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ABSTRACT

In this paper we investigate the capacity of the Generalized

Gamma distribution to mimick (or imitate) thanks to its three

parameters other useful SAR distributions. We first com-

pare it with the Fisher distribution when mimicking a K dis-

tribution of reference, thanks to the log-cumulant approach

and through a Kullback-Leibler divergence. We then study

how the Generalized Gamma distribution can imitate a Log-

Normal distribution as asymtotic limit.

Index Terms— Statistical modeling of SAR data, Gener-

alized Gamma distribution, log-cumulant parameter estima-

tion

1. INTRODUCTION

The choice of an appropriate distribution for the statistical

modeling of SAR data is essential for many applications like

despeckling, segmentation or classification [1] [2]. Beyond

physical modeling of electro-magnetic wave interactions

[3][4], many complex distributions have already been pro-

posed in the literature to model high resolution SAR images.

Specially, the Generalized Gamma (GG) distribution [5] (de-

fined by three parameters) has been the subject of many

studies and its flexibility is demonstrated both for physically

homogeneous or heterogeous areas [6]. Nevertheless is it

general enough to replace a distribution dictionary ?

In this paper we investigate the capacity of the General-

ized Gamma distribution to imitate a reference distribution.

We first choose the K [4] distribution also defined by 3 pa-

rameters and we compare the GG mimicking capacity with

the mimicking capacity of the Fisher distribution [7]. In

this study we use a log-cumulant approach to estimate the

distribution parameters and use evalutation criteria based on

Kullback-Leibler divergence.

We then discuss some limits of the Generalized Gamma

distribution and study its relationship with the Log-Normal

distribution [8] (defined by two parameters).

The paper is organized as follows. In section 2, analytic

expressions of the distributions are recalled while section 3

presents the comparative study of K distribution mimicking.
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Eventually section 4 presents how Generalized Gamma can

be used to mimick Log-Normal distributions.

2. PRELIMINARIES

2.1. Distribution presentation

We remind here the probability density function (pdf) of

the Generalized Gamma distribution and its associated log-

cumulants. For Fisher, K and Log-Normal [9] only the

log-cumulants are presented.

2.1.1. Generalized Gamma distribution

The pdf GGpdf (µGG , LGG , ηGG) is defined by:

GGpdf (x) = |ηGG |
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where Γ(x)is the Gamma function, µGG a mean parameter,

LGG a shape parameter and ηGG a power parameter.

The 3 first log-cumulants are given by:

κ̃1GGpdf
= ln(µGG) +

Ψ(LGG)−ln(LGG)
ηGG

κ̃2GGpdf
= Ψ(1,LGG)

η2
GG

κ̃3GGpdf
= Ψ(2,LGG)

η3
GG

(2)

where Ψ(x) and Ψ(n, x) are respectively the Digamma and

the Polygamma function of order n.

2.1.2. Fisher distribution

The 3 first log-cumulants are given by:

κ̃1Fpdf
= ln(µF ) + Ψ(LF)− ln(LF)−Ψ(MF) + ln(MF)

κ̃2Fpdf
= Ψ(1, LF) + Ψ(1,MF)

κ̃3Fpdf
= Ψ(2, LF)−Ψ(2,MF)

(3)

where µF is a mean parameter, LF and MF are both shape

parameters.



2.1.3. K distribution

The 3 first log-cumulants are given by:

κ̃1Kpdf
= ln(µK) + Ψ(LK)− ln(LK) + Ψ(MK)− ln(MK)

κ̃2Kpdf
= Ψ(1, LK) + Ψ(1,MK)

κ̃3Kpdf
= Ψ(2, LK) + Ψ(2,MK)

(4)

where µK is a mean parameter, LK and MK are two shape

parameters. The special case of K distribution where LK =
MK corresponds to caustic Kc distributions.

2.1.4. Log-Normal distribution

The 3 first log-cumulants are given by:

κ̃1LNpdf
= µLN

κ̃2LNpdf
= σLN

2

κ̃3LNpdf
= 0

(5)

where µLN is a mean parameter and σLN a standard devi-

ation parameter. The log-cumulants of the Log-Normal are

null for all order above 2.

2.2. Representation in the log-cumulant diagram of order

2 and 3

We present in figure 1 the positionning of the distributions

(regions for 3-parameters pdf and lines for 2-parameters pdf).

The large areas covered by Generalized Gamma distributions

and Fisher distributions explain their generic shape (please,

note that the ordinate axis is excluded from the area covered

by GG pdf). Both GG pdf and Fisher pdf areas contain the K
distributions.

To apply an estimation method of the parameters based

on log-cumulants (denoted by LogCum) it is necessary that

the following conditions are fulfilled [10]:
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where Φ(n, x) represents the inverse of the Polygamma of

order n.

3. COMPARISON OF FISHER AND GG PDFS

MIMICKING K DISTRIBUTIONS

3.1. Methodology

3.1.1. LogCum parameter estimation for mimicking pdf

Let us suppose that the K pdf parameters to be mimicked are

unknown (as it is the case in practice). Only samples follow-

ing the K pdf are available (Ns intensity values).
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Fig. 1. Pdf positioning in the κ̃2 − κ̃3 diagram: Generalized

Gamma area (between blue curves excluding ordinate axis),

Fisher area (between gree curves), K area (in grey) and Log-

Normal distributions along the ordinate axis.

Parameter estimation of the mimicking distribution (GG

or Fisher) is realized through the 3 first log-cumulants of the

K pdf:

1. Computation of the empirical log-cumulants κ̂2, κ̂3

then κ̂1 from the samples (see [9]).

