
NONNEGATIVE TENSOR FACTORIZATION WITH FREQUENCY
MODULATION CUES FOR BLIND AUDIO SOURCE SEPARATION

Elliot Creager1,3 Noah D. Stein1 Roland Badeau2,3 Philippe Depalle3
1 Analog Devices Lyric Labs, Cambridge, MA, USA
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ABSTRACT

We present Vibrato Nonnegative Tensor Factorization, an
algorithm for single-channel unsupervised audio source
separation with an application to separating instrumental or
vocal sources with nonstationary pitch from music record-
ings. Our approach extends Nonnegative Matrix Factor-
ization for audio modeling by including local estimates of
frequency modulation as cues in the separation. This per-
mits the modeling and unsupervised separation of vibrato
or glissando musical sources, which is not possible with
the basic matrix factorization formulation.

The algorithm factorizes a sparse nonnegative tensor
comprising the audio spectrogram and local frequency-
slope-to-frequency ratios, which are estimated at each
time-frequency bin using the Distributed Derivative
Method. The use of local frequency modulations as
separation cues is motivated by the principle of com-
mon fate partial grouping from Auditory Scene Analysis,
which hypothesizes that each latent source in a mixture
is characterized perceptually by coherent frequency and
amplitude modulations shared by its component partials.
We derive multiplicative factor updates by Minorization-
Maximization, which guarantees convergence to a local
optimum by iteration. We then compare our method to the
baseline on two separation tasks: one considers synthetic
vibrato notes, while the other considers vibrato string in-
strument recordings.

1. INTRODUCTION

Nonnegative matrix factorization (NMF) [11] is a popu-
lar method for the analysis of audio spectrograms [16],
especially for audio source separation [17]. NMF mod-
els the observed spectrogram as a weighted sum of rank-1
latent components, each of which factorizes as the outer
product of a pair of vectors representing the constituent
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frequencies and onset regions for some significant com-
ponent in the mixture, e.g. a musical note. Equivalently,
the entire spectrogram matrix approximately factorizes as
a matrix of spectral templates times a matrix of tempo-
ral activations, typically such that the approximate factors
have many fewer elements than the full observation. While
NMF can be used for supervised source separation tasks
with a straightforward extension of the signal model [19],
this necessitates pre-training NMF representations for each
source of interest.

The use of modulation cues in source separation is
popular in the Computational Auditory Scene Analysis
(CASA) [26] literature, which, unlike NMF, typically re-
lies on partial tracking. E.g., [25] isolates individual par-
tials by frequency warping and filtering, while [12] groups
partials via correlations in amplitude modulations. [2],
which more closely resembles our work in the sense of
being data-driven, factorizes a tensor encoding amplitude
modulations for speech separation.

Our approach is inspired by [20] and [21], which
present a Nonnegative Tensor Factorization (NTF) incor-
porating direction-of-arrival (DOA) estimates in an un-
supervised speech source separation task. Whereas use
of DOA information in that work necessitates multi-
microphone data, we address the single-channel case by
incorporating the local frequency modulation (FM) cues at
each time-frequency bin. These cues are combined with
the spectrogram as a sparse observation tensor, which we
factorize in a probabilistic framework. The modulation
cues are adopted structurally by way of an NTF where each
source in the mixture is modeled via an NMF factor and a
time-varying FM factor.

2. BACKGROUND

2.1 Nonnegative matrix factorization

We now summarize NMF within a probabilistic frame-
work. We consider the normalized Short-Time Fourier
Transform (STFT) magnitudes (i.e., spectrogram) of the
input signal as an observed discrete probability distribu-
tion of energy over the time-frequency plane, i.e.,

pobs(f, t) ,
|X(f, t)|∑
ν,τ |X(ν, τ)| , (1)
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Figure 1: Graphical models for the factorizations in this paper. In each case the input data are a distribution over the
observed (shaded) variables, while the model approximates the observation by a joint distribution over observed and latent
(unshaded) variables that factorizes as specified. F, T, Z, S, and R respectively represent the discrete frequencies, hops,
components, sources, and frequency modulations over which the data is distributed.

