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Abstract—As 3D media became more and more popular over
the last years, new technologies are needed in the transmission,
compression and creation of 3D content. One of the most
commonly used techniques for aiding with the compression and
creation of 3D content is known as view synthesis. The most
effective class of view synthesis algorithms are using Depth-
Image-Based-Rendering techniques, which use explicit scene
geometry to render new views. However, these methods may
produce geometrical distortions and localized artifacts which
are difficult to evaluate as they are inherently different from
encoding errors and they are perceived differently by human
subjects. In this paper, we propose a region-of-interest evaluation
technique for view synthesis based on DIBR methods. Based on
the assumption that certain areas determined by the geometrical
properties of the scene are prone to distortions, we select aROI by
analyzing the multiple DIBR methods together with the ground
truth. The approach is tested using a subjective evaluationview
synthesis database and show that our method improves the SSIM
correlation with subjective scores We also test another similar
method and traditional metrics.

Keywords—View Synthesis; Visual quality assessment; Multi-
View Video; SSIM; Depth-Image-Based-Rendering

I. I NTRODUCTION

In the past years 3D content has become more and more
popular. As display technology advances, 3D content is now
available to the large public and can be enjoyed on most
modern television sets. This created a need for efficient com-
pression and transmission systems for 3D information and
new algorithms for the creation of 3D movies or 2D to 3D
conversion. Some of the most common applications that in-
volve 3D information are free view point television (FTV) [1],
immersive teleconference systems, medical applications and
gaming [2].

Several new formats for 3D information representation ex-
ist. Some of the most popular include stereo video, MultiView
Video (MVV) and Multiview-Video-plus-Depth (MVD) [3].
While stereo video allows a user to experience the sensation
of depth, MVV and MVD formats provide additional options
such as changing the point of view on the scene or varying
the perception of depth. The latter two formats both consistof
a number of video sequences acquired in parallel at different
points of view of the same scene. In the case of MVD, these
texture sequences are also accompanied by depth information
in the form of depth maps. Because of this, MVD format sup-
ports the creation of virtual view points of the scene by means
of Depth-Image-Based-Rendering (DIBR) techniques [4].

The process of generating a video sequence or an image as

if acquired from a new point of view from existing sequences
or images is known asview synthesis. Several methods exist in
the literature and can be mainly divided into three categories
based on the use of geometrical information:i) Methods that do
not require geometrical information and use interpolationand
filtering to synthesize new views. Some of the most popular
ones include light field rendering [5], concentric mosaics [6]
or lumigraph [7],ii) Methods that use implicit geometry such
as pixel correspondences computed with optical flow or any
other motion estimation technique [8],iii) and finally, methods
that use explicit scene geometry in the form of depth maps,
to warp pixels from one view into a virtual one [9] [10]. The
later category received great interest as it provides a fastand
efficient way of generating multiple views.

In the past years, the Moving Picture Experts Group
(MPEG) began developing a 3D extension of the High Effi-
ciency Video Coding (HEVC) standard [11], to meet the need
for an MVD coding standard. An experimental framework for
3D video was developed [12] and a 3D-HEVC test model
(3D-HTM) [13] was build. The model also incorporates a
View Synthesis Reference Software (VSRS-1DFast), which
uses DIBR techniques to render new views from the texture
information and associated depth maps.

However, the quality of the virtual views is greatly affected
by multiple factors. A first issue is related to areas in the
virtual view which are not visible in the reference views,
as no information is available and they manifest as holes
in the synthesized image. These areas are also known as
disocclusions. They can be divided in two types based on
their location: border or non-border disocclusions [14]. The
first category are produced by the displacement of the field of
view and are located on the sides of the images. The second
category appears around foreground object edges. In order to
avoid non-border disocclusions it is usually preferred to merge
two synthesized views from a left and a right reference view.
However, parts of the non-border disocclusions may coincide
in the merged views. Traditionally this problem is resolved
using inpainting algorithms such as [15] [16] [17]. Other
methods propose a preprocessing of the depth maps in order to
reduce the size of disocclusions [18], [19]. When working on
video sequences, temporal correlations can also be exploited to
retrieve information on disoccluded areas [20] or a background
extraction can be performed [21] [22].

