ is also r´π, πs band-limited. Therefore,

from (69), we deduce that f̂xpξq “ 0 for all ξ P R such that |ξ| ą 2π. Thus, from (68) we deduce that

`8
ÿ

n“´8

fxpnq “ f̂xp0q ` f̂xp´2πq ` f̂xp2πq. (70)

Yet, to prove that (64) holds we need to show that f̂xp´2πq “ f̂xp2πq “ 0. We now show in details that

f̂xp2πq “ 0. From (69), f̂xpξq is given by a convolution (see (ix) for the definition). Thus, the evaluation of (69)

at ξ “ 2π yields

f̂xp2πq “

ż

R
α̂pξvqˆ̃upξqγ̂p2π ´ ξqe

´ixξ
dξ. (71)

Recall that, from definition 1 page 9, ũ is r´π, πs band-limited. Thus, from (71) we deduce that

fxp2πq “

ż π

´π

α̂pξvqˆ̃upξqγ̂p2π ´ ξqe
´ixξ

dξ. (72)
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The integrand in (72) is non zero only on the zero Lebesque measure set tπu. Hence, we deduce that f̂xp2πq “ 0.

Similarly we obtain f̂xp´2πq “ 0. Thus, we proved that (64) holds, i.e., we can remove the question mark in (64).

Consequently, we have that (61) holds. Furthermore, from the definition (ix) of the convolution we have

ż

`8

´8

ˆ

1

|v|
α

ˆ

¨

v

˙

˚ ũ

˙

pyqγpx´ yqdy “

ˆˆ

1

|v|
α

ˆ

¨

v

˙

˚ ũ

˙

˚ γ

˙

pxq, (73)

for any x P R. Hence, combining (61) and (73), for any x P R, we obtain (59) page 24. This concludes the step a).

We now turn to step b).

Step b): From the definitions (xiv) of the Fourier and the inverse Fourier transforms, for any x P R, we have

ˆˆ

1

|v|
α

ˆ

¨

v

˙

˚ ũ

˙

˚ γ

˙

pxq “ F´1

ˆ

F
ˆ

1

|v|
α

ˆ

¨

v

˙

˚ ũ

˙

pξqFpγqpξq
˙

pxq. (74)

Since F
´

1
|v|α

`

¨
v

˘

¯

“ α̂pξvq, from (74) we have

ˆˆ

1

|v|
α

ˆ

¨

v

˙

˚ ũ

˙

˚ γ

˙

pxq “ F´1
´

α̂pξvqˆ̃upξqγ̂pξq
¯

pxq, (75)

for any x P R. From the definition of the inverse Fourier transform (xiv) and (75) we deduce that, for any x P R,

ˆˆ

1

|v|
α

ˆ

¨

v

˙

˚ ũ

˙

˚ γ

˙

pxq “
1

2π

ż

`8

´8

α̂pξvqˆ̃upξqγ̂pξqe
ixξ
dξ. (76)

From definition 1 page 9 we have that ũ is r´π, πs band limited. Consequently, from (76) we deduce that, for any

x P R,

ˆˆ

1

|v|
α

ˆ

¨

v

˙

˚ ũ

˙

˚ γ

˙

pxq “
1

2π

ż

`π

´π

α̂pξvqˆ̃upξqγ̂pξqe
ixξ
dξ. (77)

From the definition of γ (20) page 15 we have that γ̂pξq “ 1
α̂pξvq for any ξ P r´π, πs. Hence, we deduce that, for

any x P R,

ˆˆ

1

|v|
α

ˆ

¨

v

˙

˚ ũ

˙

˚ γ

˙

pxq “
1

2π

ż π

´π

ˆ̃upξqe
ixξ
dξ. (78)

From definition 1 page 9 we have that ũ is r´π, πs band limited. This implies that, for any x P R,

1

2π

ż

R

ˆ̃upξqe
ixξ
dξ “ ũpxq, (79)

where the last equality is justified by the definition of the inverse Fourier transform (xiv). Thus, combining (78)

and (79) we obtain (60) page 24. This completes the step b). We now turn to the step c) that completes our proof.

Step c): Combining (59) and (60) page 24, for any x P R, we have

8
ÿ

n“´8

ˆ

1

|v|
α

ˆ

¨

v

˙

˚ ũ

˙

pnqγpx´ nq “ ũpxq. (80)

From lemma G.1 page 24 we deduce that, for any x P R,

µ

„
ż

R
αptqdt

 `8
ÿ

n“´8

γpx´ nq “ µ. (81)

Therefore, combining (29) page 20, (80) and (81) we deduce that, for any x P R,

8
ÿ

n“´8

ˆ

1

|v|
α

ˆ

¨

v

˙

˚ u

˙

pnqγpx´ nq “ ũpxq ` µ. (82)

From the definition of u 1 page 9 we have up¨q “ ũp¨q ` µ. Thus, from (82) we obtain that, for any x P R, (54)

page 23 holds. This concludes our proof.
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Appendix H: Proof of lemma G.1 page 24

