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Abstract—In this paper, the late part of a room response is
modeled in the frequency domain as a complex Gaussian random
process. The autocovariance function (ACVF) and power spectral
density (PSD) are theoretically defined from the exponential
decay of the late reverberation power. Furthermore we show
that the ACVF and PSD are accurately parametrized by an
autoregressive moving average (ARMA) model. This leads to
a new generative model of late reverberation in the frequency
domain. The ARMA parameters are easily estimated from the
theoretical ACVF. The statistical characterization is consistent
with empirical results on simulated and real data. This model
could be used to incorporate priors in audio source separation
and dereverberation.

Index Terms—Statistical room acoustics, late reverberation,
Gaussian random process, autoregressive moving average model.

I. INTRODUCTION

When an audio source is recorded in a reverberant envi-
ronment, the signal at the microphone is a filtered version
of the source signal plus a possible additive noise. The filter
involved in this process is called a Room Impulse Response
(RIR) and represents the propagation from the source to
the microphone. In the case of a single emitting source,
estimating the source signal is called dereverberation. When
several sources play simultaneously, the task is referred to
as source separation. A large number of methods are based
on probabilistic frameworks. One possible approach is to
treat the acoustic parameters as being deterministic so that
they are estimated in a maximum likelihood sense [1], [2].
Another way of doing is to incorporate priors on the acoustic
parameters, leading to a maximum a posteriori estimation or a
full Bayesian treatment [3, ch. 8]. In audio source separation,
some recent approaches have shown that improved separation
results can be obtained by taking probabilistic priors on RIRs
into account. In [4] the authors proposed a prior motivated
by statistical room acoustics in order to represent the spatial
correlations between RIRs at different microphones. In [5], [6]
an autoregressive prior in the frequency domain is proposed
to model the direct path and the first echoes of the RIRs.

In statistical room acoustics, the late part of a Room
Frequency Response (RFR) can be considered as a complex
Gaussian random process. In [7] Schroeder expressed the
theoretical autocovariance function (ACVF) of this process
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Fig. 1: Schematic illustration of a room impulse response.

from the time-domain exponential decay of the late reverber-
ation power. However Schroeder neglected the influence of
the direct path and the early echoes, resulting in a mismatch
between theoretical and empirical ACVF, as observed in [8].
In this paper, we consider the fact that the exponential decay
is only valid for late reverberation. We thus obtain a more
accurate match between the new expression of the theoretical
ACVF and the experiments. Furthermore we show that an
autoregressive moving average (ARMA) modeling of the late
part of the RFR leads to an accurate parametrization of the
ACVF and Power Spectral Density (PSD). Similar parametric
modeling in the frequency domain has been applied to wireless
channels in [9], but in a data-dependent way. From the ARMA
model it will be possible to define a prior distribution on the
late part of the RFR, which could be used for audio source
separation in the same way as in [6].

We first present in section II the statistical late reverberation
model and compare the theoretical results with experiments
on simulated and real RIRs. Then we describe in section III
the ARMA model for the late part of the RFR, where the
parameters are easily estimated from the theoretical ACVF,
without the need of any data. Experimental results show the
validity of this ARMA model. We finally conclude in section
IV on the proposed model invoking its suitability for audio
source separation.

II. STATISTICAL LATE REVERBERATION MODEL

An RIR has a well defined structure. As represented on Fig.
1 we distinguish three regions: firstly the direct path between
the source and the microphone, then the early echoes, coming
from the first reflections on the walls of the room, and finally
the late reverberation where the sound is considered to be
diffuse. Diffusion means that the energy density is uniformly
distributed across the room and the energy at one point is
uniformly distributed over all directions [10]. The direct path



and early echoes are usually considered as being deterministic,
while the characterization of late reverberation involves the use
of statistical room acoustics. In this paper, we group the direct
path and the early echoes under the term ”early contributions”.
Let h(t) = he(t) + hl(t) denote the whole RIR, and he(t),
hl(t) the early and late parts respectively. The transition instant
between early reflections and late reverberation can be defined
according to the volume V of the room in m3 [11], [12]:

t0 =
⌊
C0

√
V fs

⌋
samples, (1)

with C0 a normalization constant, b·c the floor function and
fs the sampling rate in Hz. Different values of C0 have been
proposed in the literature [12], we choose C0 = 2 × 10−3.
The RFR is defined as H(k) = He(k) + Hl(k) where for
k = 0, ..., T − 1:

H(·)(k) = FT {h(·)(t)} =

T−1∑
t=0

h(·)(t)e
−j2πkt/T . (2)

Equation (2) is the T-point Discrete Fourier Transform (DFT)
of signal h(·)(t). We also define the inverse DFT by:

h(·)(t) = F−1T {H(·)(k)} =
1

T

T−1∑
k=0

H(·)(k)ej2πkt/T . (3)

A. Late reverberation model

The theory of statistical room acoustics for diffuse sound
fields can be applied in the frequency domain if (a) the
dimensions of the room are large compared to the wavelength
of the source signal, (b) the average spacing of the room
resonance frequencies are smaller than one third of the modes’
bandwidth and (c) the source and microphone are located
at least at half a wavelength from the walls [7], [8], [13].
Condition (b) is fulfilled above Schroeder’s frequency:

fsch = C1

√
T60
V

Hz, (4)

with C1 a normalization constant approximately equal to 2000.
T60 is the reverberation time in seconds defined as the time
it takes for the sound energy to decrease by 60 dB after
extinction of the source. We assume in the following that these
conditions are fulfilled. It is well known that for the diffuse
part of an RIR the power decays exponentially [11]. Following
this observation we define the Power Temporal Profile (PTP)
of the RIR for t = 0, ..., T − 1:

h̄l(t) = E[|hl(t)|2] = P 2
0 e
−2t/τ

1t>t0(t), (5)

where 1t∈T (t) is the indicator function which equals 1 if t ∈
T , 0 otherwise, P 2

0 is a constant related to the total power of
late reverberation and τ is linked to the reverberation time T60
through:

τ =
T60fs

3 ln(10)
samples. (6)

It is important to mention that different realizations of the
room responses can be interpreted as different observations

at several source and microphone positions in the room.
Expectations have thus to be understood as spatial averaging.

We now describe some important statistical results about
the late part of the RFR. According to the theory of statistical
room acoustics, the signal received by a microphone in a
reverberant field combines the contributions of a large number
of modes of the room with randomly distributed amplitudes
and phases. Assuming that the modes are independent and
identically distributed, the central limit theorem implies that
the RFR is a random process whose real and imaginary parts
are independent Gaussian processes with the same variance.
Assuming a centered and wide sense stationary (WSS) process
we define the ACVF γ(m) and the PSD φ(t) of the RFR by:

γ(m) = E[Hl(k)Hl(k −m)∗]; (7)

φ(t) =
1

T
E[|FT {Hl(k)}|2], (8)

where (·)∗ denotes complex conjugate. As a centered and
WSS complex Gaussian random process the RFR is thus fully
characterized by its ACVF or its PSD. We have to mention
that as we work in discrete time and frequency, all signals
are T-periodic. Strictly speaking the RFR is thus a T-periodic
WSS random process. Moreover φ(t) has to be understood as
a discretized PSD function. One can refer to [9] for a review
of some properties of periodic random processes.

From equation (8) we can express the PSD of the process
{Hl(k)}k according to the PTP defined in equation (5) (see
appendix A):

φ(t) = T h̄l(T − t). (9)

The PTP is T -periodic so that h̄l(T ) = h̄l(0). Applying the
Wiener-Khinchin theorem from this expression of the PSD we
obtain the theoretical ACVF:

γ(m) =F−1T {φ(t)}= P 2
0 e
−2T/τ 1− e(j2πm/T+2/τ)(T−t0+1)

1− ej2πm/T+2/τ
.