Other types of artifacts specific to DIBR methods are
caused by the depth maps quality. In addition to coding
artifacts, depth maps are generally not perfect and may contain
noise. This can lead to different types of artifacts in the



synthesized image. A common problem is the texture-depth
alignment which may lead to pixels belonging to a foreground
object to be warped as if they are part of the background or
vice-versa. Another issue is related to the precision of thedepth
which may cause small ”cracks” in the synthesized image due
to incorrect displacement of pixels. Finally, depths maps are
also subjected to a quantization process as real depth values are
not actually stored, they are usually quantized to256 levels.
In general, this problems appear in areas where depth maps
are not uniform (i.e. foreground/background separation).

Because the artifacts produced by synthesis are inherently
different from those of encoding, evaluating the quality of
synthesis in systems using DIBR rendering is not a trivial
matter. Especially, considering the final goal of such systems
is to provide a 3D experience. The Video Quality Expert
Group (VQEG) created the 3DTV Work Group, which is
now part of the Immersive Media Group [23], to conduct
experiments on the quality of 3D media. Numerous studies
were made to address the problem of synthesized video
evaluation. Tikanmakiet al. [24] studied the assessment of 3-
D encoded video, the authors also considered the synthesized
view quality. Boscet al. [25] studied the quality of DIBR
synthesis and proposed two approaches based on a region of
interest (ROI) evaluation. A first method analyzes the contours
shifts in the synthesized view and a second one focuses on
evaluating the mean SSIM score over disoccluded areas. Purica
et al. [26] study the difference between encoding and synthesis
artifacts and propose a ROI based SSIM by separating between
encoding errors coming from the reference view and distortion
caused by the DIBR warping process. In this paper we extend
the ideas presented in [26] and propose a new ROI generation
technique for SSIM evaluation of synthesized videos. Next,
we perform a study of the results using a subjective evaluation
database in order to validate our assumptions.

The rest of this paper is organized as follows. Section II
motivates and shows the proposed evaluation technique. Sec-
tion III-A describes the subjective evaluation database used
for validating this technique. In Sections III-B and III-C we
describe our testing methodology and report our experimental
results. Finally, Section IV concludes the paper.

II. TOWARDS A REGION OF INTEREST EVALUATION

As discussed in Sec. I synthesized videos can have multiple
types of artifacts which affect the quality of the image in dif-
ferent ways. DIBR synthesis methods compute pixel disparity,
from depth map sequences, and then warp the images from the
reference view into a new view. Depth maps are usually stored
as video sequences and the values are inversely quantized to
256 levels with respect to real scene depth. In the case of
aligned camera systems the disparity is easily obtained using
the following equation:

d(k) = f · B
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wheref is the focal length of the camera,B is the distance
between view points,Zmin, Zmax are the minimum and
maximum depth of the scene andk = (x, y) is a position
in the image. Because depth maps are subjected to distor-
tions from the acquiring device or transmission systems, the
synthesized image can be subjected to geometrical distortion

of foreground objects and also poor reproduction of complex
textures. As noted in other studies [26] [25] [27], traditional
metrics such as PSNR or SSIM may not be the best way to
asses the quality of synthesized images. This behavior can be
explained by the strong correlation between scene geometry
and position of highly distorted areas. In Figure 1 we depict
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Fig. 1. Absolute error color map for frame 93 of Newspaper sequence. View
6 synthesized from view 4 using [4].

a gray scale representation of the absolute errors of frame 93
of Newspaper sequence synthesized using [4]. Black indicates
an absolute error higher than50 while white represents an
absolute error of0. It is easily noticeable that the absolute
errors are not uniformly distributed throughout the image and
are concentrated in certain critical areas. In this exampleview 6
was synthesized from view4. We can see a large concentration
of high errors on the left side of the image. This is consistent
to a border disocclusion which was filled with an inpainting
algorithm. Furthermore, highest errors are concentrated around
foreground objects and there exists a high correlation between
scene geometry and high distortions. Areas that have the same
depth and uniform textures are usually represented without
distortions, while foreground object edges and more complex
textures have a high distortion. Also, we can notice that not
all contours are equally distorted. In this example right most
edges of objects tend to have a higher distortion. This behavior
can be attributed to the direction of the synthesis from view4
to view 6, which results in holes on one side of the foreground
objects. This type of spatial error distribution is usuallysimilar
in most DIBR methods. Because of this, using a ROI when
evaluating the quality of synthesis methods may provide a
better indication of a method’s performance.