Consider the 2π periodic function g : R Ñ C defined as

gpξq :“ γ̂pξq for any ξ P r´π, πq (83)

and the Dirichlet kernel Dnpξq “
1

2π

řn
k“´n e

ikξ. From its definition 3 page 12 we have α P L1
pRq. Therefore,

by Riemann-Lebesque (see e.g., [52, prop. 2.1]) we have that α̂ is continuous. From definition 5 (page 15)

and (83), we have gpξq “ γpξq “ 1
α̂pξvq for any ξ P r´π, πs. Since α̂pξvq ‰ 0 for any ξ P r´π, πs, we obtain

that g is continuous on r´π, πs and that g P L1
p´π, πq. Since g P L1

p´π, πq it has a Fourier series

decomposition (see (xviii)). From the Fourier series decomposition we have

g ˚
per

Dnpξq :“
1

2π

ż π

´π

gpyqDnpξ ´ yqdy “
n
ÿ

k“´n

ckpgqe
ikξ

(84)

where, for any k P Z,

ckpgq “
1

2π

ż π

´π

gpξqe
´ikξ

dx. (85)

We shall now pass to the limit nÑ `8 in (84). The Fourier series theory entails that

g ˚
per

Dnpξq :“ 1
2π

şπ
´π

gpyqDnpξ ´ yqdy
nÑ`8
ÝÝÝÝÝÑ gpξq for any ξ P R where g is continuous at ξ. Therefore, we

obtain that

gpξq “
`8
ÿ

k“´8

ckpgqe
ikξ
, (86)

for any ξ P R where g is continuous at ξ. We have that g is continuous at ξ “ 0. Therefore, from (86) we obtain

that

gp0q “
`8
ÿ

k“´8

ckpgq. (87)

Hence, combining (83), (85) and (87) we deduce that

gp0q “ γ̂p0q “
`8
ÿ

k“´8

1

2π

ż π

´π

γ̂pξqe
´ikξ

dξ.

Since, from its definition 5 (page 15), γ is r´π, πs band limited we obtain that

γ̂p0q “
`8
ÿ

k“´8

1

2π

ż

R
γ̂pξqe

´ikξ
dξ. (88)

In addition, from (51) (page 23) we have γ P L2
pRq. From (xiv), for any k P Z, we have

1

2π

ż

R
γ̂pξqe

´ikξ
dξ “ γp´kq. (89)

Hence, combining (88) and (89) we deduce that

γ̂p0q “

ż

R
γpyqdy “

`8
ÿ

k“´8

γp´kq. (90)

This applies for any shift x P R of γ. Hence, from (90) we deduce that

γ̂p0q “

ż

R
γpyqdy “

ż

R
γpx´ yqdy “

`8
ÿ

k“´8

γpx´ kq, (91)
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for any x P R. In addition, from definition 5, we have

γ̂p0q “
1

α̂p0q
“

1
ş

R αpxqdx
. (92)

Thus, combining (92) and (91) we deduce that
ř`8
k“´8 γpx´ kq “

1
ş

R αptqdt
, for any x P R. This concludes our

proof.

Appendix I: Proof of theorem 3.4 page 15
In order to provide closed formulae for the MSE and SNR we first evaluate varpuestpxqq and then the limit of
1

2R

şR
´R

varpuestpxqqdx when RÑ `8.

Combining (14) page 13 and (23) page 15, for any x P R, we have

varpuestpxqq “
8
ÿ

n“´8

„ˆˆ

1

|v|
α

ˆ

¨

v

˙

˚ u

˙

pnq ` σ
2
r

˙

pγpx´ nqq
2



. (93)

Therefore, from (93) we deduce that, for any x P R,

varpuestpxqq “
8
ÿ

n“´8

„ˆ

1

|v|
α

ˆ

¨

v

˙

˚ u

˙

pnqpγpx´ nqq
2



` σ
2
r

8
ÿ

n“´8

pγpx´ nqq
2
. (94)

From definition 3 page 12, we have that α is non negative. Therefore, }α}L1pRq “
ş

R αptqdt. Hence,

combining (29) page 20 and (94), for any x P R, we have

varpuestpxqq “
8
ÿ

n“´8

„ˆ

1

|v|
α

ˆ

¨

v

˙

˚ ũ

˙

pnqpγpx´ nqq
2



`pµ}α}L1pRq`σ
2
rq

8
ÿ

n“´8

pγpx´nqq
2
. (95)

Hence, combining (58) page 24 and (95), for any x P R, we have

varpuestpxqq “
8
ÿ

n“´8

„ˆ

1

|v|
α

ˆ

¨

v

˙

˚ ũ

˙

pnqpγpx´ nqq
2



` pµ}α}L1pRq ` σ
2
rq}γ}

2
L2pRq. (96)

Moreover, from the definition 5 page 15 and Plancherel identity (140) we have

}γ}
2
L2pRq “

1

2π

ż

`8

´8

1

|α̂pξvq|2
1r´π,πspξqdξ. (97)