∀f ∈ {1, ..., F}, t ∈ {1, ..., T}, where X is the input
STFT and (f, t) indexes the time-frequency plane. NMF
seeks an approximation q to observed distribution pobs that
is a valid distribution over the time-frequency plane and
factorizes as

q(f, t) =
∑
z

q(f |z)q(t|z)q(z) =
∑
z

q(f |z)q(z, t). (2)

Figure 1(a) shows the graphical model for a joint distribu-
tion with this factorization.

We have introduced z ∈ {1, ..., Z} as a latent vari-
able that indexes components in the mixture, typically
with Z chosen to yield an overall data reduction, i.e.,
FZ + ZT � FT . For a fixed z0, q(f |z0) is a vec-
tor interpreted as the spectral template of the z0-th com-
ponent, i.e., the distribution over frequency bins of energy
belonging to that component. Likewise, q(z0, t) is inter-
preted as a vector of temporal activations of the z0-th com-
ponent, i.e., it specifies at what time indices the z0-th com-
ponent is prominent in the observed mixture. Indeed, (2)
can be implemented as a matrix multiplication, with the
usual nonnegativity constraint on the factors satisfied im-
plicitly, since q is a valid probability distribution.

The optimization problem is typically formalized as
minimizing the Kullback-Leibler (KL) divergence between
the observation and approximation, or equivalently as
maximizing the cross entropy between the two distribu-
tions:

maximize
q

∑
f,t

pobs(f, t) log q(f, t)

subject to q(f, t) =
∑
z

q(f |z)q(z, t).
(3)

While the non-convexity of this problem prohibits a glob-
ally optimal solution in reasonable time, a locally optimal
solution can be found by multiplicative updates to the fac-
tors, which were first presented in [10]. We refer to this
algorithm as KL-NMF, but note its equivalence to Proba-
bilistic Latent Component Analysis (PLCA) [18], as well
as a strong connection to topic modeling of counts data.

2.2 NMF for source separation

NMF can be leveraged as a source model within a source
separation task, such that the observed mixture is modeled
as a sum of sources, each of which is modeled by NMF.
Whereas the latent variable z in NMF indexes latent com-
ponents belonging to a source, we now introduce an addi-
tional latent variable s ∈ {1, .., S}, which indexes latent
sources within the mixture. The resulting joint distribution
over observed and latent variables is expressed as

q(f, t, s, z) = q(s)q(f |s, z)q(z, t|s). (4)

Thus the approximation to pobs(f, t) is the marginal distri-
bution

q(f, t) =
∑
s

q(s)q(f, t|s)

=
∑
s

q(s)
∑
z

q(f |s, z)q(z, t|s),
(5)

where q(s0) and q(f, t|s0) represent the mixing coefficient
and NMF source model for the s0-th source in the mixture,
respectively. Figure 1(b) shows the graphical model.

Given a suitable approximation q, we estimate the latent
sources in the mixture via Wiener filtering, i.e.,

Xs(f, t) = X(f, t)q(s|f, t), (6)

where the Wiener gains q(s|f, t) are given by the condi-
tional probabilities 1 of the latent sources given the ap-
proximating joint distribution

q(s|f, t) =
q(f, t, s)

q(f, t)
=

∑
z q(s)q(f |s, z)q(z, t|s)∑

z,s′ q(s
′)q(f |s′, z)q(z, t|s′) .

(7)
The estimated sources can then be reconstructed in the
time-domain via the inverse STFT.