Given the goal of evaluating multiple synthesis methods the
ROI can be selected as discussed in Section I by thresholding
the absolute error or analyzing contours. Another possibility
which may provide good results is to look at areas that are
rendered differently by the methods which we want to evaluate.
This is a reasonable assumption as background areas with non
complex texture are usually identical in most synthesis meth-
ods and do not affect the quality of the image. Also areas that
are rendered identically by multiple methods do not provide
any differentiation between the tested DIBR algorithms.

Consider a number of distorted imagesI
d

1
, Id

2
, .., Id

n
. Each



image is a synthesis of the same view using the same reference
and one ofn methods. We defineP as:

P(x, y) = std([Id1(x, y), I
d

2(x, y), .., I
d

n(x, y)]) (2)

where (x, y) denotes a position in the image and std is the
standard deviation.

The binary mask of the ROI can be expressed as:

B(x, y) =

{

1 if P(x, y) > τ · mean(P)

0 if otherwise
(3)

whereτ is a coefficient used to balance the selection and mean
is the average value ofP .

As the ground truth is also available when computing
the ROI, it is possible to include it in the computation.
Including the ground truth in the computation does not provide
information towards differentiating the methods. However, it
may lead to a more balanced selection of critical areas by
taking into account not only regions which differ in the tested
methods but also regions that have a relatively high distortion
in all methods. This way, the score will also reflect the global
quality of a synthesized image instead of only with respect to
the tested methods.

P(x, y) = std([Id1(x, y), .., I
d

n(x, y), I
r

1(x, y), .., I
r

m(x, y)])
(4)

whereIr is the reference used to compute the metric andm
is the number of times we add the ground truth. Due to a
variable number of methods that can be evaluated in parallel,
the ground truth needs to be weighted. In our experiments we
used a weight of1/6 (i.e. the ground truth was added once).
However, in this case, the mask will have a lot of noise in
the form of localized pixels selected for evaluation. Because
the artifacts depend on the structure of the scene it is best
to remove single pixels and also consider the neighborhood
of the critical areas. This can be achieved by performing an
erosion and dilation operation on the binary mask. In order
to extend the initial ROI, the dilation operation should usea
larger morphological structuring element. In our tests we used
a 2x2 square element for the erosion and a7x7 square element
for the dilation. This values were selected empirically.

III. E XPERIMENTAL RESULTS

In this section we report our findings using the ROI eval-
uation technique described in Section II and use a subjective
evaluation test database to validate the results. The first part
of this section will describe the subjective evaluation database.
The second part describes the methodology and finally, the
results are discussed in the last part.

TABLE I. SEQUENCES USED IN OUR EXPERIMENTS

Sequence Resolution
Frames per

second
Number of

frames Views

Book arrival 1024 × 768 15 100 8 9 10
Lovebird 1024 × 768 30 150 6 7 8

Newspaper 1024 × 768 30 200 4 5 6

A. Subjective evaluation database used in our experiments

In order to validate this technique we use a view synthesis
subjective evaluation database available at [28]. The tests were
performed using Absolute Categorical Rating with Hidden
Reference Removal (ACR-HR) [29] with 32 subjects. Three
multiview video sequences were used: Book arrival, Lovebird,
Newspaper. Sequence details are reported in Table I. For each
sequence there are three views used in the experiments: a left,
center and right view indicated in Table I. Four synthesized
views are generated for each sequence: left→right, right→left,
left→center, right→center. Each synthesis is then performed
using the seven methods described below:

A1: based on [30]. Depth map preprocessed by a
low pass filter, borders are cropped and the image
is resized to the original resolution.

A2: based on [30] with inpainting algorithm pro-
posed by Telea [31]

A3: Tanimotoet al. [32], View Synthesis Reference
Software (VSRS).

A4: Muller et al. [33], depth aided inpainting
A5: Ndjiki-Nya et al. [34], hole-filling using a

patch-based texture synthesis.
A6: Koppelet al. [35], synthesis is improved in dis-

occluded areas using depth temporal information
A7: the disoccluded areas are not filled

Additional details on the database and an extensive study
can be found in [36].