(10)
P 2
0 is related to the variance σ2

rev := γ(0) of the RFR by:

P 2
0 = σ2

reve
2T/τ 1− e2/τ

1− e2(T−t0+1)/τ
. (11)

Moreover it can be shown that (see appendix B and [19]):

σ2
rev =

1− α
παS

, (12)

with α the average absorption coefficient (without dimension)
and S the total wall area in m2. The absorption coefficient can
be computed using Norris-Eyring’s formula [3, p. 24]:

α = 1− e−24 ln(10)V/(cST60), (13)

with c the speed of sound in m.s−1.

B. Experimental validation

As already mentioned before, the authors in [8] compared
Schroeder’s theoretical ACVF [7] with empirical ACVFs
computed from simulated and recorded RIRs. The results we
present in this section have been obtained using an experi-
mental procedure close to the one presented in [8]. From a
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Fig. 2: Theoretical and empirical ACVFs.

given set of RIRs (simulated or recorded) at various locations
in the room we first remove the early contributions by setting
to zero the samples for t = 0, ..., t0. For each realization h̃rl (t)
(one RIR for a particular location of source and microphone),
we compute the RFR H̃r

l (k) and only keep the K samples
in the interval [fsch, fs/2] Hz. The empirical ACVF for
one realization is obtained using the following estimator for
m = −K + 1, ...,K − 1:

γ̃r(m) =
1

K

K−1−|m|∑
k=0

H̃r
l (k)H̃r

l (k −m)∗. (14)

Following this Monte Carlo simulation the final empirical
ACVF is obtained by averaging over the whole set of real-
izations:

γ̂(m) =
1

R

R∑
r=1

γ̃r(m). (15)

We will compare this empirical ACVF to the theoretical one
defined by equations (10)-(13).

During our experiments we first observed a mismatch be-
tween the data and the theoretical variance given in equation
(12). Although widely used in the literature this sole expres-
sion has never been compared with experiments. As mentioned
in [14, ch. 7] the expression of the reverberant mean square
pressure that leads to equation (12) (see appendix B) may be
inaccurate depending on the room dimensions and the source
to microphone distance. Moreover this formula is obtained by
considering that the reverberation field is established after the
first reflection of the direct path on a wall, which disagrees
with the definition of late reverberation we gave before. This
could explain the mismatch. However an empirically accurate
correction consists in multiplying σ2

rev as defined in equation
(12) by 75. In the following this correction will always be
applied. Moreover we can mention that the variance is only a
scale factor in the ACVF and PSD. The correlations between
the samples of a random process can also be defined according
to the normalized autocorrelation function which does not
depend on the variance of the process.

We simulated 196 RIRs from the image source method
using the Roomsimove toolbox1. The room was a 10 x 6.6 x 3
m shoebox with reverberation time T60 = 250 ms. The source
position remained fixed while the microphone was moved over
196 positions. The results for simulated RIRs are presented on
Fig. 2a. We see a good fit between the theoretical expression
in equation (10) and the empirical ACVF.

For the experiment on real RIRs we used 130 responses
from the C4DM (Center for Digital Music) database [15]. The
RIRs were recorded in a classroom of size 7.5 x 9 x 3.5 m
with reverberation time T60 = 1.8 s. The source position was
again fixed while the microphone was moved. Once again we
observe a good fit between theory and experiments on Fig. 2b.

For both simulated and real RIRs, the theoretical expres-
sion of the ACVF we proposed in equation (10) seems to
better agree with experimental results than the one Schroeder
proposed in [7] and that was further investigated in [8].

III. AUTOREGRESSIVE MOVING AVERAGE MODEL

We have seen in the previous section that the statistical
properties of the late part of an RFR are fully summarized by
the ACVF defined in equation (10). This ACVF only depends
on the reverberation time, the volume of the room and the
total wall area. In this section we will show that an ARMA
model in the frequency domain is able to accurately fit the
theoretical ACVF and PSD we defined in section II-A.