We seek a q that both approximates pobs and yields
source estimates q(f, t|s) close to the true sources. In a
supervised setting, the spectral templates for each source
model can be fixed by using basic NMF on some char-
acteristic training examples in isolation. When the ap-
propriate training data is unavailable, the basic NMF can

1 A convenient result of the Wiener filter gains being conditional distri-
butions over sources is that the mixture energy is conserved by the source
estimates in the sense that

∑
sXs(f, t) = X(f, t) ∀ f, t.



be extended by introducing priors on the factors or other-
wise adding structure to the observation model to encour-
age, e.g., smoothness in the activations [24] or harmonicity
in the spectral templates [3], which hopefully in turn im-
proves the source estimates. By contrast, our approach ex-
ploits local FM cues directly in the factorization, yielding
an observation model for latent sources consistent with the
sorts of pitch modulations expected in musical sounds.

2.3 Coherent frequency modulation

We now introduce frequency-slope-to-frequency ratios
(FSFR) as local signal parameters under an additive sinu-
soidal model that are useful as grouping cues for the sep-
aration of sources with coherent FM, e.g. in the vibrato
or glissando effects. In continuous time, the additive sinu-
soidal model expresses the s-th source as a sum of com-
ponent partials, 2 each parameterized by an instantaneous
frequency and amplitude, i.e.,

xs(τ) =

P∑
p=1

Ap(τ) cos

(
θp(τ0) +

∫ τ

τ0

ωp(u)du

)
(8)

where p is the partial index, and θp(τ0), Ap(τ) and ωp(τ)
specify the initial phase, instantaneous amplitude, and in-
stantaneous frequency of the p-th partial.

We now consider a source under coherent FM, i.e.,

ωp(τ) , (1 + κs(τ))ωp(τ0) ∀ p (9)

for some modulation function κs with κs(τ0) = 0. E.g.,
κs resembles a slowly-varying sinusoid during frequency
vibrato, or a gradual ramp function during glissando. The
FSFR are then expressed as

υp(τ) ,
ω′p(τ)

ωp(τ)
=

κ′s(τ)

1 + κs(τ)
. (10)

Note that {υp(τ)} are time-varying but independent of the
partial index p for a given source index s. In other words,
the instantaneous FSFR is common to all partials belong-
ing to the same source and can be used as a grouping cue
in unsupervised source separation [7].

2.4 Distributed Derivative Method

We now summarize the Distributed Derivative Method
(DDM) [4, 8] for signal parameter estimation, which we
use to estimate the FSFR at each time-frequency bin. DDM
estimates the parameters of a monochrome analytic signal
under a Q-th order generalized sinusoid model, 3 which is

2 We do not assume any special structure in the partial frequencies,
e.g., harmonicity.

3 It is natural to specify the signal locally (near some time-frequency
bin) as a generalized sinusoid even while the global model remains ad-
ditive sinusoidal. In particular, the notion of a time-frequency-localized
signal follows from the filterbank summation interpretation of the STFT,
and corresponds to the heterodyned and shifted input, prior to low-pass
filtering by the window and downsampling in time [1]. In a slight abuse
of notation, we later absorb the time-frequency indices as parameters in
the analysis atom, i.e., we switch to the overlap-add interpretation of the
STFT without warning.

expressed as

x(τ) = exp

( Q∑
q=0

ηqτ
q

)
, (11)

where η ∈ CQ+1 is the vector of signal parameters, whose
real and imaginary parts specify the log amplitude law and
phase law, 4 respectively. In this work, we specify (11) as
a constant amplitude signal with linear frequency modula-
tion, i.e., η ∈ C3 with <(ηi) = 0 ∀ i. The signal pa-
rameters =(η1) and =(η2) then specify (within multiplica-
tive constants) the instantaneous frequency and frequency
slope, respectively.

