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Abstract—
Traditionally, HPC workloads are characterized by different

requirements in CPU and memory resources, which in addition
vary over time in unpredictable manner. For this reason,
HPC system designs, assuming physical co-location of CPU
and memory on a single motherboard, strongly limit scala-
bility, while leading to inefficient resources over-provisioning.
Also, peripherals available in the system need to be globally
accessible to allow optimal usage. In this context, modern
HPC designs tend to support disaggregated memory, compute
nodes, remote peripherals and hardware extensions to support
virtualization techniques. In this paper, a qualitative survey
on different attempts of memory and devices disaggregation is
conducted. In addition, alternative future directions for devices
disaggregation are proposed in the context of the work planned
in the H2020 dRedBox project.

Keywords-HPC, memory disaggregation, cpu disaggregation,
HPC virtualization

I. INTRODUCTION

This paper is about a state-of-the-art study on most recent
solutions to handle memory and devices sharing in High
Performance Computing (HPC) systems, at the best of
authors knowledge. Different methods that can contribute
to the creation of modern system designs for HPC are
compared in qualitative terms; this comparison survey is
done from a virtualization support perspective since it makes
resource management more flexible, better isolates different
workloads and provides good fault-tolerance mechanisms.

According to current HPC deployments observations, the
demand in memory grows much faster over usage time
than for CPU [1]. The most often used approach taken
by HPC system designers in order to cope with workloads
demand is over-provisioning [2]. That means, that since
CPU and memory are physically coupled together, they
can only be upgraded proportionally, keeping the CPU-
to-memory ratio constant. In this way, the most stringent
resource requirement is met, while resources in excess are
destined to not be fully exploited. The only exception is
when a motherboard offers vacant DIMM slots, into which
additional modules can be plugged, extending overall system
memory, but this is only one-time improvement, not a
scalable solution. Therefore, physical resources’ co-location
yields several drawbacks as described herewith.

A. Aggregation drawbacks
In case of CPU and memory, a need of upgrading one of

these two components, would practically result in increasing
the number of computing nodes. Then, additional nodes
installed on the system take more space and raise the overall
energy consumption with extra heating. It is important to
keep in mind that HPC systems usually consist of large
number of machines and therefore all this inefficiencies are
exacerbated by the scale factor. Also, investing in resources
that cannot be efficiently exploited by the system makes
the investment far from optimal, to say the least, with poor
Total Cost of Ownership (TCO), which, in turn, will penalize
potential customers using the system.

Other than memory provisioning, an optimal design of
an HPC system should consider to easy the access to
peripherals. Some of them are intended for accelerating
particular types of computing operations (like GPGPU) and
may not be required to be attached permanently to all
machines. However, it has been noticed, that in general it is
good to have few of them globally accessible to accelerate
some workloads, thus saving CPU clocks [3]. Another type
of devices are network interface cards (NIC), which are in
general widely used but their performance is critical because
it has a big impact on application speed. Therefore, in data
center systems, there are usually expensive high-end models
deployed, which should also be shared across the system in
order to amortize the cost and maximize utilization.

B. Desired solution characteristics
To overcome the aforementioned drawbacks, a novel

HPC system architecture should be capable to satisfy the
following characteristics:

• CPU and memory should be physically disaggregated to
permit more flexible resources allocation, lower power
consumption and easier maintenance. Related to this
and for the purpose of this paper the notions of compute
node and memory node will be used.

• Multiple nodes should be able to cooperate in a het-
erogeneous manner to allocate and use memory from a
global pool in a dynamic way, according to application
requirements.

• Such a novel system design should support virtual-
ization techniques which are necessary to achieve to-
gether flexibility, good performance, security and fault-
recovery.



• In order to keep the overall cost low, in comparison
with custom solutions, the design should make as
far as possible use of commodity components, while
expensive devices should be shared to minimize their
cost per compute node.

• Finally, the novel solution has to provide at least the
same performance per dollar as state-of-the-art solu-
tions.

C. Contribution

Designing a system meeting all these requirements is
a challenging task. In the following sections, there are
presented solutions attempting to achieve that, at least in
some aspects. The main contribution of this paper is a
juxtaposition and comparative analysis of existing concepts
divided into two main categories: memory disaggregation
and devices disaggregation and sharing.

