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ABSTRACT

Most dereverberation methods aim to reconstruct the ane-
choic magnitude spectrogram, given a reverberant signal.
Regardless of the method, the dereverberated signal is sys-
tematically synthesized with the reverberant phase. This
corrupted phase reintroduces reverberation and distortion in
the signal. This is why we intend to also reconstruct the ane-
choic phase, given a reverberant signal. Before processing
speech signals, we propose in this paper a method for esti-
mating the anechoic phase of reverberant chirp signals. Our
method presents an accurate estimation of the instantaneous
phase and improves objective measures of dereverberation.

Index Terms— Dereverberation, phase, reassignment, si-
nusoidal modeling.

1. INTRODUCTION

When a sound is emitted in an enclosed space, the micro-
phone does not only capture the output of the source: all the
paths the sound may follow, from the source to the micro-
phone, are added to the direct one and produce reverberation.
Whereas a soft reverberation may be desired to color a sound
or to give a feeling of space [1], strong reverberation is un-
pleasant. Indeed, it damages speech intelligibility and quality
when human beings are concerned and it reduces automatic
speech recognition performance of machines [2].

If the room impulse response (RIR) is known, one can
invert it to cancel the reverberation, thus there is no problem
of phase [3, 4]. However, these cancellation methods are
highly dependent on the speaker position and require a high
computing power. Hence, one prefers to use suppression
methods, which aim to estimate the magnitude spectrogram
of the late reverberation and remove it from the magnitude
spectrogram of the reverberant signal. To do so, existing
methods are based on a linear prediction model [5], on a
stochastic model of the RIR [6, 2], or more recently on deep
neural networks [7].

However, these suppression methods present a main draw-
back: once the dereverberated magnitude spectrogram is

computed, the reverberant phase is used to synthesize the
dereverberated signal. We observed that using this corrupted
phase reintroduces reverberation and distortion in the signal;
this fact was also highlighted in [7]. The idea of modeling
the phase has recently been proposed in source separation
literature [8], where a similar problem occurs: the phase of
the mixture is used to synthesize the source signals.

For speech enhancement, Deleforge et al. proposed an
adaptation of the K-SVD dictionary method to consider the
phase in a noise suppression task [9]. But for dereverberation,
we were only able to find a post-processing step in [10] which
constrains a harmonic structure in the dereverberated spectro-
gram. This phase modification enables a slight improvement
of the Perceptual Evaluation of Speech Quality (PESQ, [11])
and motivates a proper estimation of the anechoic phase.

In this paper, we propose a method for estimating the
phase of an anechoic signal given its reverberant version.
Before working on speech we started to study chirp signals,
which will be used to model voiced signals. Section 2 derives
the effect of reverberation on the Hilbert phase and presents
a first estimator. In Section 3, we adapt this estimator to a
Short Time Fourier Transform (STFT) framework to be able
to deal with multicomponent signals. The evaluation method
and results are detailed in Section 4. Finally, in Section 5
some conclusions are drawn and outlooks are proposed for
future work.

2. INFLUENCE OF REVERBERATION ON THE
HILBERT PHASE

As we study chirp signals in the first place, we derive the ex-
pression of the Hilbert phase of a reverberant chirp, in order to
highlight the influence of the reverberation. The influence on
the phase is also motivated by [12], where the authors added
the Hilbert phase of reverberant signals as a feature in a clas-
sification and regression tree (CART, [13]) to estimate their
level of reverberation. They found that phase was one of the
top 10 most important features, among 300, for the CART
algorithm.



2.1. Models and notations

We consider an anechoic chirp signal s(t) of T seconds

s(t) = cos (ϕ(t)) , t ∈ [0, T ] (1)

and the instantaneous phase ϕ(t)

ϕ(t) = 2π(fdt+
ḟ

2
t2) + ϕ0, t ∈ [0, T ] (2)

with ϕ0 chosen between 0 and 2π. This phase results in an
instantaneous frequency f(t) with a linear variation from the
starting frequency fd Hz with a rate of ḟ Hz/s:

f(t) =
1

2π

dϕ

dt
(t) = fd + ḟ t, t ∈ [0, T ]. (3)

The RIR h(t) of length Th is modeled with the stochastic
model introduced in [14]:

h(t) = b(t)p(t) (4)

with b(t) ∼ N (0, σ2) a centered Gaussian white noise of
variance σ2 and p(t) = e−δt1[0,Th], where 1[0,Th] denotes
the indicator function of the interval [0, Th].