The parameters of interest can be estimated by consid-
ering the inner product of the signal with a family of dif-
ferentiable analysis atoms of finite time-frequency support.
In particular, the continuous-time STFT can be expressed
by inner product as

X (f, t) , 〈x(τ), φ(τ ; f, t)〉 =

∫ +∞

τ=−∞
x(τ)φ(τ ; f, t)∗dτ,

(12)
where X (f, t) is the STFT, x(τ) is the input signal, and
φ(τ ; f, t) is a heterodyned window function from some
differentiable family (e.g. Hann), parameterized by its lo-
calization (f, t) in the time-frequency plane. The signal
parameters are solutions to equations of the form

〈x(τ), φ′(τ ; f, t)〉 = −
Q∑
q=1

ηq〈qτ q−1x(τ), φ(τ ; f, t)〉,

(13)
which is linear in {ηq} for q > 0, and permits an STFT-
like computation of both inner products. The right-hand
side of (13) is derived from the left-hand side using inte-
gration by parts, exploiting the finite support of φ(τ ; f, t),
and substituting in the signal derivative x′(τ) from (11).
To estimate the signal parameters at a particular (f0, t0),
we construct a system of linear equations by evaluating
(13) for each φ(τ ; f, t) in a set of nearby atoms Φ, then
solve for η in a least-squares sense. We typically use atoms
in neighboring frequency bins at the same time step, i.e.,
Φ = {φ(τ ; t0, f0 − L−1

2 ), ..., φ(τ ; t0, f0 + L−1
2 )} for

some odd L.
While DDM is an unbiased estimator of the signal

parameters in continuous time, we must implement a
discrete-time approximation on a computer. This intro-
duces a small bias that can be ignored in practice since the
STFT window is typically longer than a few samples [4].

3. PROPOSED METHOD

3.1 Motivation

The NMF signal model is not sufficiently expressive
to compactly represent a large class of musical sounds,
namely those characterized by slow frequency modula-
tions, e.g., in the vibrato effect. In particular, it speci-
fies a single fixed spectral template per latent component

4 The frequency law is trivially computed from the phase law.
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Figure 2: Unfolding the nonzero elements in the observation tensor for a synthetic vibrato square wave note (G5). The hop
index t spans 2 seconds of the input audio, while the bin index f spans half the sampling rate, 0–22.05 kHz.

and thus requires a large number of components to model
sounds with nonstationary pitch. From a separation per-
spective, as the number of latent components grows, so
grows the need for a comprehensive model that can cor-
rectly group components belonging to the same source. To
this end, we appeal to the perceptual theory of Auditory
Scene Analysis [5], which postulates the importance of
shared frequency or amplitude modulations among partials
as a perceptual cue in their grouping [6, 14]. In this work
we focus on FM, although in principle our approach could
be extended to include amplitude modulations. 5 We now
propose an extension to KL-NMF that leverages this so-
called common fate principle and is suitable for the analy-
sis of vibrato signals.

3.2 Compiling the observations as a tensor

DDM yields the local estimates of frequency and fre-
quency slope for each time-frequency bin, from which the
FSFR are trivially computed. We define the (sparse) obser-
vation tensor pobs(f, t, r) ∈ RF×T×R≥0 as an assignment of
the normalized spectrogram into one of R discrete bins for
each (f, t) according the local FSFR estimate, i.e.,

pobs(f, t, r) ,

{
pobs(f, t) if quant(υ(f, t);R) = r

0 else,
(14)

where pobs(f, t) is the normalized spectrogram as in (1)
and υ are the FSFR as in (10), which are quantized by
quant(·;R), possibly after clipping to some reasonable
range of values. Figure 2 shows the spectrogram and FSFR
for a synthetic vibrato square wave.

3.3 Vibrato NTF

As with NMF, we seek a joint distribution q with a par-
ticular factorized form, whose marginal maximizes cross
entropy against the observed data. We propose an observa-
tion model of the form

q(f, t, r) =
∑
s

q(s)q(r|t, s)
∑
z

q(f |s, z)q(z, t|s) (15)

5 In turn, this would increase the dimensionality of the data.

where q(s) represents the mixing, q(r|t, s) repre-
sents the common time-varying FSFR per source, and∑
z q(f |s, z)q(z, t|s) represents the NMF source model.