B. Testing methodology

In order to validate the results obtained with the proposed
technique we want to evaluate all sequences and views, syn-
thesized with each method. However, as the authors of [28]
also notice there are some outliers in the methods. Method
A1 has the highest scores in the subjective tests while all
objective metrics indicate this method is by far the worst. This
is due to the method not using any inpainting algorithms to
fill the disoccluded areas. The borders are cropped and the
image is rescaled. The non-border disocclusions are avoided
by performing a low-pass filtering of the depth map. While the
final result is an image with no localized impactful artifacts,
it cannot be used for 3D viewing, as the geometry of the
scene no longer corresponds to the reference. These resultsalso
point out to the subjects inclination to notice localized artifacts
more easily than a global change in the frame which further
motivates the use of ROI evalution in synthesis methods. Since
we analyze view synthesis for its capability of producing 3D
content, we will not use this method in our results.

In our tests we use three quality evaluation metrics: Struc-
tural SIMilarity index (SSIM) [37], Peak-Signal-to-Noise-
Ratio (PSNR) and Multi-scale SSIM (MSSIM) [38]. For
each metric we apply the region of interest we described
in Section II and the one proposed by Boscet al. in [25].
For our method we use multiple variants: proposed mask (P)
without erosion/dilation (e/d) or ground truth (GT); P withe/d
and P with both e/d and GT. To measure the performance of
each metric we compute the average values across frames for
each sequence/view/method (3 × 4 × 6). In [25] the authors
selected four critical points (subjective vs objective results)
to evaluate the method. Our tests will be performed on all



(a) Reference (b) Synthesis withA3

(c) [25] (d) Proposed

(e) Proposed+e/d (f) Proposed+GT+e/d

Fig. 2. Book arrival sequence view 10 synthesized from view 8with methodA3. Luminance frames and binary masks for the proposed methodsand [25].
Black pixels are selected for evaluation.

TABLE II. PCC, SROCCAND RMSEFOR NON-ROI, [25] AND OUR PROPOSED METHODS USINGSSIM, PSNRAND MSSIM

Metric Non-ROI [2] P P+e/d P+GT+e/d
PCC SROCC RMSE PCC SROCC RMSE PCC SROCC RMSE PCC SROCC RMSE PCC SROCC RMSE

SSIM 60.85 49.94 47.16 61.29 58.64 47.08 70.18 65.28 42.34 69.00 56.63 43.02 68.88 55.46 43.09
PSNR 85.97 77.57 30.36 68.52 32.55 43.29 71.66 67.18 41.45 74.31 68.32 39.77 82.26 79.20 33.79
MSSIM 80.10 65.89 35.58 68.67 38.35 43.21 73.86 70.69 40.07 72.11 67.4 41.18 77.18 67.81 37.79

points using the Difference Mean Opinion Score (DMOS). The
performance indicators we use are Pearson Correlation Coef-
ficient (PCC), Spearman’s Rank Order Correlation Coefficient
(SROCC) and the Root-Mean-Squared-Error (RMSE). Before
computing the PCC we will perform a fitting of the results
using the recommended nonlinear function from VQEG Phase
I final report [39]:

Y = β2 +
β1 − β2

1 + exp
−

X−β3

|β4|

(5)

whereβ1, β2, β3, β4 are parameters,Y are the predicted values
andX are the objective results.

C. Results and discussion

In Figure 2 we show an example of generated masks
for frame 10 of Book arrival sequence, view 10 synthesized
from 8. Figures 2(a) and 2(b) show the reference and the
synthesized frame with methodA3. The filled dissoccluded
areas are easy to notice on the left side of foreground objects
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Fig. 3. Scatter plots of objective results for SSIM with tested ROIs. Each point is the DMOS against the average objectivescore over all frames for a sequence,
synthesis and method.

and also on the left border of the image. An additional source
of errors which is harder to notice is also a slight displacement
of certain textures on foreground object compared to the
reference (e.g. the desk). Another source of errors is caused by
a slight difference in luminance. This is common with DIBR
synthesis methods. While they are able to warp objects to their
new position in the virtual view, changes in luminance between
views are not accounted. While this types of distortions arenot
visually impactful, as they are difficult to notice, they canhave
an impact on the results of objective metrics and are relevant
to this study.