D. Document organization

This work is structured as follows. Section II gathers
different methods of memory disaggregation. Section III
compares them. Similarly, section IV discusses several meth-
ods of devices disaggregation, which are then compared
in section V. Section VI concludes the whole work and
proposes further directions.

II. MEMORY DISAGGREGATION

This section presents various approaches for memory
disaggregation from CPU nodes, based on the state-of-the-
art analysis at the best of authors knowledge. The approaches
surveyed can be differentiated in terms of: remote memory
interconnection and access technique, location with respect
to CPU (whether it is placed in a remote node or not),
scalability (ready for providing more physical memory in
future) and virtualization support (hypervisor modification).
In the rest of the section all solutions will be first briefly
described, and then compared according to various criteria.

A.

Velegrakis [4] presents a discrete prototype, consisting of
two Avnet Zedboards1 connected with an FMC cable. The
main goal of the solution is to enable each CPU to access
the memory of the remote nodes (the CPUs in other boards),
so to create a bigger system memory abstraction that is
not limited to the memory locally available for each CPU.
Three main remote memory access techniques are proposed,
based on a static physical addresses mapping performed by
an FPGA block. Another FPGA block called Chip2Chip
handles interconnection logic using AXI messages. In the
first approach, direct access can be performed through local
CPU cache as what is done for a regular memory access.
Alternatively the local cache can be bypassed and the
memory access is served through the remote CPU cache.
This access method is completely transparent from the point
of view of the host operating system.

1Based on Xilinx Zynq cores that embed an ARM CPU and an FPGA
fabric in the same chip.

In a second approach, the remote memory can be accessed
as an I/O device and configured as OS swap partition.
Thus automatically used by the operating system to swap
memory pages in case of high memory pressure. In the third
approach, the remote memory can be seen as a character
device and exposed directly to user space. Remote interrupts
are provided between boards using the mailbox mechanism.
The nice aspects of this work are that it proposes an
heterogeneous solution on a widely used ARM processor,
and that the direct access method is completely transparent
for the OS.

The main drawback is that these prototype uses a custom
protocol and relatively slow physical connection. Therefore
its scalability is quite doubtful, and even more, it is question-
able whether it allows to extrapolate relevant measurements
in order to estimate the expected overhead of a real system.

B.
Lim et al. [5] present a Xen-based software prototype

that models a disaggregated, non-heterogeneous system with
one compute node and a remote memory blade connected
through PCI Express (PCIe). Remote memory address map-
ping and protocol communication is handled by a specific
component at memory node. On the computing node side,
the hypervisor manages one Nested Page Table (NPT) per
guest virtual machine and NPT entries are provided to the
guest as its physical addresses. Nevertheless, some NPT
entries have no corresponding local memory assigned (such
technique is called VM memory overcommitment) and they
are called remote. Each time a guest OS accesses an address
that maps to a NPT remote entry, it causes a page fault in the
hypervisor. On that event, the hypervisor has to swap-in a
page from remote memory node to local memory and update
the NPT table before passing the control back to the guest.
In case there is not enough room in local memory some
pages may have to be swapped-out beforehand. From guest’s
perspective local and remote memory is perceived alike,
with the only difference that remote page access latency is
much higher because of the additional operations required.
The remote memory assignment is performed dynamically
on page fault. This is a positive feature because usually
guest OS memory utilization is maximum only in short
peak moments while it is lower in average. Therefore,
VM can be provided with less memory at startup and
additional resources will be assigned only when required,
with the possibility to be reclaimed once no longer required.
From global perspective this solution allows for more dense
memory utilization. The basis of this concept is that it is
very unlikely that all virtual machines will reach their peak
utilization at the same moment, and proper balancing allows
to provide more virtual memory than there are physical
resources actually available. Remote memory has however
the drawback of a higher page fetch delay. It is worth
noting that this is only a software simulation performed on a
single machine, part of its memory has been called remote
and its access delay is enforced in software. This design
has following drawbacks. It is the hypervisor that makes
a global-scale decision about which pages will be evicted.