Figure 1(c) shows the graphical model of the joint distri-
bution. Thus, given pobs, we seek an approximation q that
factorizes as in (15) and maximizes

α(q) ,
∑
f,t,r

pobs(f, t, r) log q(f, t, r)

=
∑
f,t,r

pobs(f, t, r) log
∑
z,s

q(f, t, r, z, s).
(16)

The sum in the argument to the log makes this difficult
to solve outright, so we find a local optimum by itera-
tive Minorization-Maximization (MM) [9] instead. That
is, given q(i), our model at the current (i-th) iteration, we
pick a better q(i+1) by (a) finding a concave minorizing
function β(q; q(i)) such that β(q; q(i)) ≤ α(q) ∀ q and
β(q(i); q(i)) = α(q(i)), and (b) maximizing β(q; q(i)) with
respect to q.

In particular, β(q; q(i)) is derived 6 by applying
Jensen’s inequality to (16), and is expressed as

β(q; q(i)) ,
∑

f,t,r,z,s

pobs(f, t, r)q(i)(z, s|f, t, r) log
q(f, t, r, z, s)

q(i)(z, s|f, t, r)
,

(17)

where q(i)(z, s|f, t, r) is the approximate posterior over la-
tent variables given the model at the i-th iteration 7 , com-
puted as

q(i)(z, s|f, t, r) =
q(i)(z, s, f, t, r)∑

z′,s′ q
(i)(z′, s′, f, t, r)

. (18)

For notational convenience we define
ρ(f, t, r, z, s) , pobs(f, t, r)q(i)(z, s|f, t, r) and
discarding the denominator in the log of (17) (constant
w.r.t. q), equivalently write the optimization over the
minorizing function as

max
q

∑
f,t,r,z,s

ρ(f, t, r, z, s) log q(s)q(f |z, s)q(z, t|s)q(r|t, s).

(19)

6 Cf. [20] for a more thorough treatment.
7 Note that the MM iteration specifies an expectation-maximization.
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Figure 3: For single-note analyses, VibNTF encodes the time-varying pitch modulation. The top row shows a synthetic
vibrato square wave note (G5), while the bottom row shows a real recording of a violin vibrato note (B[6). We plot r in the
range [−R2 , R2 ] in figures 3(b) and 3(d) to clarify that the index r represents a zero-mean quantity (the FSFR).

We now alternatively update each factor by separating the
argument in the log in (19) as a sum of logs, each term
of which can be optimized by applying Gibb’s inequal-
ity [13]. That is, given the current model, the optimal
choice for some factor of q(i+1) is the marginal of ρ over
the corresponding variables. E.g.,

q(i+1)(s)←
∑
f,t,r,z ρ(f, t, r, z, s)∑

f,t,r,z,s′ ρ(f, t, r, z, s′)
. (20a)

Likewise, the remaining factor updates are expressed as

q(i+1)(f |z, s)←
∑
t,r ρ(f, t, r, z, s)∑

f ′,t,r ρ(f ′, t, r, z, s)
; (20b)

q(i+1)(z, t|s)←
∑
f,r ρ(f, t, r, z, s)∑

f,t′,r,z′ ρ(f, t′, r, z′, s)
; (20c)

q(i+1)(r|t, s)←
∑
f,z ρ(f, t, r, z, s)∑

f,r′,z ρ(f, t, r′, z, s)
. (20d)

Since ρ is expressed as a product of the current factors and
observed data, the factor updates can be implemented effi-
ciently by using matrix multiplications to sum across inner
dimensions as necessary. The theory guarantees conver-
gence 8 to a local minimum [9], although in practice we

8 For guaranteed convergence, ρ must be recomputed after each factor
update, rather than once per iteration as the notation suggests. However,
in practice we observe convergence without the recomputation.

stop the algorithm after some fixed number of iterations.
The algorithm is initialized by choosing factors of q(0) as
random valid conditional probabilities.

Figure 3 visualizes the FM factor q(r|t, s) estimated by
the proposed algorithm for single note analyses (S = 1) of
both synthetic and real data.

