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Abstract

Tone mapping operators (TMO) have recently raised in-
terest for their capability to handle illumination changes.
However, these TMOs are optimized with respect to percep-
tion rather than image analysis tasks like keypoint detection.
Moreover, no work has been done to analyze the factors af-
fecting the optimization of TMOs for such tasks. In this paper,
we investigate the influence of two factors– Correlation Coef-
ficient (CC) and Repeatability Rate (RR) of the tone mapped
images for the optimization of classical Retinex based models
to enhance keypoint detection under illumination changes.
CC-based optimized models aim at increasing the similarity
of the tone mapped images. Conversely, RR-based optimized
models quantify the optimal detection performance gains. By
considering two simple Retinex based models, i.e., Gaussian
and bilateral filtering, we show that estimating as precisely
as possible the illumination, CC-based optimized models do
not necessarily bring to optimal keypoint detection perfor-
mance. We conclude that, instead, other criteria specific to
RR-based optimized models should be taken into account.
Moreover, large gains in performance with respect to existing
popular TMOs motivate further research towards optimal
tone mapping technique for computer vision applications.

Index Terms

High dynamic range imaging, keypoint detection, tone
mapping, Retinex.

1. Introduction

The ability to capture and reproduce detailed information
over a large range of radiance values has brought potential
interest in high dynamic range (HDR) imagery for several
computer vision problems like object tracking, face recog-
nition and privacy protection [1–3]. A key advantage of
using this technology is its robustness to drastic illumination
changes which has been lately studied in the context of
keypoint detection [4–6].

Conventionally, keypoint detection [7], which is the pri-
mary step in many computer vision processing pipelines, has
been designed and optimized with respect to low dynamic
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range (LDR) imagery, generally represented using 8-bit in-
teger pixel values. Conversely, HDR pixels are real-valued
and proportional to the physical luminance of the scene,
expressed in cd/m2. As a result, in order to employ conven-
tional keypoint detection schemes, one feasible solution is to
convert HDR images in a suitable 8-bit LDR representation.
This is achieved through tone mapping operators (TMO) [8].
Traditionally, TMOs have been designed to display HDR
content on LDR displays. As a consequence, they mainly
aim at reproducing scenes which appear natural and visually
pleasing [9,10].

Recent studies [4,6] reveal that visually optimized TMOs
do not perform consistently well for keypoint detection in
the presence of challenging transformations such as scaling,
rotation or illumination. Indeed, in image analysis tasks the
performance criteria are not related to visual appearance but
to task-specific measures like keypoint repeatability rate [7].
However, there are some TMOs which perform better than
the others.

A potential class of TMOs includes Retinex based ap-
proaches [11,12]. A Retinex based model normalizes the
estimated luminance from the given HDR radiance map,
thus the resulting reflectance image is assumed to retain
the fine details present in the scene. However, Retinex is
a mathematically ill-posed problem [13]. As a consequence,
the obtained reflectance maps are not exact. Furthermore,
these perceptually optimized Retinex [11,12] based TMOs
aim at finding a visually pleasing reflectance map (consider-
ing certain luminance assumptions) for a single scene. On the
contrary, keypoint detection performance is evaluated on test-
reference image pairs. Therefore, it is evident that Retinex
based tone mapping models need to be optimized for efficient
keypoint detection. Above all, there is no related work in the
literature aiming at designing or comprehending the criteria
involved for a detection-optimized tone mapping technique.

In light of these observations, this paper targets two major
questions: if the Retinex based models are optimized for
keypoint detection in lighting change scenario, what are
the influential factors for optimization, and what are the
corresponding gains.

Motivated by these questions, we propose to investigate
the optimization of Retinex based models using two factors:
Correlation Coefficient (CC) and Repeatability Rate (RR)
of reflectance images obtained as a result of Retinex based
TMs. In addition, we propose to employ the image pair-
wise optimization strategy, contrary to single image tuning
of traditional tone mapping techniques.