Therefore, there are cross-VM interferences occurring when
page faults caused by one VM can result in another VM’s
page eviction. Moreover, the swapping algorithm cannot
make use of guest page information since they are held by
guest OS structures.

C.

In [1] Lim et al. follow-up the previous concept (Sec. II-B)
and create a real prototype, which consists of a global remote
memory blade connected with several compute nodes. The
architecture prototyped is both disaggregated and hetero-
geneous. Each compute node runs a hypervisor that can
use a memory ballooning2 technique to allocate remote
pages. Compared to the previous software concept there
are several important differences. First, there are multiple
compute nodes with hypervisors, each of them has its own
”System Memory Address Space”, where the local part is
placed at the bottom. The remote part, on the other hand,
is mapped to disjoint memory ranges at the global memory
node. Moreover, except for the swapping method, the authors
propose another approach to access the remote memory at
cache-block granularity. That, however, requires a specific
hardware support, that is a custom coherence filter chip,
which redirects cache-fill requests from a CPU to the remote
memory. The positive aspect of the presented solution is
its transparency from hypervisor perspective, negative ones
are a custom chip requirement and accumulating latency
when each remote memory access would require remote
node interaction.

D.

Dragojević et al. [6] introduce the ”FaRM” system, a
cluster solution in which all participating machines are
connected by RDMA over Converged Ethernet (RoCE) [7]
network and expose some part of their memory to the others.
Exposed memory is divided into addressable chunks and
an address table is kept in the internal Network Interface
Card (NIC) memory. The size of this memory limits the
number of table entries and also determines the size of
a single chunk (2GB in the presented prototype). It is
possible to have more addressable chunks but it degrades
performance since page tables have to be fetched over a
PCI bus. Remote memory access is based on NIC-to-NIC
Remote Direct Memory Access (RDMA) transactions. It is
worth mentioning that this is the first presented solution
using a global memory manager layer, here called memory
allocator, that exposes an API for the memory allocation
and transfer operations. Therefore this solution requires a
modified OS but offers dynamic remote memory provision.
Nonetheless, the systems scalability is limited by both NIC
internal memory size and also by some software mechanisms
of NIC drivers. Component machines are heterogeneous but
this system is not a real disaggregation example since both
CPU and memory reside within a single node.

2 Memory ballooning allows the hypervisor to provide virtual machines
more memory than what physically available (over-commit)

E.

Montaner et al. [8] [9] describe the ”MEMSCALE” archi-
tecture intended for cluster environments. In the prototype
all computing nodes are aggregated in the same motherboard
with custom HTX interconnect [10]. Each node keeps a part
of its memory for an OS running on local CPU but remaining
memory may be used by other nodes. The memory access is
designed so that from user space perspective it is visible as a
logical memory region, which can stay within one physical
node or span more of them. Remote memory reservation
is assisted by the operating system that can extend and
shrink its memory a dynamic way. Therefore, it is again a
form of remote memory manager, however it is distributed
over all participating OSes. Once the size of a logical
memory region is negotiated, further accesses are performed
completely by the hardware, without OS intervention. This
is possible due to the AMD HyperTransport [11] technology.
Each time a remote memory operation is scheduled, a CPU
transfers the request to a custom remote memory controller,
which dispatches it to another remote memory controller but
located at destination node and the latter one can access
its local memory. The main drawbacks of this solution
are its lack of heterogeneity (same motherboard), no real
disaggregation and also its custom interconnect that may be
a limitation in terms of scalability.

F.