2. Identification of these values using analytical expres-

sions of κ̃2GGpdf
, κ̃3GGpdf

then κ̃1GGpdf
(or κ̃2Fpdf

,

κ̃3Fpdf
then κ̃1Fpdf

), to estimate LGG , ηGG then µGG or

LF , MF then µF of the mimicking pdf.

This procedure will be applied in the experimental part to

compare the mimicking capacity of GG and Fisher distribu-

tions.

3.1.2. Kullback-Leibler divergence (KLD) for pdf compari-

son

KLD measures the approximation of P (observation) by Q
(model) :

KLD(Ppdf(x),Qpdf (x)) =

∞∫

0

Ppdf (x) ln

(
Ppdf(x)

Qpdf (x)

)
dx

(8)

We propose to use the mean and standard-deviation of the

KLD values computed between the K pdf and GG pdf (or

Fisher pdf) with the following operating procedure:



1. Definition (i) of an initial parameter set for the K pdf

and (ii) a sample size Ns

2. Generation of many realizations drawn from K

3. For each test sample, (i) estimation of the mimicking

pdf parameters (GG or Fisher) following 3.1.1 and (ii)

computation of the KLD between K and the estimated

distribution

4. Computation of KLD mean (for the accuracy study)

and the KLD variance (for the robustness study).

The smaller the KLD mean the more accurate is the mimick,

the smaller the KLD variance the more robust it is.

3.2. Results

Different situations have been studied to compare the mimick-

ing capacities of GG and Fisher distributions. They are pre-

sented in figure 1, where crosses indicate the 4 processed test

packs leading to similar conclusions. KLD means and sdan-

dard deviations have been computed using 50 realizations and

the test sample size Ns was chosen between 250 et 12 500.

We observe that GG pdf is slightly better than Fisher for

accuracy (KLD means) whatever the sample size, and slightly

better for robustness when the sample size Ns is bigger than

a given sample size (500 pixels for the example presented in

figure 2).

Supposing known the K pdf parameters to be mimicked,

it is possible to compute the KLD values with the mimicking

pdf (using the “true” derived parameters instead of the esti-

mated ones). These are the convergence values of the KLD

means when Ns tends to infinity (indicated in full line on the

figure 2).

A visual analysis of the pdf shapes by superimposition of

the curves on a same figure confirms that both distributions

are very accurate to mimick another one. Again, a slight ad-

vantage for the Generalized Gamma distribution compared to

Fisher for K mimicking is observed.

Fig. 2. Evolution of KLD means and variances related to the

Ns sample size for K mimicking by GG and Fisher pdfs for

the test pack K(1, 1, 3).

4. LIMITS OF THE GG PDF AND RELATIONSHIP

WITH LOG-NORMAL PDF

4.1. Practical and theoretical comments

When using a GG pdf for SAR data modeling, the following

considerations should be taken into account:

(1) The use of LogCum method should be verified (see

equation 6) for GG parameter estimation (see [6] and [10] for

practical cases).

(2) GG is theoretically not defined for ordinate axis so it

should be checked that among the couples (κ̂2GGpdf
, κ̂3GGpdf

)

in the log-cum diagram, none of them is situated along the

Log-Normal axis.

(3) Numerical instabilities during Polygamma inversion

should be kept in mind in some critical areas: along the ordi-

nate axis ηGG parameter tends to zero.

In the following section we propose an alternative solution

to some of these limits.

4.2. Log-Normal pdf as asymtotic limit of GG

In this section it is shown that GG can approximate a Log-

Normal pdf when using an original parameter estimation

method for the mimicking distribution.

By expressingLGG as LGG = SGG

η2
GG

, it can be demonstrated

using Ψ(r, x) ∼ Γ(r)
xr , for x tending to +∞, that:

lim
ηGG→0

κ̃2GGpdf
= lim

ηGG→0

Ψ(1, SGG

η2
GG

)

η2GG
=

1

SGG
(9)

and all the log-cumulants κ̃rGGpdf
of order r strictly superior

than 2 are null, when ηGG tends towards zero.

By identifying the order 1 and 2 log-cumulants of the GG

pdf with those of the Log-Normal, we obtain that 1
SGG

=

σLN
2 and ln(µGG) = µLN when ηGG tends to 0, thanks to

an approximation of the Digamma function Ψ(x) ∼ log(x),
for x tending to +∞.

It is thus shown that the Log-Normal pdf can be defined

as the limit of a GG pdf. The GG pdf is converted in a 2

parameters pdf by imposing a specified expression for LGG .

Complementary mathematical justifications of the limit when

ηGG tends to 0 will be given in the final paper.

Examples of GG pdf mimicking Log-Normal pdf are pre-

sented in figure 3 in the κ̃2 − κ̃3 diagram.

The flatness of the curves around the ordinate axis is re-

lated to the numerical stability of the approximation.
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Fig. 3. Mimicks of the Log-Normal pdf by GG pdf for ηGG
in [−1; 1] and for SGG ∈ {0.9; 1; 1.5} in the log-cumulant di-

agram. The curves representing Gamma and Inverse Gamma

distributions are drawn on both sides of the mimicks for val-

ues LG ∈ [0.9,∞[ and LGI ∈ [0.9,∞[.

5. CONCLUSIONS AND FURTHER WORK

In a first part, we have observed that Generalized Gamma pdf

is slightly more powerful for mimicking capacity than Fisher

through the study of a mimicked reference K pdf. In a second

part, it has been demonstrated that it is possible to approxi-

mate Log-Normal pdf through GG pdf by choosing a specific

parametrization.

Further work includes a more general study of the mim-

icking capacity and an experimental validation using real

samples of high resolution SAR images.
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