The CC measures the statistical similarity between a pair
of reflectance maps. Theoretically, a CC-optimized Retinex
based TMOs should improve keypoint detection performance
as a high similarity of reflectance image pairs should increase
the probability of detection of similar keypoints. In simple
words, the CC-optimized models help analyzing the relation-
ship between statistical correlation of the reflectance image
and the keypoint detection performance. On the other hand,
our second optimization factor RR is a conventional per-
formance measure of keypoint detection algorithms. Hence,
we argue that optimization of a TMO with respect to the
corresponding RR could estimate the optimal detection per-
formance gains. RR is computed on repeated occurrences of
detected keypoints in test and reference images.

To evaluate our optimization methods, we consider two
popular Retinex based Gaussian [11] and Bilateral [12]
models. We choose these models mainly because they are
simple (less parametric dependency and easy to tune), most
widely used and less computationally complex. In addition,
we test our optimized approaches using HDR image dataset
with illumination changes datasets [4] and two classical
corner and blob detection schemes (Harris and SURF) for
keypoint detection. Undoubtedly, there are many Retinex
based models and keypoint detection techniques in the litera-
ture, but they are beyond the scope of this paper. We mainly
focus on the factors for optimizing TMOs that can impact
the keypoint detector performances.

In this paper, we optimize both considered Retinex models
with respect to CC and RR and record the performance for
the task of keypoint detection. Henceforth, we address the
relationship between each of the optimized models and the
keypoint detection performance which is essential to redefine
the modeling strategy needed for the keypoint detection-
optimized tone mapping technique. In addition, we explicitly
compare different existing local and global high performing
TMOs, as provided in previous studies [4,6], with our RR
based optimized tone mapping models and record substantial
gains with our RR-optimized models.

The paper is organized as follows. In Section 2 we
provide the details of the evaluation framework. We present
the experimental results and analysis in Section 3. Finally,
the conclusions are drawn in Section 4, along with future
research directions.

2. Evaluation Framework

In this section, we first detail the considered Retinex based
models used in our evaluation. Next, we briefly discuss the
considered feature detection methods, followed by metrics
and dataset selection. Finally, we detail the optimization
strategies of considered models.

2.1. Considered Retinex Based Models

Retinex based algorithms have been used for several
applications including dynamic range compression. However,
the goal has been limited to visual perception [11,12].
According to Retinex theory of physical image modeling,

(a) Original (I)

(b) Gaussian (Lg) (c) Bilateral (Lb)

(d) Gaussian Reflectance (Rg) (e) Bilateral Reflectance (Rb)

Figure 1: Reflectance images Rg and Rb from original image
I using the Gaussian and Bilateral luminance maps Lg and Lb
respectively.

we assume that I , the HDR image to be tone mapped, is the
product of the luminance L of the scene (which varies with
different illumination conditions) and of the reflectance R
characterizing objects of the scene, i.e., I = R · L. The lu-
minance L is generally assumed to be spatially smooth [14],
while reflectance contains fine-grained details, texture and
edges which are relevant for detection [7,15]. Nevertheless,
estimating L from a single image I is a well-known ill-posed
and computationally expensive problem [13], which has been
studied for many decades [16]. Once L is estimated, the final
reflectance image is given by R = I/L.

In this paper, we employ two well-known approaches
using: a) Gaussian model [11] and b) Bilateral model [17]
for tone mapping. In the following, we briefly describe these
luminance estimation models for our TM technique:

a). Gaussian tone mapping (GTM) model gives the
reflectance image Rg as Rg = I/Lg where

Lg = I ∗Gσ, (1)

where Gσ is a Gaussian filter where the parameter σ depends
on image size [m × n], i.e. σ = α · max(m,n). When
targeting visual perception, the parameter σ is tuned so as
to reduce visual artifacts like halos observed around the
detected edges. This model with single parameter is simple
and computationally very fast.