Hou et al. leverage the PCIe SR-IOV3 standard to create
a heterogeneous system prototype [3] with resource sharing,
in particular memory but also devices that will be discussed
later in this paper. The system backplane is a PCIe switch,
with one root node attached through a Transparent Bridge
(TB) and four leaf nodes attached through Non-Transparent
Bridges (NTB). The NTB chip offers several communication
mechanisms: 1) it performs memory address translation be-
tween two address spaces according to mappings configured
by the attached sides, 2) a doorbell register facilitates inter-
rupts delivery from one side to the other and 3) a scratch-
pad register allows for both sides CPUs communication.
The memory sharing mechanism comprises two steps. In the
beginning, two sides negotiate remotely accessible regions
and setup the mappings accordingly. Then, these regions
are visible to the other side and may be accessed in two
ways: either directly, with each request being relayed by
the switch (by a custom driver hooked on the memory
management module) or using a DMA engine in the NTB
chip (remote memory emulated by a virtual block driver).
This system has several advantages. Since the backplane
interconnect protocol is the same as the system bus, there is
no encapsulation performed at the node edge. Together with
an optimized DMA mechanism it offers the performance up
to almost 3Gbps when copying data between two nodes. In
addition, memory may be requested on demand by only one
node at a time (no simultaneous sharing). As drawbacks we
may count the lack of remote memory caching, scalability

3PCI Express extension, Single-Root I/O virtualization



limited to the number of ports of the PCIe switch and the
lack of memory and CPU disaggregation by SR-IOV design.

G.

Finally, Tu et al. [12] present the ”Marlin” system, a
PCIe solution, based on the previous one (Section II-F). The
first difference is the fact that the prototype comprises only
two leaf nodes, in addition to the root node. Also, memory
sharing is handled differently: instead of negotiating the
access to remote memory regions, the whole system memory
is exposed as a single address space. The management host
first maps the memory of each leaf node to its physical
address space and then passes that global address space
back to the nodes. Correct address space mappings are set
up at NTB ports accordingly. Except for this differences,
memory access methods are the same as well as pros-and-
cons characteristics.

III. COMPARISON OF MEMORY ACCESS METHODS

This section compares the methods presented in the pre-
vious section and draws some conclusions upon them. The
ID of each solution corresponds to subsection in which it
has been described.

Table I puts together all remote memory techniques with
their characteristics. Columns 2 and 3 present different ac-
cess methods. Cache-line granularity requires specific hard-
ware support (e.g. AMD HT with remote memory controller)
and may result in worse system performance if each access
would require reaching remote node. This is the case of
PCI Express technology since it offers no caching. On the
other hand, swapping-in the whole page to the local memory
means more data to be transfered once, but then, as long as
requested data stays within the same page, it is available with
local access latency. Intuitively, the optimal system should
balance the fetched memory volume with implied access
latency.

In columns 4 and 5 all solutions are differentiated accord-
ing to disaggregation and heterogeneity features. However
all positions present interesting methods only 2.C meets
both requirements. Especially the concept of remote memory
decoupled from CPU is not easy to implement in a real
prototype and very often the limitations are related to the
interconnect technology.

Column 6 collates all concepts according to the chosen
interconnection technology. PCI Express is the most popular
approach but does not support remote memory caching. On
the other hand, AMD HT offers interesting features of a
custom memory controller that could serve as a cache as
well but this solution forces CPU manufacturer whereas PCI
Express is an independent standard.

Column 7 considers the transparency of each solution
from the OS (or hypervisor) perspective. Keeping in mind
that II-A is a very specific point-to-point solution, it is visible
that virtually every memory sharing mechanism requires
some OS modification to be able to perform an operation
like access negotiation, posting transaction or building global
memory address space.

Finally, it would be appreciated to compare performance
of all solutions. Unfortunately, there are independent works
with different evaluation methods and, in most cases, there
is no unified benchmarking technique. Nevertheless, some-
times it was possible to extract certain numbers. II-A reports
high latency of 725 ns per single read/write operation
(mostly due to 100 MHz FPGA clock) and a throughput of
almost 0.9 Gbps (write) and above 0.3 Gbps (read) in direct
access mode. With DMA, that uses several optimizations
(e.g., AXI request interleaving), it is much higher, depending
also on used CPU ports configuration (HP vs. ACP), between
2 and 5 Gbps. II-B, II-C and II-E do not mention relevant
data for comparison. II-D claims to copy data between nodes
10 times faster comparing to TCP traffic using the same
NIC cards and with at least 145 times lower latency. In
II-F direct load operations offer low throughput of 0.2 Gbps
because of serial processing, store performs better, around
2.5 Gbps. In DMA mode, in both directions the throughput
grows together with block size, up to 3 Gbps. The last
solution, II-G, achieves up to 20 Gbps of throughput and the
time of double copy (back-and-forth) of 27 us. In general,
DMA transfer mode offers superior performance comparing
to direct copying.