Figures 2(c), 2(d), 2(e) and 2(f) show the binary masks
for [25], P, P+e/d and P+GT+e/d, respectively. When com-
paring 2(c) and 2(d) we can see that our mask is less noisy
and better adjusted to the scene geometry. Also, the right
side of the image, which corresponds to a border disocclusion
is completely selected, as opposed to [25]. Furthermore, the
texture details of the desk are not selected in our mask, because
this area has a uniform depth and is rendered similarly with all
DIBR methods. Although there is a slight displacement which
will result in high errors, they are hard to notice and are not
critical in differentiating the evaluated methods. Performing the
e/d operation will reduce the isolated patches/pixels selected
in the map while, increasing solid areas. Finally, adding
the ground truth in the mask computation will lead to an
increased selection. We can notice that additional textures are
selected: the desk, the white board and the area surrounding
the clock. In this example, the percentages of selected pixels
are: 7.5%, 11.44%, 17.21%, 33.2% for Bosc [25], P, P+e/d
and P+GT+e/d, respectively. This behavior is similar on other
sequences/views/methods, however, for brevity reasons we
only discuss this example.

In Figure 3 we show the scatter plots for SSIM and ROI
SSIM with the binary masks [25], P, P+e/d and P+GT+e/d,
respectively. Each point represents the DMOS against the
average of the objective score over all frames of a se-
quence/view/method. An improvement can be observed when
using our proposed approach. This is also reflected in the
numerical results reported in Table II. Our methods outper-
forms [25] on all test cases. When compared to the Non-ROI
scores, we are able to outperform SSIM with all proposed
ROIs, while P+GT+e/d show similar performance to PSNR
and MSSIM. A loss is observed with PSNR-P and MSSIM-
P. This behavior can be explained by the use of e/d and
GT. As discussed above the masks will have a larger number
of selected pixels. Also, SSIM is already computed using a
pixel’s neighborhood, thus performing the e/d operation will
allow PSNR-P+GT+e/d to account for the original’s ROI
neighborhood. However, the SSIM score will decrease in this
case as pixels which are further away from the ROI are
evaluated.

Another interesting aspect is the actual implementation for
a ROI evaluation with different metrics. For MSSIM the tests
were performed by rescaling the ROI. However, it is also
possible to recompute the ROI using the rescaled images.
Furthermore, additional metrics can be computed with respect
to a ROI, though, in the case of perceptual based metrics the
way to perform such an evaluation becomes more difficult.

IV. CONCLUSIONS

In this paper we presented a study on the use of ROI in
the evaluation of DIBR based synthesis methods. We proposed
a ROI generation method that can be used with traditional
metrics, such as SSIM, PSNR and MSSIM. We validated



this technique using a publicly available subjective evaluation
database, for view synthesis methods, and showed that we can
improve the objective results of SSIM, while maintaining simi-
lar results for PSNR and MSSIM when compared to subjective
scores. Future directions may include finding a better threshold
for the ROI selection by taking into account perceptual aspects
or finding ways to use a ROI for perceptual metrics. Another
study direction is to perform extensive subjective tests for
view synthesis using more methods and also encoded reference
views and depth maps.

REFERENCES

[1] M. Tanimoto, M. P. Tehrani, T. Fujii, and T. Yendo, “Free-Viewpoint
TV,” IEEE Signal Processing Magazine, vol. 28, pp. 67–76, 2011.

[2] F. Dufaux, B. Pesquet-Popescu, and M. Cagnazzo, Eds.,Emerging
technologies for 3D video: content creation, coding, transmission and
rendering. Wiley, May 2013.

[3] P. Merkle, A. Smolic, K. Muller, and T. Wiegand, “Multi-view video
plus depth representation and coding,”IEEE International Conference
on Image Processing, vol. 1, pp. 201–204, 2007.

[4] C. Fehn, “A 3D-TV approach using depth-image-based rendering,”
in 3rd IASTED Conference on Visualization, Imaging, and Image
Processing, Benalmadena, Spain, 8-10 September 2003, pp. 482–487.