Thus, combining (96) and (97) we deduce that, for any x P R,

varpuestpxqq“
8
ÿ

n“´8

„ˆ

1

|v|
α

ˆ

¨

v

˙

˚ ũ

˙

pnqpγpx´ nqq
2



`
µ}α}L1pRq ` σ

2
r

2π

ż

R

1

|α̂pξvq|2
1r´π,πspξqdξ. (98)

From proposition 3.3 page 15, for any x P R, we have

Epuestpxqq “ upxq. (99)

Therefore, for any x P R, we have

E
´

|uestpxq ´ upxq|
2
¯

“ varpuestpxqq. (100)

Hence, combining (98) and (100), for any x P R, we have

E
´

|uestpxq ´ upxq|
2
¯

“

8
ÿ

n“´8

„ˆ

1

|v|
α

ˆ

¨

v

˙

˚ ũ

˙

pnqpγpx´ nqq
2



`
µ}α̂}L1pRq ` σ

2
r

2π

ż

R

1r´π,πspξqdξ

|α̂pξvq|2
. (101)

With the help of (101), we now calculate the limit of 1
2R

şR
´R

varpuestpxqqdx when RÑ `8. The function

R Q x ÞÑ
ř8
n“´8

”´

1
|v|α

2
`

¨
v

˘

˚ ũ
¯

pnqpγpx´ nqq2
ı

belongs to L1
pRq. Indeed, we have

ż

`8

´8

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

n“´8

„̂

1

|v|
α

ˆ

¨

v

˙

˚ũ

˙

pnqpγpx´ nqq
2



ˇ

ˇ

ˇ

ˇ

ˇ

dx ď

ż

`8

´8

8
ÿ

n“´8

„ˇ

ˇ

ˇ

ˇ

ˆ

1

|v|
α

ˆ

¨

v

˙

˚ũ

˙

pnq

ˇ

ˇ

ˇ

ˇ

pγpx´ nqq
2



dx. (102)
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Hence, it follows from (102) and Fubini theorem (see, e.g., [53, p. 196]) that

ż

`8

´8

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

n“´8

„ˆ

1

|v|
α

ˆ

¨

v

˙

˚ũ

˙

pnqpγpx´ nqq
2



ˇ

ˇ

ˇ

ˇ

ˇ

dx ď
8
ÿ

n“´8

„ˇ

ˇ

ˇ

ˇ

ˆ

1

|v|
α

ˆ

¨

v

˙

˚ũ

˙

pnq

ˇ

ˇ

ˇ

ˇ

ż

`8

´8

pγpx´ nqq
2
dx



. (103)

For any n P Z, we have

ż

`8

´8

pγpx´ nqq
2
dx “ }γ}

2
L2pRq.

Therefore, from (103) we deduce that

ż

`8

´8

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

n“´8

„ˆ

1

|v|
α

ˆ

¨

v

˙

˚ ũ

˙

pnqpγpx´ nqq
2



ˇ

ˇ

ˇ

ˇ

ˇ

dx ď }γ}
2
L2pRq

8
ÿ

n“´8

ˇ

ˇ

ˇ

ˇ

ˆ

1

|v|
α

ˆ

¨

v

˙

˚ ũ

˙

pnq

ˇ

ˇ

ˇ

ˇ

. (104)

From definition 1 page 9 we have ũ P L1
pRq and ũ is r´π, πs band limited. From definition 3 page 12 α P L1

pRq.
Therefore, from the Poisson summation formula (see annex L page 34) we obtain that

8
ÿ

n“´8

ˇ

ˇ

ˇ

ˇ

ˆ

1

|v|
α

ˆ

¨

v

˙

˚ ũ

˙

pnq

ˇ

ˇ

ˇ

ˇ

“

›

›

›

›

1

|v|
α

ˆ

¨

v

˙

˚ ũ

›

›

›

›

L1pRq

ă `8. (105)

Indeed, from Young inequality (see, e.g., [61, p. 525]) we have that
´

1
|v|α

`

¨
v

˘

˚ ũ
¯

P L1
pRq. In addition,

from (51) page 23 γ P L2
pRq. Thus, combining (104) and (105) we deduce that

ż

`8

´8

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

n“´8

„ˆ

1

|v|
α

ˆ

¨

v

˙

˚ ũ

˙

pnqpγpx´ nqq
2



ˇ

ˇ

ˇ

ˇ

ˇ

dx ă `8.

and therefore obtain

1

2R

ż R

´R

8
ÿ

n“´8

„ˆ

1

|v|
α

ˆ

¨

v

˙

˚ ũ

˙

pnqpγpx´ nqq
2



dx
RÑ`8
ÝÝÝÝÝÑ 0. (106)