A conceptual ideal solution would comprise an extensi-
ble set of remote memory nodes decoupled from multiple
heterogeneous CPU nodes, with memory access granted to
compute nodes by a management unit. At compute host
level, guest OS would be provided with overcommitted page
table and remote memory pages would be swapped-in or -
out by hypervisor, possibly exploiting memory ballooning
driver. In case of II-A the point-to-point interconnection
extensibility is not known, memory and CPU are coupled
together and the access is performed in direct manner. II-B
assumes a scalable remote memory swapped by hypervisor
and address mapping managed by separate system com-
ponent but it proposes only one compute node. Solution
II-C is disaggregated, heterogeneous and exploits swapping
technique, however direct access method is also discussed.
Its scalability is dependent on PCIe high-speed interconnect
capabilities. II-D proposes remote memory access through
NIC-to-NIC RDMA mechanism managed by memory allo-
cator and specific API. The mechanism itself has limited
scalability and CPU and memory are coupled together. In
II-E, remote memory is accessed on a cache block granular-
ity an introduced with transaction phase done by software.
System nodes work heterogeneously but there is no CPU
and memory disaggregation and also the interconnection is
a custom one of a not-known scalability.

IV. PERIPHERAL DISAGGREGATION

As already mentioned, another important trait of a dis-
aggregated HPC system is a fair access to all peripherals
(e.g., GPUs), that are installed on specific remote nodes.
Usually devices are interfaced through registers mapped onto
memory regions, therefore performing remote device oper-
ations is closely related to memory sharing. Analogically
to the memory part, this section presents several concepts



ID Direct access Swap device Heterogeneity Disaggregation Interconnect OS visibility Comments
II-A X X Y N Custom (AXI-

compatible)
YES, valid

physical
memory

Discrete
prototype

II-B X N Y PCI Express NO, swap on
page fault

Software
simulation

II-C X X Y Y Block access -
YES, swapping

- NO

AMD HT

II-D NIC-to-NIC Y N Ethernet NO,
transactional

access

Interconnected
Ethernet cards

II-E X Y N AMD HT +
HTX (custom)

NO, OSes
negotiate

Same
motherboard

II-F X X Y N PCI Express NO, modified
drivers

II-G X Y N PCI Express NO, global
address space

Table I
REMOTE MEMORY TECHNIQUES COMPARISON

of systems with all installed peripherals accessible to each
compute node. All solutions will be compared afterwards.

A.
The PCIe-based system by Hou et al. [3] (already men-

tioned in section II-F) presents also devices disaggregation
method in two examples; GPGPU and NIC, correspondingly.
The GPGPU is attached to its local node and exposed to
rest of the system via NTB port. Posting a transaction
by a compute node is divided in two phases. First one is
negotiation of access to the region of memory, on which
device ports are mapped. Once granted, in the second phase
data are transferred to the device through DMA engine and
processing is launched afterwards. Then, completion flag
register is periodically polled and another DMA transfer
fetches the output data once processing finish is detected.
With such communication scheme, DMA-based remote de-
vice access is based on the same design principles as remote
memory access over an NTB port. Other than GPGPU,
next example presents NIC sharing concept. Each physical
card has an associated virtual NIC (VNIC), emulated by
a driver, with its own MAC, IP address and routing table.
Additionally, the IP layer has been implemented over the
PCIe link such that a remote NIC access is based on
IP packets transfer, again performed by DMA under the
hood. Both examples are based on DMA mechanisms and
simultaneous sharing is automatically achieved, however at
different granularity. A GPGPU can start next operation only
once the previous one finished. Contrarily, different transfers
can be multiplexed by NIC into one stream thanks to packet
switching paradigm. Such system has two main drawbacks;
its scalability is physically limited by the number of switch
ports and also the VNIC emulation introduces an overhead
that reduces the performance.