b). Bilateral tone mapping (BTM) model is a a precise,
non-linear and edge preserving filter where Rb is computed



as Rb = I/Lb. The luminance estimation Lb(x) is given as:

Lb(x) =
1

N

∑
y∈S

Gσs(‖x− y‖) ·Gσr (‖Ix − Iy‖)Iy, (2)

where x and y are pixel locations, S is the set of neigh-
borhood locations, Gσr and Gσs are Gaussian filters with
variances σr and σs referred to as range and spatial param-
eter respectively. N is a normalization factor term :

N =
∑
y∈S

Gσs(‖x− y‖)Gσr (‖Ix − Iy‖). (3)

It is important to note here that when the range parameter
increases, the model gradually approaches Gaussian convo-
lution. This is mainly because the Gaussian Gσr widens
and flattens, and essentially, it becomes nearly constant over
the intensity interval of the image. Conversely, when the
spatial parameter increases, the larger details like edges get
smoothened in the image.

An example of luminance estimation with their corre-
sponding reflectance image is shown in Figure 1.

2.2. Keypoint point detection

Keypoint detection has been widely studied in computer
vision literature where several techniques have been proposed
and evaluated [7] taking into account different challenging
transformations. In this paper, we focus on the two most
widely used keypoint detection schemes, i.e., corner and blob
detectors. We select two common detectors that have been
used in previous HDR imagery based evaluations [4,5] and
are often used in several real-time applications. For corner
interest point detector, we employ the popular Harris corner
point detector [18], which is based on the autocorrelation
score computed from local intensity change in an image. For
blob detection, we carried out experiments with the highly
robust SURF[19] detector. We used MATLAB’s Computer
Vision System Toolbox for both Harris and SURF keypoint
detection, where we can select the strongest n keypoints
based on their strengths.

2.3. Metrics

In this study, we build our contribution using following
metrics.

• Repeatability Rate (RR) is a standardized method de-
tailed in [7] to measure the detector accuracy. It is given
as the fraction of keypoints detected in the reference
image which are repeated in the test image to the
minimum of a total number of detected points in test or
reference image. A keypoint is considered to be repeated
in the test image if: a) it is detected as a keypoint
in the test image, and b) it lies in a circle of radius
ε centered on the projection of the reference keypoint
onto the test image. ε determines the keypoint detection
error rate. RR is given as Qi(ε)

min(nr,ni)
, where Qi(ε)

is the number of keypoints detected in the reference
image which are repeated in the test image, nr, ni is

5 10 15 20 25 30
0.5

0.55

0.6

0.65

0.7

0.75

σ

C
C

(a) CC-GTM

σ
s

σ r

 

 

9  22 45 90 135
0.1

0.4

0.7

1  

0.5

0.55

0.6

0.65

0.7

0.75

(b) CC-BTM

Figure 2: Parameters vs Correlation Coefficient (CC) for Project
Room dataset. (a) σ vs CC for Gaussian tone mapping (GTM)
model. (b) σr and σs contours for Bilateral tone mapping (BTM)
model with color magnitudes showing average CC scores.

the number of detected keypoints in reference and test
image respectively.

• Correlation Coefficient (CC) is well-known to quantify
the strength of a linear relationship between two vari-
ables. In this study, CC metric measures the correlation
between two image maps. Value close to 1 indicates
a positive linear relationship and 0 corresponds to no
relationship between image maps.

2.4. Datasets

We considered the HDR dataset with substantial illumi-
nation changes proposed in our previous work [4]. It is
composed of 2 parts: Project-Room with 8 lighting condi-
tions and Light-Room with 7 lighting conditions. The Project
Room dataset is more challenging in terms of lighting trans-
formations, textured objects and stark shadows whereas Light
Room dataset is comparatively simpler with less challenging
illumination conditions.