The room parameter δ is directly linked to the reverbera-
tion time RT60, which is the required time to observe a 60 dB
decay of the reverberant energy [15], through δ = 3 log(10)

RT60
.

Thus, we model the reverberant chirp y(t) as the convolution
of s(t) and h(t):

y(t) = (h ∗ s)(t). (5)

We denote ŷ(t) the Hilbert transform of a real signal y(t),
corresponding to the Cauchy principal value (p.v.) of

ŷ(t) = p.v.
∫ ∞
−∞

y(τ)

π(t− τ)
dτ.

Then, the Hilbert phase of the reverberant signal is obtained
with

ϕrev(t) = arctan

(
ŷ(t)

y(t)

)
. (6)

2.2. Estimator with the Hilbert transform

We are interested in the instantaneous frequency of the rever-
berant signal:

frev(t) =
1

2π

dϕrev

dt
(t) =

1

2π

dŷ

dt
(t)y(t)− ŷ(t)

dy

dt
(t)

ŷ(t)2 + y(t)2
. (7)

Firstly, we approximate the mathematical expectation of
the ratio in (7) as the ratio of the mathematical expectations1.

1This assumption has been confirmed experimentally on a wide range of
ḟ and RT60, with RIR simulated with (4), resulting in less than 0.5 % relative
error on the frequency.

Thus, we define frev(t) as:

frev(t) =
1

2π

E
[
dŷ

dt
(t)y(t)− ŷ(t)

dy

dt
(t)

]
E [ŷ(t)2 + y(t)2]

. (8)

The Hilbert transform behaves nicely with the convolution
operator as (̂h ∗ s)(t) = (h ∗ ŝ)(t) = (ĥ ∗ s)(t). We can
then easily obtain the following equations:

ŷ(t) =

∫
τ

ŝ(t− τ)h(τ)dτ,

dŷ

dt
(t) =

∫
τ

dŝ

dt
(t− τ)h(τ)dτ.

Let us detail the first term in (8):

E
[
dŷ

dt
(t)y(t)

]
=

E
[∫

τ1

∫
τ2

dŝ

dt
(t− τ1)s(t− τ2)p(τ1)p(τ2)b(τ1)b(τ2)dτ1dτ2

]
= σ2

((
dŝ

dt
s

)
∗ p2

)
(t)

since E[b(τ1)b(τ2)] = σ2δτ1τ2 with δij the Kronecker delta.
Likewise, we have:

E
[
ŷ(t)

dy

dt
(t)

]
= σ2

((
ŝ
ds

dt

)
∗ p2

)
(t),

E
[
y2(t)

]
= σ2(s2 ∗ p2)(t),

E
[
ŷ2(t)

]
= σ2(ŝ2 ∗ p2)(t).

Hence we can rewrite frev(t) as:

frev(t) =
1

2π

(
p2 ∗ z1

)
(t)

(p2 ∗ z2) (t)
(9)

with

z1(t) =
dŝ

dt
(t)s(t)− ŝ(t)ds

dt
(t), (10)

z2(t) = s2(t) + ŝ2(t). (11)

For a cosine with fixed frequency f0, i.e. s(t) = cos(2πf0t),
we get ŝ(t) = sin(2πf0t) and then frev(t) = f0. There is no
influence of the reverberation, as well as it is hard to notice
reverberation when hearing stationary signals.