B.
Xu et al. propose a redundant system [13] based on

PLX PEX 8796 [14] PCIe MR-IOV switch, equipped with
a management CPU dispatching configuration transactions

between attached hosts and devices connected by NTB ports.
Unlike the SR-IOV, here all switch endpoints (attached
devices) can be shared by multiple (up to four) different
hosts and hosts can also communicate with each other. In this
particular case there are two, primary and backup hosts. The
former sends heartbeat messages whereas the latter traces its
execution, performs periodic checkpoints and resumes from
the last one on failover. There are different configurations
possible where more hosts can be active simultaneously. This
is a very interesting work, since all hosts could potentially
run heterogeneous hypervisors that get access to physical
functions (PFs) of attached devices without any custom
hardware. Having that, each guest OS could exclusively
access corresponding virtual function (VF) in direct pass-
through manner, for example using VFIO drivers [15].
With SR-IOV, such solution would be limited to a single
hypervisor only. Additionally, fault detection mechanisms
offered by the switch could be very beneficial support for
VM checkpointing and migration performed at hypervisor
level. Similarly to all switch-based methods, capability of
the switch is a scaling limitation. It is worth to emphasize,
that, up to authors best knowledge, this is the first prototype
that uses MR-IOV switch.

C.
Suzuki et al. described a prototype system [16] that

attempts to reach similar functionality of sharing PCIe
endpoints (devices) amongst multiple hosts. A virtual, dis-
tributed MR-IOV PCIe switch has been constructed from
two types of custom adapters (downstream bridge - attached
to a device and upstream bridge - attached to a host)
attached to Ethernet network. Adapters perform tunneling
PCIe packets over Ethernet. Each downstream bridge is
identified by VLAN number and a separate system manager
host reconfigures the network for proper device assignment.
With one VLAN number per bridge all system peripherals
can be shared only by taking turns (reconfiguration required
on each access). In other variant, the SR-IOV compliant
devices can be shared simultaneously. Then, downstream



bridge manages device’s PF and assigns each upstream host
with single VF. Therefore, if a host runs a hypervisor, this
VF cannot be shared amongst guests without additional
software emulation. This concept endeavors to solve the
problem of sharing attached PCIe devices amongst heteroge-
neous upstream hosts in a scalable way, however it requires
additional encapsulation and uses Ethernet interconnection.
Both features heavily affect the latency.

D.
At the scope of a single machine, device access sharing

can be realized in software. Garzarella et al. implemented
the ptnetmap framework [17] that virtualizes NIC interface
to enable network I/O at a high packer rates. It is based
on the netmap framework, already used by QEMU [18]
and KVM [19]. Assuming devices’ SR-IOV compliance,
instead of VF being directly accessed by guest OS, the
hypervisor opens a netmap port associated with that VF
and exposes it to the guest. One VF can have multiple
associated netmap ports and assigned to different guests,
therefore providing shareability. The design is characterized
by high efficiency thanks to zero-copy approach. Device
access control phase is handled the hypervisor but after
that data is conveyed directly between guest and the device
VF without hypervisor intervention. This solution requires
modification of both host and guest OS. Moreover, this is
one compute node perspective but it may be combined with
other PCIe solutions that offer an assignment of a single VF
per host.

E.
The Ladon architecture [20], by Tu et al. , is a prototype

that shares PCIe SR-IOV compliant devices with multiple
compute hosts in different PCIe domains. This is yet another
endeavor to offer MR-IOV functionality without an actual
MR-IOV switch. Memory requests can be exchanged trough
interconnecting two-port NTB that performs necessary ad-
dress translation and isolates attached domains, so that each
one perceives the other as a single PCIe device. All devices
are attached to management hosts in the master domain
that handles NTB ports configuration. Compute hosts reside
in slave domains and run hypervisors with multiple VMs.
The BIOS at each compute host discovers PCIe devices
allocated at NTB port and each time when a VM boots up,
the enumeration queries are intercepted by the hypervisor
(modified KVM), which passes its own configuration to
the VM and installs a set of virtual devices. With such
configuration, when VM wants to access the device, the
hypervisor requests management hosts for binding an actual
device with virtual one at NTB port. That way, a VM
gets a direct access to an actual device, which could be
a VF or PF of a physical device. Data transfer is performed
by DMA transactions and interrupts propagation. Before
a transfer, source and destination addresses translation is
performed with hypervisor assistance. To avoid unnecessary
copying, the system implements zero-copy optimization that
improved the overall performance. This solution is based
on standard hardware components, and modified hypervisor