A. ARMA model and estimation

We define the following ARMA(P,Q) model for the late
part of the RFR {Hl(k)}k:

Φ(L)Hl(k) = Θ(L)ε(k), (16)

where Φ(L) =
P∑
p=0

ϕpL
p, Θ(L) =

Q∑
q=0

θqL
q with ϕ0 =

θ0 = 1 and L is the lag operator, i.e. LHl(k) = Hl(k − 1).
ε(k) is a complex white Gaussian noise of variance σ2

ε for

1http://www.irisa.fr/metiss/members/evincent/Roomsimove.zip



k ∈ [0, ..., T − 1] and is extended by T-periodicity elsewhere.
Hl(k) is the output of a linear filter with transfer function
Ψ(z−1) = Θ(z−1)/Φ(z−1). The polynomials Θ(z−1) and
Φ(z−1) are assumed to have their zeros within the unit circle
so that Ψ(z−1) is the transfer function of an invertible causal
and stable filter. From this ARMA model we can write the
following parametric representations of the PSD φ(t) and
ACVF γ(m) :

φ(t) = σ2
ε

∣∣FT{{θq}q=0,...,Q

}∣∣2∣∣FT{{ϕp}p=0,...,P

}∣∣2 , (17)

P∑
p=0

ϕpγ(m− p) =

σ
2
ε

Q∑
q=m

θqψ
∗
q−m if 0 ≤ m ≤ Q

0 if m > Q,

(18)

where Ψ(z−1) =
+∞∑
k=0

ψkz
−k and m = m (mod T ) such that

m ∈ [0, ..., T − 1]. For equation (18) to be valid we have to
assume that there is no overlap of the T-periodic ACVF γ(m),
i.e. ψk = 0 for k ≥ T .

The ARMA parameters can be estimated from the sole
knowledge of the ACVF given by equation (10). The pro-
cedure is fully described in [16, ch. 2] and we recall it here
briefly. The AR parameters {ϕp}Pp=1 are first estimated by
solving the modified Yule-Walker equations defined from the
ACVF given in equation (18) for m = Q + 1, ..., Q + P .
From the estimated AR parameters we then define the ACVF

γ′(m) = Φ∗(L−1)Φ(L)γ(m) where Φ∗(L−1) =
P∑
p=0

ϕ∗pL
−p.

This is the ACVF of an MA process whose coefficients and
noise variance are {θq}Qq=1 and σ2

ε respectively, as introduced
in equation (16). We approximate this MA(Q) process by a
high-order AR(L) with L = 10Q. From γ′(m) we compute
the parameters of this high-order AR model by solving the
standard Yule-Walker equations. We obtain the estimate of σ2

ε

and we denote by {ϕ′p}Lp=1 the resulting AR coefficients. Fi-
nally, to obtain the MA parameters {θq}Qq=1, we fit an AR(Q)
model on the sequence {1, ϕ′1, ..., ϕ′L} again by solving the
Yule-Walker equations.

B. Experimental validation

We applied this procedure to compute the ARMA parame-
ters from the theoretical ACVF defined by equation (10). We
used the same room parameters and reverberation time (250
ms) as presented in section II-B for the simulated RIRs. We
chose the ARMA order as P = 7 and Q = 2 in order to
have a highly accurate fit. Once the ARMA parameters are
estimated, the PSD can be computed using equation (17), and
the ACVF is easily obtained by inverse DFT of the PSD. The
results are shown on Fig. 3. We observe a very good fit of
the ARMA model on both theoretical ACVF and PSD. The
PSDs are represented in decibels so we can observe that the
exponential decay is well verified.

As a final way of assessing the validity of the whole
model (theoretical ACVF, PSD and ARMA parametrization),

500 1000 1500 2000 2500 3000 3500

−40

−20

0

Power Spectral Densities

samples

m
a
g
n
it
u
d
e
 (

d
B

)

 

 
theoretical

ARMA

−50 0 50 100

−0.1

0

0.1

0.2

frequency lag (Hz)

Real part of the autocovariance functions

 

 
theoretical

ARMA

−100 −50 0 50 100

−0.1

0

0.1

0.2

Imaginary part of the autocovariance functions

frequency lag (Hz)

 

 
theoretical

ARMA

Fig. 3: ARMA(7,2) modeling of the PSD and ACVF.
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Fig. 4: Synthesized late reverberation from ARMA(7,2) filter-
ing in frequency domain of a complex white Gaussian noise.