For the chirp signal defined in Section 2.1, we assume that
ŝ(t) = sin(ϕ(t)) still approximately holds, which has been
confirmed experimentally on a wide range of ḟ (for the exact
theoretical conditions the reader can refer to the Bedrosian’s
Theorem in [16]). Thus, after straightforward calculations,
equations (9) to (11) yield:

frev(t) = f(t)︸︷︷︸
signal

−ḟ
(

1

2δ
+

min(t, Th)

1− e2δmin(t,Th)

)
︸ ︷︷ ︸

room influence

. (12)
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Fig. 1. Instantaneous frequency estimation

On a toy example with T = 1.0 s and RT60 = 0.8 s, we
have plotted f(t), frev(t) and frev(t)+ḟ

(
1
2δ + min(t,Th)

1−e2δmin(t,Th)

)
,

estimating frev(t) by computing empirical means on 5000 re-
alizations of h(t) with the same RT60. We can see in Figure 1
that the instantaneous frequency is well estimated.

However we do not have access to frev(t) in practice, so
we approximate it with a temporal smoothing. To do so, we
experimentally verified that frev(t) can be accurately esti-
mated by means of a Savitzky-Golay filter hSG [17] of order 1
and size NSG.

Thus, given a reverberant chirp signal we can estimate the
instantaneous frequency of the anechoic signal with

f̃(t) = (hSG ∗ frev)(t) + ḟ

(
1

2δ
+

min(t, Th)

1− e2δmin(t,Th)

)
, (13)

assuming that δ and Th are known (one can find various meth-
ods in the literature to estimate the reverberation time and
deduce δ and Th). The value of ḟ can be estimated with a
method detailed in [18]. The instantaneous phase of the ane-
choic signal ϕ̃(t) is then obtained by integrating f̃(t) as:

ϕ̃(t) = 2π

∫ t

0

f̃(τ)dτ + ϕrev(0). (14)

In (14) we have set ϕ̃(0) = ϕrev(0), which is justified by
assuming that the signal is preceded by silence, thus the initial
phase is unaffected by reverberation.

3. ADAPTATION TO THE STFT FRAMEWORK

The Hilbert transform is not suited to signals made up of mul-
tiple sinusoids, this is why we want to adapt the results de-
rived with the Hilbert transform in Section 2 within a time-
frequency framework.

3.1. From a full-band to a subband model

Firstly, we have experimentally verified that the convolu-
tion product in (5) can be accurately approximated by a
convolution product in the Modified Discrete Cosine Trans-
form (MDCT) subbands: ∀k ∈ [0, N − 1], Y (m, k) '
(H(., k) ∗ S(., k)) (m), whereH(m, k), S(m, k) and Y (m, k)
denote the MDCT of h(t), s(t) and y(t) respectively, at the
m-th time frame and the k-th frequency bin.
Then, we have to show that the stochastic model of the RIR in
(4) still holds in the MDCT subbands. By using [19] we can
indeed compute the MDCT of the product h(t) = b(t)p(t).
After straightforward calculations, we get the approximation

H(m, k) ' αe−δNmB(m, k) (15)

with α > 0 and B(m, k) the MDCT of the white noise b(t).
We also know from [19] that B(m, k) is a white noise of
same variance σ2. We then retrieve the stochastic model of
the RIR: a white noise damped by a decaying exponential, in
each subband of H(m, k).

Finally, by considering the STFT as the analytical part of
the MDCT, we can directly apply the results found on the
Hilbert phase to the Fourier phase, in each channel of the
STFT.

3.2. Estimator with the STFT

The signals are sampled at fs Hz and the STFT is com-
puted with an analysis window w(n) of size N and a hop
size R, resulting in Nf frames and N discrete frequencies
fk = k fsN , k ∈ [0, N − 1]. In Section 2.1 we denoted the
Hilbert transform with a hat; from now on we denote the
STFT with a hat and an upper case.

To compute the instantaneous frequency of the reverber-
ant signal frev

(
mR
fs

)
at the m-th frame we use the reassigned

vocoder framework introduced in [20]. The estimated in-
stantaneous frequency of the anechoic signal f̃

(
mR
fs

)
is then

computed with (13), dividing NSG by R due to subsampling.
Since we assume that each frequency subband contains only
one sinusoidal component, we build a two-dimensional ar-
ray F̃ ∈ RNf×N carrying the evolution of the estimated fre-
quency in each channel.