For any R ą 0, from (98) we have that

1

2R

ż R

´R

varpuestpxqqdx “
1

2R

˜

ż R

´R

8
ÿ

n“´8

„ˆ

1

|v|
α

ˆ

¨

v

˙

˚ ũ

˙

pnqpγpx´ nqq
2



dx

¸

(107)

`
µ}α}L1pRq ` σ

2
r

2π

ż

R

1

|α̂pξvq|2
1r´π,πspξqdξ. (108)

Combining (106) and (107)-(108), we obtain

1

2R

ż R

´R

varpuestpxqqdx
RÑ8
ÝÝÝÝÑ

µ}α}L1pRq ` σ
2
r

2π

ż

R

1

|α̂pξvq|2
1r´π,πspξqdξ. (109)

Hence, combining (100) page 28 and (109), we deduce that, for any x P R,

1

2R

ż R

´R

E
´

|uestpxq ´ upxq|
2
¯

dx
RÑ8
ÝÝÝÝÑ

µ}α}L1pRq ` σ
2
r

2π

ż

R

1

|α̂pξvq|2
1r´π,πspξqdξ

Therefore, (24) is proved. The proof of (25) follows from the definition of u (definition 1 page 9), (22) (page 15)

and the above equation. This concludes our proof.

Appendix J: Proof of theorem 4.1 page 17

From theorem 3.4 page 15 we have

MSEcoded exposurepαq “

ż π

´π

µ}α}L1pRq ` σ
2
r

|α̂pξvq|2
dλpξq

2π
, (110)
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where dλ denotes the Lebesgue measure on pR,BpRqq. Let S :“
 

α of the form (12), α P L1
pRq, 0 ď α ď 1

(

.

From definition 3 page 12, we deduce that optimizing the coded exposure method boils down to finding α P S that

minimizes (110). We wish to prove that (27) page 17 holds true. Our proof is in 4 steps. Step a) proves that, for

any α P S, (110) is bounded from below, namely that there holds

inf
αPS
pMSEcoded exposurepαqqě inf

pαkqP`
2pZq,αkPr´1,1s

¨

˝

ż π|v|∆t

´π|v|∆t

µ∆t
ř

kPZ |αk|
2
` σ2

r

|v|∆t3sinc2
´

ξ
2π

¯

ˇ

ˇ

ř

kPZ αke
´ikξ

ˇ

ˇ

2

dλpξq

2π

˛

‚. (111)

Step b) proves that as soon as |v|∆t ď 1 the RHS of (111) can be rewritten in terms of Fourier series and that

there holds

inf
αPS
pMSEcoded exposurepαqqě inf

fPL2p´π,πq,´1ďfď1

¨

˝

ż π|v|∆t

´π|v|∆t

µ∆t}f}2
L2p´π,πq

` σ2
r

|v|∆t3sinc2
´

ξ
2π

¯

|fp´ξq|2

dλpξq

2π

˛

‚. (112)

Step c) proves that the RHS of (112) is attained by constructing an adequate f that allows to show that

inf
αPS
pMSEcoded exposurepαqqě

µ∆tC2

›

›

›

›

1
sincp ¨2π q

1r´π|v|∆t,π|v|∆tsp¨q

›

›

›

›

2

L2p´π,πq

` σ2
r

∆t2C2
. (113)

Step d) proves that (27) holds by giving a closed form of the RHS of (113), and giving a formula for the constant

C. We now turn to step a).

Step a): From its definition 3 page 12 we have that αptq P r0, 1s for any t P R and that α P L1
pRq. Hence, we

deduce that α2
ď α and that

ş

R |αpxq|dx ě
ş

R |αpxq|
2dx. Hence, from (110) and the definition of S, we obtain

that

inf
S
pMSEcoded exposurepαqq ě inf

S

¨

˝

ż π

´π

µ}α}2
L2pRq

` σ2
r

|α̂pξvq|2
dλpξq

2π

˛

‚. (114)

In addition, the form of α given in definition 3 (page 12) and the fact that `1pZq Ă `2pZq, imply that

S Ă
 

α of the form (12), α P L2
pRq, 0 ď α ď 1

(

. Thus, from (114) we deduce that

inf
S

¨

˝

ż π

´π

µ}α}2
L2pRq

` σ2
r

|α̂pξvq|2
dλpξq

2π

˛

‚ě inf
α of the form (12), αPL2pRq, 0ďαď1

¨

˝

ż π

´π

µ}α}2
L2pRq

` σ2
r

|α̂pξvq|2
dλpξq

2π

˛

‚. (115)

Consider the set T :“
 

α of the form (12), α P L2
pRq,´1 ď α ď 1

(

. We have that

S Ă
 

α of the form (12), α P L2
pRq, 0 ď α ď 1

(

Ă T . Therefore, combining (114) and (115) we deduce that

inf
αPS

pMSEcoded exposurepαqq ě inf
T

¨

˝

ż π

´π

µ}α}2
L2pRq

` σ2
r

|α̂pξvq|2
dλpξq

2π

˛

‚. (116)