we synthesize an artificial late reverberation RIR. Using the
estimated parameters, the late RFR is obtained by ARMA
filtering in the frequency domain of a complex white Gaussian
noise. To obtain the late part of the RFR we only keep the
samples within the frequency range [fsch, fs/2] Hz. The RFR
values below Schroeder’s frequency are fixed to zero, but we
have to mention that the results are similar by extending the
model to [0, fs/2] Hz. The time domain late RIR represented
on Fig. 4 is finally obtained using the hermitian symmetry
of the RFR and the inverse DFT. We can clearly observe the
exponential decay of the late reverberation starting from the
mixing time, as described by the PTP in equation (5). The
estimated reverberation time of this RIR obtained by using
Schroeder’s backward integration method [17] is 280 ms which
is close to the targeted value of 250 ms.

IV. CONCLUSIONS

In this paper, we refined the expression of Schroeder’s
ACVF [7] for the late part of an RFR by considering that late
reverberation only appears after early contributions. We ex-
perimentally showed the accuracy of the obtained ACVF. We



also proposed a new parametric model of the ACVF and PSD,
leading to a generative ARMA model of late reverberation
in the frequency domain. From this ARMA representation in
equation (16) it is possible to define a prior distribution on the
late part of an RFR. In future work this prior will be applied
to source separation to constrain the estimation of the mixing
filters, following the same procedure as in [6]. Refinement of
the model includes the investigation of a more accurate and
justified expression of the variance σ2

rev . This model could also
be extended for frequency dependent reverberation times, by
using different ARMA models for different frequency bands.

APPENDIX A
Proof of equation (9): From straightforward calculations

one can show that:

FT {h∗l (T − 1− t)} = eι2πk/TH∗l (k). (19)

Applying the inverse DFT, noted F−1T {·}, to equation (19) and
using the circular-convolution and shift theorems we have:

h∗l (T − 1− t) = δ(t+ 1) ~ F−1T {H
∗
l (k)}, (20)

where ~ denotes the circular convolution, and δ(t) the
Dirac delta function. Using the fact that F−1T {H∗l (k)} =
1
T FT {Hl(k)}∗ in equation (20) we obtain:

FT {Hl(k)} = Thl(T − t). (21)

From equations (21) and (8) we finally obtain (9).

APPENDIX B
Proof of equation (12): Let f = kfs/T . The relation

between the RFR Hl(f) and the complex sound pressure
(CSP) Pl(f) due to late reverberation at some point in a room
for a punctual source is given by [18, p. 311], [19]:

Pl(f) = −j2πfρ0Q(f)Hl(f), (22)

with ρ0 the air density in kg.m−3 and Q(f) the volume
velocity of the source in m3.s−1. Using the previous equality
we can link the variances of the CSP and of the RFR:

σ2
rev = E[|Hl(f)|2] =

E[|Pl(f)|2]

(2πf)2ρ20|Q(f)|2
, (23)

where |Q(f)|2 is expressed as [18, p. 311], [19]:

|Q(f)|2 =
Wsc

πf2ρ0
. (24)

c is the speed of sound in m.s−1 and Ws is the power output
of the sound source in Watts.

We now have to express the reverberant field mean square
pressure E[|Pl(f)|2]. We denote by α the average absorption
coefficient (without dimension) and S the total wall area in
m2. In a reverberant field the intensity is constant everywhere
and is related to the mean square pressure by [18, p. 581]:

Irev =
E[|Pl(f)|2]

4ρ0c
. (25)

For a diffuse sound field in steady-state conditions, the re-
verberant power supplied by the source must be equal to the

power absorbed by the walls [14, ch. 7]. The reverberant power
can be defined as the sound power from the source that remains
after the first reflection, (1 − α)Ws, and the absorbed power
is αSIrev . From this condition we have:

(1− α)Ws = αS
E[|Pl(f)|2]

4ρ0c
, (26)

which leads to the reverberant field mean square pressure:

E[|Pl(f)|2] =
4ρ0c(1− α)Ws

αS
. (27)

Substituting equations (27) and (24) into (23) we obtain the
result given by equation (12).
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