For a chirp signal, the phase Φ(m, k) of its STFT Ŝ(m, k)
is not equal to the Hilbert phase, there is a correction term
caused by the analysis window [18]:

Φ(m, k) = ϕ

(
mR

fs

)
+ arg

(
Γ

(
k, f

(
mR

fs

)))
(16)

with

Γ(k, f) =

N−1∑
n=0

w(n)ei[2π(f−fk)
n
fs

+πḟ( nfs )
2]. (17)



This is why we construct the estimated anechoic phase
Φ̃(m, k) at the m-th time frame and frequency bin k with:

Φ̃(m, k) = Φ̃(m− 1, k) + 2πF̃ (m, k)
R

fs

+ arg

(
Γ(k, f̃ (mR/fs))Γ

?

(
k, f̃

(
(m− 1)

R

fs

)))
(18)

where .? denotes the complex conjugate. As in (14), we ini-
tialize Φ̃(0, k) with the reverberant phase.

4. EVALUATION

To test our method we generate anechoic chirps with instanta-
neous frequencies increasing from 400 Hz to 6 kHz, sampled
at fs = 16 kHz. We choose different durations, ranging
from T = 0.5 s to T = 3.0 s. Note that with this frequency
sweep, the usual values of ḟ one can find in the pitch of hu-
man speech would correspond to durations T ≥ 2.0 s. Each
anechoic signal is then convolved with an RIR simulated as
in (4), with reverberation times ranging from RT60 = 0.4 s to
RT60 = 2.0 s. Since we only deal with the estimation of the
anechoic phase, we use the anechoic magnitude assuming the
magnitude spectrogram was perfectly estimated. We synthe-
size it either with the reverberant phase (no modification), or
with the estimated anechoic phase, to generate sane,rev(n) or
sane,est(n) respectively.

Firstly, we focus on frequency estimation and compute for
each couple (T,RT60) the instantaneous frequency fane,est(n)
of sane,est(n) and compute the mean relative error:

erel =
100

Tfs

Tfs−1∑
n=0

∣∣∣∣∣∣
f
(
n
fs

)
− fane,est(n)

f
(
n
fs

)
∣∣∣∣∣∣

We also compute the mean relative error with fane,rev(n) to
highlight the effect of the phase modification. As we can see
from Figure 2, the relative error with the reverberant phase
(dashed lines) increases with ḟ and RT60, as expected consid-
ering (12). If we look at the relative errors when we use the
estimated phase (solid lines) they are approximately divided
by a factor 7. Moreover, for usual values of ḟ (T ≥ 2.0 s) the
mean relative error is around 2% and is independent of ḟ and
RT60, which is very satisfying.

Then, we look at the dereverberation provided by the
phase modification. To evaluate the dereverberation we use
the toolbox released in the last REVERB challenge [21],
which computes the Signal-to-Reverberant Ratio (SRR) and
the Cepstral Distance (CD) between the clean signal and
the enhanced one [11]. We see in Figure 3 that the SRR
is increased by 10 dB when using the estimated phase in-
stead of the reverberant one, which is an important gain in
term of dereverberation. The CD is also decreased by 5 dB,
corresponding to a significant reduction of distortions.
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Fig. 3. Evolution of the SRR and the CD for a 3 s chirp

5. CONCLUSION AND FUTURE WORK

By using a stochastic model of RIR, we have derived an ex-
pression of the instantaneous frequency of a reverberant chirp.
We managed to quantify the influence of the reverberation on
this instantaneous frequency, thereby we were able to correct
it and estimate the instantaneous phase of the anechoic sig-
nal. In order to deal with multicomponent signals, we adapted
the estimator to the STFT framework. We tested our method
given a set of various reverberant chirps and obtained an ac-
curate frequency estimation. We also significantly improved
objective measures of the REVERB challenge, by using the
estimated phase instead of the reverberant one.

In future work we will track the instantaneous frequencies
of multicomponent signals, with the same reassigned vocoder
method [20], in order to estimate the phase of a reverberant
signal composed of harmonic chirps. We will then be able to
apply our estimator to speech signals, by modeling them as
time-varying harmonics + noise [22].
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