Our goal is to evaluate the RSH of the above equation. From definition 3 page 12, by an easy calculation of a

Fourier transform (xiv), we deduce that, for any ξ P R, there holds

|α̂pξq|
2
“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

∆tsinc

ˆ

ξ∆t

2π

˙ `8
ÿ

k“´8

αke
´ikξ∆t

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

and }α}2
L2pRq “ ∆t

`8
ÿ

k“´8

α
2
k. (117)

Hence, combining (116) and (117) we deduce that

inf
αPS

pMSEcoded exposurepαqqě inf
pαkqP`

2pZq, αkPr´1,1s

¨

˝

ż π

´π

µ∆t
ř

kPZ |αk|
2
` σ2

r

∆t2sinc2
´

ξv∆t
2π

¯

ˇ

ˇ

ř

kPZ αke
´ikξv∆t

ˇ

ˇ

2

dλpξq

2π

˛

‚. (118)

Thus, by a change of variable, from (118) we deduce that

inf
αPS
pMSEcoded exposurepαqqě inf

pαkqP`
2pZq, αkPr´1,1s

¨

˝

ż π|v|∆t

´π|v|∆t

µ∆t
ř

kPZ |αk|
2
` σ2

r

|v|∆t3sinc2
´

ξ
2π

¯

ˇ

ˇ

ř

kPZ αke
´ikξ

ˇ

ˇ

2

dλpξq

2π

˛

‚. (119)
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This concludes step 1. We now turn to step b).

Step b): Since, by assumption, we have |v|∆t ď 1 we deduce that r´π|v|∆t, π|v|∆ts Ă r´π, πs. (Note that

sinc2
´

ξ
2π

¯

‰ 0 for any ξ P r´π, πs.) As soon as |v|∆t ď 1, the term
ř

kPZ αke
´ikξ that appears in the RHS

of (119) is the Fourier series (xviii) synthesis formula of some f P L2
p´π, πq function evaluated at ´ξ. In other

words, as soon as |v|∆t ď 1, αk “ ckpfq for any k P Z, for some f P L2
p´π, πq. From Parseval identity (xviii)

we have
ř

k |αk|
2
“ }f}2

L2p´π,πq
. Thus, form (119) and Riesz-Fischer theorem (see, e.g. [62, p. 27]), as soon as

|v|∆t ď 1, we obtain

inf
αPS

pMSEcoded exposurepαqq ě inf
U

¨

˝

ż π|v|∆t

´π|v|∆t

µ∆t}f}2
L2p´π,πq

` σ2
r

|v|∆t3sinc2
´

ξ
2π

¯

|fp´ξq|2

dλpξq

2π

˛

‚, (120)

where U :“ tf P L2
p´π, πq,´1 ď f ď 1u. This concludes step b). We now turn to step c).

Step c): On the one hand, αk “ ckpfq P R for any k P Z and the Hermitian symmetry implies that

|fp´ξq| “ |fpξq|. On the other hand, the function p0,`8q Q x ÞÑ 1
x is strictly convex. In addition, we have

dλpr´π,πsq
2π “ 1. Thus, by Jensen inequality (see, e.g., [59, p. 232]), from (120) we obtain that

inf
fPU

¨

˝

1

2π

ż π|v|∆t

´π|v|∆t

µ∆t}f}2
L2p´π,πq

` σ2
r

|v|∆t3sinc2
´

ξ
2π

¯

|fp´ξq|2

dλpξq

2π

˛

‚ě inf
fPU

¨

˝

µ∆t}f}2
L2p´π,πq

` σ2
r

şπ|v|∆t

´π|v|∆t
|v|∆t3sinc2

´

ξ
2π

¯

|fpξq|2
dλpξq

2π

˛

‚. (121)

The strict convexity of p0,`8q Q x ÞÑ 1
x implies that the equality case in (121) is realized when

ξ ÞÑ sinc2
´

ξ
2π

¯

|fpξq|2 is constant say C ą 0 on the interval r´π|v|∆t, π|v|∆ts. We choose to set

fpξq :“ C

sinc
´

ξ
2π

¯ for any ξ P r´π|v|∆t, π|v|∆ts. It remains to extend this f on r´π, πszr´π|v|∆t, π|v|∆ts,

and discuss the value of C, to give a complete definition of an f P L2
pRq that provides, through its Fourier series,

a lower bound for the MSE of any coded exposure method. From the term }f}2
L2p´π,πq

in (121) it is easy to see

that we need to extend f by zero on r´π, πszr´π|v|∆t, π|v|∆ts. This yield to the definition of f P L2
p´π, πq of

the form

fpξq :“
C

sinc
´

ξ
2π

¯1r´π|v|∆t,π|v|∆tspξq, (122)

where C is a positive constant. Being real and even, this f therefore entails that the ak “ ckpfq are real. The f

