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Abstract
When dealing with SAR image classification, class parameters may vary along the swath due ti the antenna pattern.
When this pattern is not corrected, traditional classification algorithms are not adapted as they assume constant class
parameters across the image. In this paper, we propose a binary classification algorithm based on Markov Random
Fields that into account the parameters variations along the swath.

1 Introduction
Because of its robustness to weather changes, SAR ac-
quisition is often used for mapping or change detection.
These methods often rely on a classification step making
it one of the primary challenges of SAR image process-
ing.
In this paper, we propose a binary classification method
adapted to parameters variations of the classes along the
swath. This phenomenon may appear when the antenna
pattern is not fully corrected, which can be the case on
airborne SAR and occasionally for spaceborne SAR. One
reason for not applying this correction is when a class
presents a weak signal; correcting the pattern would re-
sult in varying parameters for such a class in the image,
which is, among others, the case for SWOT mission [5].
SWOT principal instrument (named KaRIn) operates in
the Ka band (35.6GHz) in near nadir. In images acquired
with such an instrument, non-water elements have a low
backscattering, preventing from using a pattern correc-
tion step. In this paper, we presents an approach taking
into account the variations inside a class to allow classifi-
cation on such images.
In section 2, the proposed model is introduced. An exact
optimization method of this model is presented in sec-
tion 2.3. Finally, we present the results on TropiSAR and
SWOT data in section 3.

2 Non-Uniform Markov Random
Fields

Given a set of sites S = {si, 0 ≤ i < Ns}, we consider
two random process:

• V = (Vs)s∈S which models the observed image to
be classified;

• U = (Us)s∈S which models the result of the clas-
sification.

In the previous definitions, Vs ∈ R and each site of U
have the value of its corresponding label; Us ∈ Λ =

{λi, 0 ≤ i < Nλ}. In the rest of this article, we only
consider the case of binary classification (i.e. Nλ = 2)
even though the proposed method could be adapted to
multi-label problems.
Realizations of V and U are named v = (vs)s∈S and
u = (us)s∈S respectively.

Our goal is to find the realization û of U that best ex-
plains the observation v. Following the work of [6], this
can be expressed as:

û = arg min
u
− log (p(v|u))− log (p(u))

= arg min
u
E(u) , (1)

involving the likelihood p(v|u) of the observation con-
sidering the chosen classification and a prior on the clas-
sification result p(u).

2.1 Prior definition

On such classification tasks, a widely-used prior is to en-
force spatial coherence for the classes between neighbor
pixels. When using only 2 labels, a common prior is Ising
model:

− log (p(u)) =
∑
s,t∈C

β|us − ut| , (2)

where C is the set of all cliques in S depending on the
chosen neighborhood (4 or 8 connexity).

2.2 Likelihood definition

In the case of intensity SAR images, noise follows a
Gamma distribution ([7]) and can be considered separa-
ble:

p(V = v|U = u) =
∏
s∈S

p(Vs = vs|Us = us) , (3)



The likelihood p(Vs = vs|Us = us) is usually chosen for
each class i:

p(Vs = vs|Us = i) =
1

Γ(L)

L

µi

(
Lvs
µi

)L−1
e
−Lvsµi ,

(4)
where L is the number of looks of the image and µi is the
mean of the class i which can be estimated, given a previ-
ous classification uprev , by the maximum-likelihood es-
timator:

µ̂i =
1

|Si|
∑
s∈Si

vs , (5)

where Si = {s, uprev,s = i}. When the pattern cor-
rection step has not been performed or classes have an
important intra-class variation, using only one param-
eter for each class does not yield good results. We
show the variation of the true mean parameter for wa-
ter and background classes in a simulated SWOT SAR
image in Figure 1. The red curve shows the mean pa-
rameter when computed on the whole image. When
compared to the blue curve, we can see that the mean
computed on the whole image is neither representa-
tive of the extremities nor the center of the image.
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Figure 1: Parameters of SWOT image depending on the
position in the swath. Input image provided by [4].

To take into account the variations in the image, we pro-
pose to use several parameters for each classes by par-
titioning the image in region on which to compute the
parameters.

Image partitioning We seek a partitioning of the im-
age so that each region fills the following requirements:

• Each region of the partition should be small enough
so there is almost no variation of the parameters in
it (R1);

• it contains enough pixels of the two classes so that
the maximum likelihood estimator is good enough
(R2).