[5] M. Levoy and P. Hanrahan, “Light field rendering,” in
Proceedings of SIGGRAPH, ser. SIGGRAPH ’96. New York,
NY, USA: ACM, 1996, pp. 31–42. [Online]. Available:
http://doi.acm.org/10.1145/237170.237199

[6] H.-Y. Shum and L.-W. He, “Rendering with concentric mosaics,” in
Proceedings SIGGRAPH, Los Angeles, California USA, 1999, pp. 299–
306.

[7] C. Buehler, M. Bosse, L. McMillan, and S. Gortler, “Unstructured
Lumigraph Rendering,” inProc SIGGRAPH, Los Angeles, California
USA, August 2001, pp. 425–432.

[8] F. Dufaux, M. Cagnazzo, and B. Pesquet-Popescu,Motion Estimation
- a Video Coding Viewpoint, ser. Academic Press Library in Signal
Processing, R. Chellappa and S. Theodoridis, Eds. AcademicPress,
2014 (to be published), vol. 5: Image and Video Compression and
Multimedia.

[9] L. Zhan-Wei, A. Ping, L. Su-xing, and Z. Zhao-yang, “Arbitrary view
generation based on DIBR,” inInternational Symposium on Intelligent
Signal Processing and Communication Systems (ISPACS), Xiamen,
People’s Republic of China, 2007, pp. 168–171.

[10] C.-M. Cheng, S.-J. Lin, S.-H. Lai, and J.-C. Yang, “Improved novel view
synthesis from depth image with large baseline,” in19th International
Conference on Pattern Recognition (ICPR), 2008, pp. 1–4.

[11] “High Efficiency Video Coding,” ITU-T Recommendation H.265 and
ISO/IEC 23008-2 HEVC, April 2013.

[12] “Report on experimental framework for 3D video coding,” ISO/IEC
JTC1/SC29/WG11 MPEG2010/N11631, October 2010.

[13] L. Zhang, G. Tech, K. Wegner, and S. Yea, “3D-HEVC test model 5,”
ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11 JCT3V-E1005, July
2013.

[14] S. Huq, A. Koschan, and M. Abidi, “Occlusion filling in stereo: theory
and experiments,”Computer Vision and Image Understanding, vol. 117,
pp. 688–704, June 2013.

[15] I. Daribo and B. Pesquet-Popescu, “Depth-aided image inpainting for
novel view synthesis,” inIEEE MMSP, Saint Malo, France, 4-6, October
2010.

[16] C. Guillemot and O. L. Meur, “Image inpainting: Overview and recent
advances,”IEEE Signal Processing Magazine, vol. 31, pp. 127–144,
2014.

[17] A. Criminisi, P. Perez, and K. Toyama, “Region filling and object
removal by exemplar-based image inpainting,”IEEE Transactions on
Image Processing, vol. 13, no. 9, pp. 1200–1212, 2004.

[18] P.-J. Lee and Effendi, “Adaptive edge-oriented depth image smoothing
approach for depth image based rendering,” inIEEE International Sym-
posium on Broadband Multimedia Systems and Broadcasting (BMSB),
Shanghai, 24-26 March, 2010, pp. 1–5.

[19] Z. Wang and J. Zhou, “A novel approach for depth image based
rendering, based on non-linear transformation of depth values,” in
International Conference on Image Analysis and Signal Processing
(IASP), Hubei, People’s Republic of China, 21-23 October 2011, pp.
138–142.

[20] A. Purica, E. G. M., B. Pesquet-Popescu, M. Cagnazzo, and B. Ionescu,
“Improved view synthesis by motion warping and temporal hole filling,”
in ICASSP. South Brisbane: IEEE, 19-24 April 2014, pp. 1191–1195.

[21] W. Sun, O. C. Au, L. Xu, Y. Li, and W. Hu, “Novel temporal domain
hole filling based on background modeling for view synthesis,” in IEEE
International on Image Processing (ICIP), Orlando, FL, 30 Sept. - 3
Oct. 2012, pp. 2721 – 2724.

[22] K. P. Kumar, S. Gupta, and K. S. Venkatesh, “Spatio-temporal multi-
view synthesis for free viewpoint television,” in3DTV-Conference: The
True Vision-Capture, Transmission and Display of 3D Video (3DTV-
CON), Aberdeen, 7-8 October 2013, pp. 1 – 4.