4. EVALUATION

We present a comparison of our proposed method with
the baseline KL-NMF (which our method extends) in a
blind source separation task examining mixtures of two
single-note recordings. We use the BSS EVAL criteria [23]
to evaluate separation performance, which necessitates
the use of artificial mixtures. We report the source-to-
distortion ratio (SDR), source-to-interference ratio (SIR),
and source-to-artifact ratio (SAR), each in dB. Each exper-
iment comprises 500 separations, with the sources in each
trial chosen as specified below and mixed at 0 dB with a
total mixture duration of 2 seconds at 44.1 kHz sampling
rate. We report the average metrics across all sources and
trials.

To use KL-NMF for blind source separation, we must
specify Z = 2, i.e., each mixture component considered as
a source. This baseline should be relatively easy to beat,
since empirically KL-NMF does a poor job of modeling
vibrato signals when Z is small.



BSS EVAL in dB
Algorithm SDR SIR SAR

(A) Synthetic data
2-part KL-NMF -1.5 ± 0.1 0.1 ± 0.2 6.9 ± 0.2
Vibrato NTF 14.6 ± 1.0 17.0 ± 1.2 23.6 ± 0.7
(B) Real data
2-part KL-NMF 2.8 ± 0.4 8.0 ± 2.1 9.2 ± 0.2
Vibrato NTF 5.8 ± 0.5 9.7 ± 2.2 17.7 ± 0.5

Table 1: Mean and 95% confidence intervals of the
BSS EVAL metrics for 500 unsupervised separations of
two-source mixtures. Experiment A considers synthetic vi-
brato square waves, while experiment B considers single-
note vibrato string instrument recordings.

For Vibrato NTF, we specify S = 2 and Z = 3, i.e.,
for each of the two sources we learn spectral templates and
temporal activations for three components. E.g., consider-
ing a sinusoidal vibrato, the components could model the
source during the crest, midpoint, and trough of the pitch
modulation. We estimate the signal parameters at a partic-
ular (f0, t0) using DDM with a family of L = 5 analysis
atoms (heterodyned Hann functions) in the same hop in-
dex and nearby frequency bins. In order to avoid the influ-
ence of noisy FSFR estimates in the factorization, we apply
some mild post-processing prior to quantization. Specifi-
cally, we implicitly discard FSFR at (f, t) with pobs(f, t)
below the 10th percentile, or outside a reasonable range
of ±4 times the sampling rate by setting them to the data
median. The FSFR are then quantized evenly across their
range into R = 50 discrete values.

For both algorithms, the STFT in (1) is specified by
a 1024-length (23 msec) Discrete Fourier Transform us-
ing a Hann window with 75% overlap between succes-
sive frames. Thus, F = 513, corresponding to the non-
redundant frequency bins, and T = 346, the number of
hops required to cover the mixture duration. Both algo-
rithms are initialized randomly and run for 100 iterations.

Experiment A examines synthetic data, where the
sources are square waves with frequency vibrato, whose
signal parameters are generated at random. The funda-
mental frequency corresponds to a note value selected uni-
formly at random from the three-octave range [A3, G]5].
The number of partials is chosen uniformly at random from
the range [10, 30], and subsequently reduced as necessary
to avoid aliasing. The vibrato modulation function, i.e., κs
in (9), is a sinusoid with depth chosen uniformly at random
in the range of [5%, 20%] of the fundamental and rate cho-
sen log-uniformly at random from the range [0.5, 10] Hz.

Experiment B examines real data, where the sources are
single-note recordings from the McGill University Master
Samples (MUMS) [15], which contains over 6000 single-
note and single-phrase recordings of classical and popu-
lar instruments. We focus our evaluation on string instru-
ments, which exhibit strong frequency modulation in their
vibrato effect [22]. The MUMS subset of string instru-
ment notes with vibrato comprises a total of 250 unique

recordings of violin, viola, cello, and double bass. The
sources are chosen randomly from this subset and trimmed
or padded to 2 seconds as necessary.