2.5. Optimization of Retinex models

Let I1(x) and I2(x) be two images of the same scene
which is illuminated by two different illumination maps
L1(x) and L2(x). According to Retinex theory I1(x) =
L1(x) · R1(x) and I2(x) = L2(x) · R2(x). An ideal
Retinex algorithm estimates L1(x) and L2(x) such that two
corresponding reflectance maps are equal R1(x) = R2(x).
In such an ideal scenario, keypoint detection performance
should be enhanced considerably as the keypoints in re-
flectance maps would be identical.

However, Retinex is a mathematically ill-posed prob-
lem [13]. In practice, it often implies that R1 6= R2. Besides
this, all perceptually optimized Retinex based models aim at
finding the best luminance estimation for a given scene such
as I1 = L1 · R1, rather than optimizing on aforementioned
image pairs like (R1, R2) which is the classical way of
measuring keypoint detection performance.

Therefore, we firstly investigate the maximization of the
correlation between reflectance image pairs. The motivation
is that highly correlated reflectance maps should result in
detected keypoints that are alike, thereby, enhancing the
keypoint repeatability. Alternatively, we also investigate the
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Figure 3: Parameters vs Repeatability Rate (RR) for Project
Room dataset. (a) σ vs RR for both SURF and Harris detector
for repeatability rate Gaussian TM (RRGTM). (b) σr and σs
contours for Harris detector and (c) for SURF detector for
repeatability rate Bilateral TM (RRBTM) with color magnitudes
showing RR scores.

optimization of the considered models with respect to re-
peatability rate which will help to analyze the maximum
gains achievable with conventional TMOs.

In summary, we optimize the considered Retinex based
GTM and BTM models in two ways: 1) with respect to
correlation of reflectance maps of image pairs and, 2) with
respect to detector repeatability. For the first method, we
iteratively optimize the GTM and BTM models parameters
with respect to CC on both datasets using each detector. More
specifically, we iteratively tune the parameter σ for GTM and
σs, σr for BTM with the aim of maximizing the overall CC
using each detector.

Correlation based parameter tuning for Project Room
dataset illustrated in Figure 2 (a). It depicts that for
GTM, a higher σ, i.e. high variance Gaussian blur,
minimizes the absolute differences between the re-
flectance image pairs. The same observation also holds
for range and spatial parameters of BTM model as
shown in Figure 2 (b). Thereafter, using these corre-
lation based optimized models, we generate the tone
mapped images as correlation-coefficient-Gaussian-tone-
mapping (CCGTM) and correlation-coefficient-Bilateral-
tone-mapping (CCBTM) for both datasets.

For the second method of optimization with respect to
detector repeatability, we tune the GTM and BTM parameters
with the aim of maximizing the overall repeatability rate
(RR) of keypoints using both Harris and SURF detec-
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(b) Response Map

Figure 5: Scatter plots. (a) correlation coefficients of re-
flectance maps CC(Ri, Rj) vs corresponding repeatability
rate RR(Ri, Rj), (b) correlation coefficients of response
maps CC(Respm, Respn) vs corresponding repeatability rate
RR(Rm, Rn) for HDR log-encoded Project room dataset.

(a) Image (b) Response Map

Figure 6: An example showing (a) image and its corresponding
(b) Harris response map.

tor. Corresponding results are shown in Figure 3 (a) for
the Gaussian model, and in Figure 3 (b) and (c) for the
Bilateral model. Similarly, we generate the tone mapped
images, repeatability-rate-Gaussian-tone-mapping (RRGTM)
and repeatability-rate-Bilateral-tone-mapping (RRBTM), for
both datasets and using each detector.

3. Experimental Results and Discussion

We evaluate the CCGTM, CCBTM, RRGTM, RRBTM
optimized tone mappings models for keypoint detection using
Harris and SURF detectors in Figure 4(a),(b). Additionally,
we compare 5 different local and global high performing
TMOs [9–12,20] with our RRGTM and RRBTM tone map-
ping models as shown in Figure 4(c),(d).