given in (122) provide the equality case in (121). Thus, combining (120) and the equality case in (121) given by

the definition of f (122) we deduce that, as soon as |v|∆t ď 1, there holds

inf
αPS
pMSEcoded exposurepαqqě

ż π|v|∆t

´π|v|∆t

µ∆tC2

›

›

›

›

1
sincp ¨2π q

1r´π|v|∆t,π|v|∆tsp¨q

›

›

›

›

2

L2p´π,πq

` σ2
r

|v|∆t3C2

dλpξq

2π
, (123)

where C is a positive constant. It remains to set the value of C in (122) so that f P U , i.e., to ensure that

|αk| ď 1 (recall definition 3 page 12). From (123) it is easy to see that we would like C as large as possible, while

|ckpfq| ď 1 so that f P U . From their definition (xviii) we have that |ckpfq| ď
1

2π

şπ|v|∆t

´π|v|∆t
C

sinc
´

ξ
2π

¯ qdξ.

Therefore, we deduce that we need C ď 1
1

2π

şπ|v|∆t
´π|v|∆t

C

sinc
´

ξ
2π

¯ dξ
in order to ensure that |ckpfq| ď 1 for any

k P Z. Therefore, we deduce that the choice

C :“
1

|v|∆t
2π

şπ
´π

1

sinc
´

ξv∆t
2π

¯dξ
(124)

in the definition of f is enough to provide a lower bound to the MSE of coded exposure cameras. That is this choice

for f realizes in infinimum of the RHS of (120). In other words, from (123) we deduce that, as soon as |v|∆t ď 1,

inf
αPS
pMSEcoded exposurepαqqě

ż π|v|∆t

´π|v|∆t

µ∆tC2

›

›

›

›

1
sincp ¨2π q

1r´π|v|∆t,π|v|∆tsp¨q

›

›

›

›

2

L2p´π,πq

` σ2
r

|v|∆t3C2

dλpξq

2π
, (125)

with C given by (124). From (125), as soon as |v|∆t ď 1, we obtain

inf
αPS
pMSEcoded exposurepαqqě

µ∆tC2

›

›

›

›

1
sincp ¨2π q

1r´π|v|∆t,π|v|∆tsp¨q

›

›

›

›

2

L2p´π,πq

` σ2
r

∆t2C2
, (126)
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This concludes step c). We now turn to step d).

Step d): It remains to give a closed form for (126). On the one hand, we have

µ∆tC2

›

›

›

›

1
sincp ¨2π q

1r´π|v|∆t,π|v|∆tsp¨q

›

›

›

›

2

L2p´π,πq

∆t2C2
“

µ

2π∆t

ż π|v|∆t

´π|v|∆t

1

sinc2
´

ξ
2π

¯dξ (127)

“
µ|v|

2π

ż π

´π

1

sinc2
´

ξ|v|∆t
2π

¯dξ. (128)

On the other hand, from (124), we have

σ2
r

∆t2C2
“

σ2
r

∆t2

¨

˝

|v|∆t

2π

ż π

´π

1

sinc
´

ξv∆t
2π

¯dξ

˛

‚

2

“ σ
2
r |v|

2

¨

˝

1

2π

ż π

´π

1

sinc
´

ξv∆t
2π

¯dξ

˛

‚

2

. (129)

Thus, combining (127)-(128) and (129) we deduce that

µ∆tC2

›

›

›

›

1
sincp ¨2π q`σ

2
r

1r´π|v|∆t,π|v|∆tsp¨q

›

›

›

›

2

L2p´π,πq

` σ2
r

∆t2C2

“
µ|v|

2π

ż π

´π

1

sinc2
´

ξ|v|∆t
2π

¯dξ ` σ
2
r |v|

2

¨

˝

1

2π

ż π

´π

1

sinc
´

ξv∆t
2π

¯dξ

˛

‚

2

.

and therefore

µ∆tC2

›

›

›

›

1
sincp ¨2π q`σ

2
r

1r´π|v|∆t,π|v|∆tsp¨q

›

›

›

›

2

L2p´π,πq

` σ2
r

∆t2C2
(130)

“|v|

»

–

µ

2π

ż π

´π

dξ

sinc2
´

ξ|v|∆t
2π

¯`σ
2
r |v|

¨

˝

1

2π

ż π

´π

dξ

sinc
´

ξv∆t
2π

¯

˛

‚

2fi

fl . (131)

Combining (126) and (130)-(131) we obtain (27) (page 17) and conclude our proof.

Appendix K: Proof of corollary 4.2 page 17

In order to evaluate the maximal theoretical “gain” of coded exposure camera we need to compare the bound in

terms of MSE given in theorem 4.1 namely (27) page 17 with the MSE of a snapshot. Therefore, the proof is in two

steps. The first step prove an upper bound for the MSE of the optimal snapshot. Step b) calculates the ratio of

these MSE and prove (28) (page 17). We now turn to step a).