ID Visibility Sharing
IV-A a) VNIC per VM IP over PCIe

b) GPGPU via DMA Separate DMA transfers
IV-B PF per host Dispatching by management CPU
IV-C VF per VM Taking turns

VF per host Simultaneous
IV-D Virtual port per VM Simultaneous
IV-E Actual device per VM VF/PF binding by MHIV-F

Table II
DEVICE VISIBILITY AND SHARING SCHEME

and management hosts’ OS. It offers a direct device access
for a VM and simultaneous device sharing - as long as
management host binds an actual device with VF, since
PF cannot be shared in SR-IOV scheme. There are two
main drawbacks; firstly, all devices have to be assigned
to the same master domain, which is scalability limitation.
Additionally, the management host in that configuration is a
single point of failure.

F.
A follow-up of previous systemIV-E has been presented

by the same authors under the name Marlin [12]. It is
intended especially for NIC sharing in disaggregated racks.
The system architecture is almost the same like its pre-
decessor, with one significant difference that DMA trans-
fer configuration is done completely by hardware so that
transactions between two machines within the same rack
are performed without any software intervention. The only
required software modification is providing proper drivers.
Moreover, the switch hosts Ethernet cards for inter-rack
communication, which improves system scalability, however
this interconnect implies significantly lower throughput in
comparison with intra-rack communication.

V. COMPARISON OF DEVICES DISAGGREGATION
METHODS

This section indicates most important similarities and dif-
ferences between presented methods and some conclusions
has been drawn at the end.

Almost all presented works focused on NIC sharing,
except for IV-A, which also described the case of a GPGPU.
This is probably because accessing a remote NIC with
satisfying performance exposes great challenges, while NIC
is a basic component of a computing system of almost any
type and for sure in case of HPC sector. Usually, applications
require NICs to offer fast transfer and small latency. In case
of other devices, like GPGPU, the workflow is different,
the input is provided, operation is scheduled and requesting
node has to be notified upon completion. A common point
of all approaches is using PCI Express for attaching a device
to switch port or a custom hardware adapter.

At first, in table II all methods are differentiated ac-
cording to how a device is perceived from VM or host
perspective and how sharing has been achieved. Some meth-
ods proposed two variants, they are presented as a) and
b) accordingly. Native PCIe-supported sharing mechanisms



ID Limitation
IV-A NO, ethernet interconnect
IV-B YES, nb of ports
IV-C NO, ethernet interconnect
IV-D NO, software virtualization
IV-E YES, nb of portsIV-F

Table III
SCALABILITY LIMITATIONS

(IV-B,IV-C,IV-E,IV-F) are obviously the fastest, however in
that case all devices have to be always connected to the same
switch. From virtualization perspective, in a pure SR-IOV
system, guest OS can directly access device’s VF, however
that implies no simultaneous sharing between compute nodes
since corresponding PF is assigned to a single specific one
at each time. This can be mitigated by high performance
software emulation (IV-D) that would require only one VF
per hypervisor.

Table III compares all solutions with scalability as a
criterion. The biggest constraint shared by all the techniques
is the number of devices that may be attached to a single
PCIe switch. The problem of management host being single
point of failure may be mitigated by using MR-IOV switch,
however according to authors’ best knowledge, there are not
many of them available on the market.

Most of concepts in this section presents some perfor-
mance measurements of accessing remote NICs and the
results are as follows. IV-A uses 1Gb NIC and achieves
85% of peak bandwidth and latency less than 2x higher when
using the card remotely, comparing to the performance when
it is locally attached. IV-B does not provide any performance
evaluation. IV-C shows a prototype with shared 10Gb NIC
and reports the card bandwidth (not a throughput) of 9.9
Gbps in the best case. IV-D is not meaningful for that
comparison since it does not discuss disaggregated devices.
IV-E and IV-F both use 10Gb NICs, achieving up to 9
Gbps throughput between two VMs on a compute host and
management host, with zero-copy optimization (IV-E). The
throughput falls down with smaller message size.