Results for both experiments are provided in table 1.
Experiment A shows a dramatic win for Vibrato NTF over
the baseline. We see some variability in the results, which
reflects an optimization over a cost surface with many lo-
cal optima. With random initialization, Vibrato NTF works
either very well or very poorly, so robustness could be im-
proved by a more careful initialization, or alternatively by
regularizing the factorization in such a way as to avoid sub-
optimal solutions.

In experiment B, we see that moving from synthetic
to real data degrades the performance of our proposed
method, although we still beat the baseline by a modest
margin. Interestingly, the baseline performs better on real
data than synthetic, likely because the pitch variations are
less pronounced so KL-NMF fails less frequently. More-
over, the pitch modulations in real data are more com-
plex than in the synthetic case (compare figures 3(b) and
3(d)), and may require more components (larger Z) to be
properly modeled. Vibrato NTF as proposed tends to de-
crease in performance as Z increases, so additional work
is required to improve robustness for the analysis of real
data. We hypothesize that an extension enforcing tempo-
ral continuity in the FM factor, which should be smooth
and monotonic per-source, would enhance the grouping of
components, permitting a larger Z in practice.

5. CONCLUSION

We proposed Vibrato NTF, a novel blind source separa-
tion algorithm that extends NMF by leveraging local esti-
mates of frequency modulation as grouping cues directly
in the factorization. Experimental results using synthetic
data showed a substantial improvement over the baseline,
and validated the FSFR as useful grouping cues in a source
separation task. In the experiment with real recordings,
our method provided a more modest improvement. With
regards to the analysis of real data, we believe the incorpo-
ration of sensible priors on the factors would improve the
separation performance, while careful initalization would
improve the robustness. Further work could include tai-
loring the proposed method to the analysis of polyphonic
sounds, or sounds with mild or no frequency modulation.
Additionally, an extension including coherent amplitude
modulations as a grouping cue is possible within the pro-
posed tensor factorization framework.

6. ACKNOWLEDGEMENTS

The research leading to this paper was partially supported
by the French National Research Agency (ANR) as a part
of the EDISON 3D project (ANR- 13-CORD-0008-02),
and by the Canadian National Science and Engineering
Research Council (NSERC). Additional support was pro-
vided by the Analog Garage, the emerging business accel-
erator at Analog Devices, Inc.



7. REFERENCES

[1] J. Allen and L. Rabiner. A unified approach to short-
time Fourier analysis and synthesis. Proceedings of the
IEEE, 65:1558–64, 1977.

[2] T. Barker and T. Virtanen. Non-negative tensor fac-
torization of modulation spectrograms for monaural
sound separation. In Proceedings of the 2013 Inter-
speech Conference, pages 827–31, Lyon, France, 2013.

[3] N. Bertin, R. Badeau, and E. Vincent. Enforcing har-
monicity and smoothness in Bayesian non-negative
matrix factorization applied to polyphonic music tran-
scription. IEEE Transactions on Audio, Speech, and
Language Processing, 18(3):538–49, 2010.

[4] M. Betser. Sinusoidal polyphonic parameter estimation
using the distribution derivative. IEEE Transactions on
Signal Processing, 57(12):4633–45, 2009.

[5] A. Bregman. Auditory Scene Analysis: The Perceptual
Organization of Sound. The MIT Press, Cambridge,
MA, 1990.

[6] J. M. Chowning. Computer synthesis of the singing
voice. In Sound Generation in Winds, Strings, Com-
puters, pages 4–13. Kungl. Musikaliska Akademien,
Stokholm, Sweden, 1980.

[7] E. Creager. Musical source separation by coherent fre-
quency modulation cues. Master’s thesis, McGill Uni-
versity, 2015.