Step a): From corollary 3.5 (page 16) and the definition of the sinc function (xvi) we have

MSEsnapshotp∆tq “
1

2π

ż π

´π

µ∆t` σ2
r

ˇ

ˇ

ˇ
∆tsinc

´

ξv∆t
2π

¯ˇ

ˇ

ˇ

2
dξ “

1

2π

ż π

´π

µ∆t` σ2
r

ˇ

ˇ

ˇ

ˇ

ˇ

∆t
sin

´

ξv∆t
2

¯

ξv∆t
2

ˇ

ˇ

ˇ

ˇ

ˇ

2
dξ.

Hence, we deduce

MSEsnapshotp∆tq “
1

2π

ż π

´π

µ∆t` σ2
r

ˇ

ˇ

ˇ

ˇ

ˇ

2
sin

´

ξv∆t
2

¯

ξv

ˇ

ˇ

ˇ

ˇ

ˇ

2
dξ “

µ∆t` σ2
r

2π

ż π

´π

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ξv

2 sin
´

ξv∆t
2

¯

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

dξ.

and therefore obtain

MSEsnapshotp∆tq “ |v|
µ|v|∆t` |v|σ2

r

2π

ż π

´π

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ξ

2 sin
´

ξv∆t
2

¯

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

dξ. (132)
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Thus, combining (26) page 16 and (132), we deduce that the MSE of a snapshot with exposure time equal to

∆t :“ 1
|v| (this implies that support of the blur kernel is 1 pixel) satisfies

MSEoptimal snapshot ď MSEsnapshotp∆t :“
1

|v|
q “ |v|

´

µ` |v|σ
2
r

¯ 1

2π

ż π

´π

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ξ

2 sin
´

ξ
2

¯

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

dξ. (133)

Indeed, the optimal snapshot, if it exists has, by definition, a MSE lower or equal to the one in equation (133). In

other words, (133) provides an upper bound for the MSE of the optimal snapshot. We now compare the MSE of the

coded exposure method given by theorem 4.1 namely equation (27) page 17 and the MSE of this snapshot in step

b).

Step b): From theorem 4.1 (page 17), as soon as |v|∆t ă 1 we have

MSEany fluttterpαq ě |v|

»

–

µ

2π

ż π

´π

dξ

sinc2
´

ξ|v|∆t
2π

¯`σ
2
r |v|

¨

˝

1

2π

ż π

´π

dξ

sinc
´

ξv∆t
2π

¯

˛

‚

2fi

fl (134)

ě |v|

¨

˝

1

2π

ż π

´π

dξ

sinc
´

ξv∆t
2π

¯

˛

‚

2

»

—

—

—

—

–

µ

1
2π

şπ
´π

dξ

sinc2
ˆ

ξ|v|∆t
2π

˙

˜

1
2π

şπ
´π

dξ

sinc
´

ξv∆t
2π

¯

¸2
` σ

2
r |v|

fi

ffi

ffi

ffi

ffi

fl

. (135)

In addition, by Jensen inequality (see, e.g., [59, p. 232]), we have

¨

˝

1

2π

ż π

´π

dξ

sinc
´

ξv∆t
2π

¯

˛

‚

2

ď
1

2π

ż π

´π

dξ

sinc2
´

ξ|v|∆t
2π

¯ .

Hence, we deduce that

1
2π

şπ
´π

dξ

sinc2
ˆ

ξ|v|∆t
2π

˙

˜

1
2π

şπ
´π

dξ

sinc
´

ξv∆t
2π

¯

¸2
ě 1. (136)

Thus, combining (134)-(135) and (136) we deduce that

MSEany fluttterpαq ě|v|

¨

˝

1

2π

ż π

´π

dξ

sinc
´

ξv∆t
2π

¯

˛

‚

2
”

µ` σ
2
r |v|

ı

.

and therefore obtain

1

MSEany fluttterpαq
ď

1

|v|

˜

1
2π

şπ
´π

dξ

sinc
´

ξv∆t
2π

¯

¸2

rµ` σ2
r |v|s

. (137)

Thus, combining (133) and (137) we obtain

MSEoptimal snapshot

MSEany fluttterpαq
ď

MSEsnapshotp∆t :“ 1
|v| q

MSEany fluttterpαq
ď

|v|

˜

1
2π

şπ
´π

ˇ

ˇ

ˇ

ˇ

ˇ

ξ

2 sin
´

ξ
2

¯

ˇ

ˇ

ˇ

ˇ

ˇ

2

dξ

¸

“

µ` |v|σ2
r

‰

|v|

˜

1
2π

şπ
´π

dξ

sinc
´

ξv∆t
2π

¯

¸2

rµ` σ2
r |v|s

and therefore

MSEoptimal snapshot

MSEany fluttterpαq
ď

MSEsnapshotp∆t :“ 1
|v| q

MSEany fluttterpαq
ď

˜

1
2π

şπ
´π

ˇ

ˇ

ˇ

ˇ

ˇ

ξ

2 sin
´

ξ
2

¯

ˇ

ˇ

ˇ

ˇ

ˇ

2

dξ

¸

˜

1
2π

şπ
´π

dξ

sinc
´

ξv∆t
2π

¯

¸2
. (138)