For each TM, we measure the overall keypoint detection
accuracy using the RR performance metrics. Initially, we
compute the individual RR using a particular detector over
all the possible images pairs for each scene (Light Room and
Project Room), i.e., each lighting condition of a scene is, in
turn, the reference and the other conditions of that scene
are the test images. Thereafter, we compute the average of
RR over all such possible image pairs (52 pairs for Project
Room and 42 pairs for Light Room) for a particular scene.
Similar to [4,6], our keypoint detection scheme is confined
to the strongest 1000 keypoints. This is mainly to ensure
a fair comparison of the blob or corner keypoint detection,
as different detectors result in a highly different number of
keypoints. We use a fixed detection error rate, i.e. ε = 3px,
which is .03% of image size (see section 2.3).

CC vs RR based optimization. We observe from Fig-
ure 4(a),(b) that CCGTM and CCBTM records substantial
gap in performance with respect to RRGTM and RRBTM
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Figure 4: Row 1. (a) and (b) Average repeatability score and standard deviation for both correlation and response based optimized
approaches using Harris and SURF detector respectively. Row 2. (c) and (d) Average repeatability score and standard deviation for the
reflectance models (GTM and BTM) and other commonly used TMs on Project Room and Light Room dataset

using both Harris and SURF detectors. We can conclude
that high correlation between reflectance image pairs does
not directly guarantee the stability of keypoint detection.
However, this can be explained as follows. Keypoints are
selected after thresholding the response map, which depict
the probability of a pixel to be detected as a keypoint,
generally relying on second order derivatives. An example
of response map using Harris detector [18] is shown in
Figure 6, where high pixel values indicate higher likelihood
to be considered as keypoint. As a consequence, local key-
points are in general sparingly distributed in detailed areas
of an image. This process is much more complex than a
simple statistical correlation computed at the pixel level.
This is further illustrated in Figure 5. It can be observed
that correlation of response maps CC(Respm, Respn) are
linearly proportional to RR, whereas, the correlation of
the reflectance image maps CC(Ri, Rj) shows scattered
behavior. Therefore, this leads to the major conclusion of this
study. In order to design a keypoint-detection-optimal tone
mapping, the traditional Retinex based approaches need to
take into account the detector response maps while estimat-
ing the reflectance images for a given scene.

Comparison with Traditional TMs. From
Figure 4(c),(d), we show that optimizing the traditional
Retinex models in Eqs (1) and (2), RRGTM and RRBTM

respectively, lead to large performance gains in terms of
RR when compared to existing local and global TMOs. It
shows the necessity to optimize the tone mapping operators
with respect to detection tasks.

Finally, we also observe that the performance gains are
significantly larger for Project Room than Light Room. This
is mainly due to the fact that lighting transformations are
much smaller for Light Room dataset, which entails less
performance variations in RR when comparing different tone
mappings.

4. Conclusion

In this paper, we have presented the impact of two factors:
Correlation Coefficient (CC) and Repeatability Rate (RR),
for the optimization of Retinex based models, aiming at
enhancing the keypoint detection performance under drastic
lighting change scenarios. The proposed image-pair based
optimized models are tested for real HDR lighting change
datasets using two classical (Harris and SURF) detectors.
The CC-based optimized models maximize the similarity
of Retinex-resulting-reflectance images and RR-based op-
timized models determine the optimal performance gains.
Our tests demonstrate the advantage of using optimized
models over perceptually motivated models for keypoint de-



tection task. Furthermore, our study suggests that a keypoint
detector-based optimized TMO has a lot of potential as CC
based optimized models lag behind the RR optimized models
by a large margin. To this end, we find that detector response
maps (which are the components of keypoint detection
schemes) can somehow be exploited to achieve this goal. In
future, we plan to extend this work by designing an optimal
Retinex based tone mapping operator for keypoint detection,
which takes into consideration the detector response maps.
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