In theory, an ideal solution would assume all connected
devices simultaneously shared by multiple compute nodes
in a MR-IOV manner. Provided devices compliance, each
hypervisor would have its PF assigned and corresponding
VFs exposed to multiple virtual machines. IV-A provides
simultaneous access by SR-IOV switch (scalability limit)
and software-implemented IP layer, that affects its perfor-
mance. IV-B is the only case of MR-IOV system but the
switch has a fixed number of ports and it cannot be extended
further. IV-C virtualizes PCIe switch by custom adapters
attached to the backplane (Ethernet). The concept is very
promising, however the backplane is far too slow for such
application. IV-E and IV-F propose a way how to attach
more hosts and devices to single SR-IOV switch, which is an
improvement although single switch dependency still persist.
IV-D is an example of efficient software emulation that can
efficiently support any solution offering only single VF per

hypervisor. In all cases, the technological limits presence
enforces different trade-offs and usually better efficiency is
gained for the cost of scalability or to the opposite.

VI. CONCLUSION

This paper starts introducing the motivations that drive to-
wards the definition of a novel disaggregated HPC hardware
design. Based on the previous assumptions the document
describes and compares the most relevant techniques for
memory and peripherals disaggregation, at the best of au-
thors’ knowledge. Such analysis presents current technology
trends, indicates the limitations of current solutions, to help
clarify some of the needs of future HPC systems and thus
drive future research work.

PCIe-based remote memory systems are usually based
on VM overcommitment and swapping-in a remote page
on a page fault, supported by DMA engine. The AMD
HT technology enables accessing remote memory at cache-
block granularity but this requires a custom remote memory
controller, which, in theory, could also serve as a cache.
Finer-grained access implies smaller latency but accumulat-
ing faster, with each access.

For recent systems PCIe interconnection seems to be a
standard. Ethernet has not been designed for high-speed
backplane purpose and cannot really serve as a primary
solution for that purpose. PCI SR-IOV compliant devices
offer good sharing mechanism but limited to a single com-
pute host. Alternatively, larger number of compute nodes
is possible with two-port NTB and proper memory regions
translation. Ideally, MR-IOV could solve this problem but
this standard is not well adopted yet, in particular it has been
found only one solution based on commercially available
product.

A. Further directions
This paragraph suggest promising solutions for a novel

HPC system conception, inspired by the dRedBox H2020
EU project [21] [22]. It assumes disaggregated structure of
multiple heterogeneous compute nodes and remote global
memory nodes. Further works could consider PCIe technol-
ogy as a primary interconnect and also emphasise virtual-
ization hardware support in order to benefit from near-native
performance while still keeping all virtualization merits. Re-
mote memory management layer is mandatory so as to avoid
data corruption but also to create an interface for deploying
different access policies. As long as remote memory seg-
ments assigned to different compute nodes do not overlap,
there is no need for any cache coherency between compute
nodes which could limit its scalability as well as reduce
the available bandwidth (i.e., cache coherency protocols
generate messages that drain the bandwidth available for
actual data). All system nodes and management host has to
be connected to a common backplane that would virtualize a
PCIe switch and introduce minimum possible latency, which
is the most crucial constrain. This way system scalability is
not limited to the number of ports of a specific switch, how-
ever it may require additional backplane adapters. Memory
disaggregation may be achieved by VM overcommitment



and DMA-supported page swapping because this solution
should work much faster than direct access on a cache line
granularity and does not require a custom memory con-
troller. Ideally, it would use memory ballooning technique
for dynamic memory provisioning (i.e., claiming/returning
additional memory resources to/from the global pool). This
can be helpful to provide efficient load balancing for global
memory. Device management and access can be efficiently
implemented by para-virtualized drivers with front-end and
back-end sharing common communication channel located
in a remote memory. This requires an interaction with
management host only for access negotiation but not during
data transfer. An example of a solution that could be adapted
is the ‘virtio‘ drivers family [23].

The previous comments intend to identify the traits of the
next generation HPC systems, providing at the same time
high performance together with flexibility and much more
efficient management with respect to current deployments.
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