Equation (138) is valid for any α that satisfies definition 3 page 12 and |v|∆t ď 1. In other words, (138) is valid

for any coded exposure method that satisfies |v|∆t ď 1. Hence (28) is proven (page 17). This concludes our proof.
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Appendix L: Poisson summation formula for L1
pRq band limited functions

This section proves that the Poisson summation formula that we use in this paper is valid.

The Poisson summation formula is, formally,

`8
ÿ

n“´8

fpnq “
`8
ÿ

m“´8

f̂p2πmq. (139)

However, (139) is not always valid when f P L1
pRq. Indeed, even when both sides of (139) converge absolutely

the equality may fail (see, e.g., [63] and [64, Ex 1.17, p. 163] for an example of f P L1
pRq such that f̂ P L1

pRq for

which (139) fails). A classic condition that ensures that (139) holds involves decay estimates of both f and f̂ at

the infinity (see, e.g., [61, thm. 1, p. 628]) and does not apply if f is just in L1
pRq and band limited. Other results

involve bounded variation assumption (see, e.g., [63]) on f that are not applicable here. Therefore, we shall now

provide a proof that (139) holds in our case that is for an f P L1
pRq and band limited. Our proof is based on [65].

Let f P L1
pRq be such that f̂pξq “ 0 for any ξ such that |ξ| ą C for some constant C. From Riemann-Lebesgue

theorem (see e.g., [52, prop. 2.1]) we have f̂ is continuous. From the band limited assumption we deduce that

f̂ P L1
pRq. Since f is band limited the series

ř`8
m“´8 f̂ p2πm´ xq is finite and therefore converges uniformly in

x P R. By Plancherel-Pólya inequality (see [66, equations (25) and (26), p. 233], since f P L1
pRq and band limited

it satisfies the growth condition) we obtain that
ř`8
k“´8 |fpkq| ď A}f}L1pRq for some positive constant A.

Therefore, the series
ř`8
k“´8 fpkq converges. Thus, we can apply [65, theorem 2, p.147] (with g :“ f̂ and

W “ 1
2π ) to deduce that (139) is valid for any f P L1

pRq band limited.

Appendix M: Main notations and formulae
(i) t ě 0 time variable
(ii) ∆t length of a time interval (exposure time)
(iii) x P R spatial variable
(iv) X „ Y means that the random variables X and Y have the same law
(v) PpAq probability of an event A
(vi) EpXq expected value of a random variable X
(vii) varpXq variance of a random variable X

(viii) Ppλq Poisson random variable with intensity λ ą 0. Thus, if X „ Ppλq we have PpX “ kq “
expp´λqλk

k!

(ix) f ˚ g convolution of two functions pf ˚ gqpxq “
ş

R fpyqgpx´ yqdy

(x) obspnq, n P Z observation of the scene at a pixel at position n
(xi) v relative velocity between the scene and the camera (unit: pixel(s) per second)
(xii) αp¨q “

ř`8
k“´8 αk1rk∆t,pk`1q∆tqp¨q exposure function (pαkqk P `

1
pZq)

(xiii) }f}L1pRq “
ş

R |fpxq|dx, }f}L2pRq “

b

ş

R |fpxq|
2dx

(xiv) Let f, g P L1
pRq or L2

pRq, then Fpfqpξq :“ f̂pξq :“
ş

R fpxqe
´ixξdx and

F´1
pFpfqqpxq :“ Fpfqpxq “ fpxq “ 1

2π

ş

R Fpfqpξqeixξdξ. Moreover

Fpf ˚ gqpξq “ FpfqpξqFpgqpξq and (Plancherel)
ż

R
|fpxq|

2
dx “ }f}

2
L2pRq “

1

2π

ż

R
|Fpfq|2 pξqdξ “

1

2π
}Fpfq}2

L2pRq (140)

(xv) u ideal (noiseless) observable scene.
(xvi) sincpxq “

sinpπxq
πx “ 1

2πFp1r´π,πsqpxq “ F´1
p1r´π,πsqpxq

(xvii) 1ra,bs indicator function of an interval ra, bs
(xviii) Let f P L1

p´π, πq or f P L2
p´π, πq. The n-th Fourier series coefficient of f is

cnpfq :“ 1
2π

şπ
´π

fptqe´intdt and we have fptq “
ř`8
n“´8 cnpfqe

`int. Moreover we have (Parseval)
`8
ÿ

n“´8

|cnpfq|
2
“ }f}

2
L2p´π,πq

:“
1

2π

ż π

´π

|fptq|
2
dt. (141)
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