[8] B. Hamilton and P. Depalle. A unified view of non-
stationary sinusoidal parameter estimation methods us-
ing signal derivatives. In Proceedings of the IEEE In-
ternational Conference on Acoustics, Speech, and Sig-
nal Processing (ICASSP), pages 369–72, Kyoto, Japan,
2012.

[9] D. Hunter and K. Lange. A tutorial on MM algorithms.
The American Statistician, 58(1):30–7, 2004.

[10] D. Lee, M. Hill, and H. Seung. Algorithms for non-
negative matrix factorization. Advances in Neural In-
formation Processing Systems, 13:556–62, 2001.

[11] D. Lee and H. Seung. Learning the parts of objects
by non-negative matrix factorization. Nature, 401:788–
91, 1999.

[12] Y. Li, J. Woodruff, and D.Wang. Monaural musical
sound separation based on pitch and common ampli-
tude modulation. IEEE Transactions on Audio, Speech,
and Language Processing, 17(7):1361–71, 2009.

[13] D. MacKay. Information Theory, Inference, and Learn-
ing Algorithms. Cambridge University Press, Cam-
bridge, UK, 2005.

[14] S. McAdams. Segregation of concurrent sounds I: Ef-
fects of frequency modulation coherence. Journal of
the Acoustic Society of America, 86(6):2148–59, 1989.

[15] F. Opolko and J. Wapnick. McGill University master
samples [Compact Disks], 1987.

[16] P. Smaragdis and J. Brown. Non-negative matrix fac-
torization for polyphonic music transcription. In Pro-
ceedings of the IEEE Workshop on Applications of Sig-
nal Processing to Audio and Acoustics, pages 177–80,
New Paltz, NY, 2003.

[17] P. Smaragdis, C. Févotte, G. Mysore, N. Mohammadia,
and M. Hoffman. Static and dynamic source separation
using nonnegative factorizations: A unified view. IEEE
Signal Processing Magazine, 31(3):66–74, 2014.

[18] P. Smaragdis, B. Raj, and M. Shashanka. A probabilis-
tic latent variable model for acoustic modeling. In Pro-
ceedings of the NIPS Workshop of Advances in Models
for Acoustic Processing, Vancouver, Canada, 2006.

[19] P. Smaragdis, B. Raj, and M. Shashanka. Super-
vised and semi-supervised separation of sounds single-
channel mixtures. Independent Component Analysis
and Signal Separation, (Lecture Notes in Computer
Science, 4666):414–21, 2007.

[20] N. Stein. Nonnegative tensor factorization for direc-
tional unsupervised audio source separation. arXiv
preprint, http://arxiv.org/abs/1411.5010, 2015.

[21] J. Traa, P. Smaragdis, N. Stein, and D. Wingate. Di-
rectional NMF for joint source localization and separa-
tion. In Proceedings of the IEEE Workshop on Appli-
cations of Signal Processing to Audio and Acoustics,
New Paltz, NY, 2015.

[22] V. Verfaille, C. Guastavino, and P. Depalle. Percep-
tual evaluation of vibrato models. In Proceedings of
the Conference on Interdisciplinary Musicology, Mon-
treal, Canada, 2005.

[23] E. Vincent, R. Gribonval, and C. Févotte. Performance
measurements in blind audio source separation. IEEE
Transactions on Audio, Speech, and Language Pro-
cessing, 14(4):1462–9, 2006.

[24] T. Virtanen. Monaural sound source separation by non-
negative matrix factorization with temporal continu-
ity and sparseness criteria. IEEE Transactions on Au-
dio, Speech, and Language Processing, 15(3):1066–
74, 2007.

[25] A. Wang. Instantaneous and frequency-warped tech-
niques for source separation and signal parameteriza-
tion. In Proceedings of the IEEE Workshop on Appli-
cations of Signal Processing to Audio and Acoustics,
pages 47–50, New Paltz, NY, 1995.

[26] D. Wang and G. Brown. Computational Auditory Scene
Analysis: Principles, Algorithms, and Applications.
Wiley Interscience, Hoboken, NJ, 2006.