To obtain such a partition, we propose to use quadtrees
([9]). Quadtrees have been extensively used in image
coding ([10]) and in segmentation ([1]).
The partitioning process follows:

1. Starting from a region (for the first iteration, the
region is the whole image) and a classification
(obtained either using a previous classification,
KMeans or a threshold for the first iteration, and
a previous classification for the next ones), we try
to find a partitioning in 4 regions of equal size ful-
filling the 3 requirements.

2. If at least one of the regions breaks one of the re-
quirements, we try to realize a partition containing
2 regions, first by doing a vertical cut, then an hor-
izontal cut.

3. If a partition has been performed in the previous
2 steps, the newly created regions are partitioned
again starting from step 1 after the parameters have
been estimated and a new classification has been
performed. If no partition was found, we stop for
this region and try another one.

4. We stop the process when no region can be divided.

In practice, the requirements on small regions is obtained
by dividing the regions and never prevent a division. The
second requirement (each class must be represented) is
verified by checking that the least represented class is
over a given percentage (in the following: 10%). Finally,
a parameter tuning the minimum number of elements in
the region is used for the third requirement (in the follow-
ing: 2500 points).

Preventing the apparition of a degenerate case When
we check that every classes are present in the regions, it
is done using a previous classification that is imperfect.
Thus, if the classification used is too bad, we could be
in a case where we try to realize a binary classification
when there is only one class in the region. To limit the
influence of the initialization case, a regularization step
enforcing smooth variations along the swath is done.

Figure 2: Regularization curve for the parameters of wa-
ter class in Figure 4



At each iteration, a Least-Squares Fitting of a second or-
der polynomial on the values of the parameters of the
regions is performed with respect to the position in the
swath of the center of the region.
This allows us to obtain a global trend of the variations
of the parameters along the swath. Parameters that are
too far from this global trend are likely to be degenerate
cases and the parameters are set to the value of the curve
at this position. Parameters that are close enough to the
value of the curve are kept, allowing for local variations
in the class parameters.

2.3 Optimization

Classical methods used for Markov Random Field opti-
mization such as ICM (iterated conditional modes) and
simulated annealing can be used to solve this problem.
As we are in the framework of a binary classification
task, we can use the optimization introduced in [8]. This
method allows us to find the global optimum by con-
structing a graph on which a s-t cut corresponds to a solu-
tion of our problem. The global optimum is found using a
min-cut algorithm [3] corresponding to the solution hav-
ing the minimum energy. To perform the optimization
when using more than 2 classes, one could use α-β swap
or α-expansion [2].

3 Results
Dataset To illustrate the results of this method we com-
pute the results obtained in the framework of water detec-
tion on two images:

1. Kaw, French Guiana, acquired by TropiSAR in
Figure 3.

2. Camargue, France, SWOT simulation (2-Looks)
([4]) in Figure 4.

Quantitative criteria For each classification output
show the error rate, which is defined as:

FP + FN

TP + FN
, (6)

whereFP is the number of pixels incorrectly classified as
water, FN is the number of pixels incorrectly classified
as background and TP is the number of pixels correctly
classified as water.
For each of these images, we provide the results obtained:

• Using the initial classification;

• Using the classical Markov Random Fields (one
parameter for each class) with the same number
of iterations that were run for the image with the
Non-Uniform Markov Random Fields.

• Using the proposed method.

Discussion We can see that using our method greatly
improves the results for TropiSAR data compared to the
classical Markov Random Fields, but provides a limited
improvement for SWOT images.
This can be explained by the contrast between the extrem-
ities of the images and the center of the antenna pattern.
This contrast is of 1.56 for the SWOT image, and of 4.79
for the TropiSAR image. With a high contrast between
same class parameters across the image, the classical
Markov Random Fields will achieve poor results while
the proposed method is able to give better estimates.

(a) Input image(b) Initial clas-
sification, error
rate = 48.45%

(c) Uniform
MRF, error rate
= 5.81%

(d) Non Uni-
form MRF,
error rate =
5.63%

Figure 4: Results on Camargue area, Simulated SWOT
images. Green: true positive, red: false negative, black:
true negative and blue: false positive. Input image pro-
vided by [4].

4 Conclusions

This paper introduces a classification method suited to
SAR data presenting variations of the class parameters
along the swath. This method can improve the results
when dealing with images with an antenna pattern not
fully corrected, for instance like SWOT or TropiSAR
data.
Further work includes partitioning improvement not lim-
ited to rectangles.



(a) Input image (b) Initial classification, error rate =
34.56%

(c) Uniform MRF, error rate =
11.37%

(d) Non Uniform MRF, error rate =
4.49%

Figure 3: Results on Kaw area acquired with TropiSAR. Green: true positive, red: false negative, black: true negative
and blue: false positive. Input image provided by ESA.
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