[23] VQEG 3DTV Group. http://www.its.bldrdoc.gov/vqeg/projects/3dtv/.

[24] A. Tikanamaki, A. Gotchev, and A. S. S. Miller, “Qualityassessment
of 3-d video in rate allocation experiments,” inIEEE International
Symposium on Consumer Electronics, 2008. ISCE 2008. Vilamoura:
IEEE, 14-16 April 2008, pp. 1–4.

[25] E. Bosc, R. Pepion, P. L. callet, M. Koppel, P. Ndjiki-Nya, M. Pres-
sigout, and L. Morin, “Towards a new quality metric for 3-d synthesized
view assessment,”IEEE Journal of Selected Topics in Signal Process-
ing, vol. 5, no. 7, pp. 1332–1343, September 2011.

[26] A. Purica, M. Cagnazzo, B. Pesquet-Popescu, F. Dufaux,and
B. Ionescu, “A distortion evaluation framework in 3d video view
synthesis,” inInternational Conference on 3D Imaging (IC3D). Liege,
Belgium: IEEE, 14-15 December 2015, pp. 1–8.

[27] S. L. P. Yasakethu, C. Hewage, W. Fernando, and A. Kondoz, “Quality
analysis for 3-d video using 2-d video quality models,”IEEE Trans.
Consumer Electron., vol. 54, no. 4, pp. 1969–1976, November 2008.

[28] DIBR videos quality assessment (using acr-hr). [Online]. Available:
http://ivc.univ-nantes.fr/en/databases/DIBRVideos/

[29] “Itu-t study group 12,” ITU-T p.910 Subjective Video Quality Assess-
ment Methods for Multimedia Applications, 1997.

[30] C. Fehn, “Depth-image-based-rendering (dibr) , compression and trans-
mission for a new approach on 3D-TV,” inProc. of SPIE Stereoscopic
Displays and Virtual Reality Sistems, vol. 5291, 2004, pp. 93–104.

[31] A. Telea, “An image inpainting technique based on the fast marching
method,”Journal of Graphics, GPU and Game Tools, vol. 9, pp. 25–36,
2004.

[32] M. Tanimoto, T. Fujii, K.Suzuki, N. Fukushima, and Y. Mori. Ref-
erence software for depth estimation and view synthesis. ISO/IEC
JTC1/SC29/WG11 MPEG 2008/M15377. MPEG.

[33] K. Muller, A. Smolic, K. Dix, P. Merkle, and P. Kauff, “View synthesis
for advanced 3d video systems,”EURASIP Journal on Image and Video
Processing, 2008.

[34] P. Ndjiki-Nya, M. Koppel, D. Doshkov, H. Lakshman, P. Merkle,
K. Muller, and T. Wiegand, “Depth image based rendering withad-
vanced texture synthesis for 3-d video,”IEEE Transactions on Multi-
media, vol. 13, no. 3, pp. 453–465, June 2011.

[35] M. Koppel, P. Ndjiki-Nya, D. Doshkov, H. Lakshman, P. Merkle,
K. Muller, and T. Wiegand, “Temporally consistent handlingof dis-
occlusions with texture synthesis for depth-image-based rendering,” in
17th IEEE International Conference on Image Processing (ICIP), 2010,
pp. 1809–1812.

[36] E. Bosc, P. Le Callet, L. Morin, and M. Pressigout,3D-TV Sys-
tem with Depth-Image-Based Rendering Architectures, Techniques and
Challenges. Springer, 2012.

[37] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: From error visibility to structural similarity,” IEEE
Transactions on Image Processing, vol. 13, pp. 600–612, 2004.

[38] Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multiscale structural
similarity for image quality assessment,” inProceedings of the Thirty-
Seventh Asilomar Conference on Signals, Systems and Computers,
vol. 2, November 2004, pp. 1398–1402.

[39] Video Quality Experts Group. (2000, March) Final report from the video
quality experts group on the validation of objective modelsof video
quality assessment. VQEG.

http://doi.acm.org/10.1145/237170.237199
http://ivc.univ-nantes.fr/en/databases/DIBR_Videos/

