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Abstract

A nonparametric approach to Vector Autoregressive Modeling consists in working in vector-valued
Reproducing Kernel Hilbert Spaces. The main idea is to build vector-valued models (OKVAR) using
operator-valued kernels. Similar to scalar-valued kernels, operator-valued kernels enjoy representer
theorems and learning algorithms that heavily depends on training data. We present a new approach
to scale up OKVAR models... This contribution aims at scaling up non-linear autoregression models
based on operator-valued kernel (K) by constructing an explicit feature map function (ORFF) that
transforms an input data to a Hilbert space ’embed’ in the RKHS induced by K. ORFF are con-
structed in the spirit of Random Fourier Features introduced by Rahimi and Recht. We show that
ORFF competes with VAR on stationary linear time-series in terms of time and accuracy. Moreover
ORFF is able to compete with OVK accuracy on non-stationary, non-linear time-series (being better
than VAR) while keeping low execution time, comparable to VAR.

1 Introduction

blabla.

2 Models

We compare three models. blabla.

VAR: We fit the model to the data using python statmodels package, available at http://statsmodels.sourceforge.net/

OVK: We fit the model to the data using python operalib package, available at https://github.com/RomainBrault/operalib/
The optimization problem is solved using an lbfgs.

ORFF: ORFF aims at approximating kernel K(x, z) = K0(x− z), by finding an explicit feature map
such Φ̃(x)∗Φ̃(z) ≈ K0(x − z). In the following suppose that K0 = k0(.)A is a decomposable kernel on
X = (Rd,+) and Y = R

p. Let A = BB∗. Then an approximate feature map for K0 is

Φ̃dec(x) =
1√
D

D
⊕

j=1

(

cos 〈x, ωj〉B∗

sin 〈x, ωj〉B∗

)

, ωj ∼ F−1 [k0] .

Which can also be expressed as a Kronecker product of a scalar feature map with an operator:

Φ̃dec(x) = φ̃(x)⊗B∗,

where,

φ̃dec(x) =
1√
D

D
⊕

j=1

(

cos 〈x, ωj〉
sin 〈x, ωj〉

)

, ωj ∼ F−1 [k0]

is a scalar valued feature map. In particular if k0 is a Gaussian kernel of bandwidth σ2, then F−1 [k0] =
N (0, 1/σ2). The optimization problem is solved using a mini-batch block coordinate descent. Note that
the convergence of the algorithm can be speed-up by preconditioning by the Hessian of the system.
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Data: X , Y, K0, γt, λ, T , n, D, b
Result: how to write algorithm with LATEX2e
Find (ω, x), B(ω) and µ(ω) from K0;
for i = 1 to D do

θ1i,. = 0;

end
for t = 1 to T do

At = (Xt × Yt) ∼ P(x, y) ; // Sample n data from X × Y.
f (Xt) = predict (Xt, θ

t,K0); // Make a prediction.

Ωi ∼ µ(ω) with seed i, where i = ((t− 1) mod D) + 1 ; // Sample b features from µ(ω).
for ω ∈ Ωi do

θt+1
i,ω = θti,ω − γt





1

|At|

∑

x,y∈At

(ω, x)B(ω)l′(f(x), y) + λθti,ω



; // Update the gradient.

end

end
return θt+1

Algorithm 1: Block-coordinate mini-batch SGD.

Data: X , θ, K0

Find (ω, x), B(ω) and µ(ω) from K0;
f = 0;
for x ∈ X do

for i = 1 to D do
Ωi ∼ µ(ω) with seed i;
for ω ∈ Ωi do

f(x) = f(x) + (ω, x)B(ω)θi,ω;
end

end

end
return f(X )

Algorithm 2: f (X ) =predict(X , θ, µ)

3 Experiments

3.1 Simulated data

3.1.1 Data generation

A non-linear multi-time serie yt of dimension p and order one has the form

{

y1 ∼ N (0,Σx)
yt = h(yt−1) + ut ∀t > 1.

(1)

Throughout the experiments the residuals considered are homoscedastic and distributed according to a
probability measure ut ∼ N (0,Σu). We study two different kind of noise: an isotropic with covariance
Σu = σ2Ip and an anisotropic with Toeplitz structure Σu,ij = ν|i−j|, where ν lives in (0, 1). We generated
N = 103 datapoints and used a sequential cross-validation with time windows Nt = N/2 to measure
performance of the different models.

3.1.2 Setting 1: Linear model

We first study the behavior of the three method on a linear VAR model (i.e. h(x) = Ax). The generated
time-series are presented in fig. 1 and fig. 2.

In this setting we do not seed any advantages of OVKs over VAR model. Although OVKs takes order
of magnitudes more times to achieve the same performance than OVK, ORFF (the approximation of
OVK) is able to challenge VAR in terms of time and accuracy. We fixed D = 25 features for ORFF.
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model VAR(1) ORFF OVK Dumb
noise White Toeplitz White Toeplitz White Toeplitz White Toeplitz
SCV-MSE 0.914979 1.091096 0.919663 1.097183 0.958790 1.410969 1.353183 1.527535
variance 0.572485 1.267880 0.572936 1.268978 0.591934 1.312243 0.868110 1.501393
time 0.002467(s) 0.004822(s) 0.000994(s) 0.001022(s) 0.104706(s) 0.289046(s) 0(s) 0(s)

Table 1: Sequential cross-validation MSE on setting 1.
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Figure 1: Generated time serie with isotropic noise of variance σ2 = 0.9, no non-linearity and random
dependency structure with five interactions.
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Figure 2: Generated time serie with toeplitz noise of variance ν = 0.9, no non-linearity and random
dependency structure with five interactions.

3.1.3 Setting 2: Sine model

We now study the behavior of the three methods on a non-linear VAR model generated by the mean
of sin functions (i.e. h(x) = A sin(x)). For this setting the data are generated such that it incorporates
a non linear trend ft. The data yt are generated according to eq. (2) We chose ft = Φ̃(t)∗θ, where
θij ∼ N (0, 1).







x1 ∼ N (0,Σx),
xt = h(xt−1) + ut ∀t > 1,
yt = xt + ft

(2)

The generated time-series are presented in fig. 3 and fig. 4. We fixed D = 50 features for ORFF.

model VAR(1) ORFF OVK Dumb
noise White Toeplitz White Toeplitz White Toeplitz White Toeplitz
SCV-MSE 0.362811 1.883774 0.159656 1.881269 0.101851 1.883903 0.602598 4.560766
variance 0.222651 1.246095 0.228755 1.244899 0.142791 1.240014 0.404876 2.429369
time 0.002998(s) 0.003791(s) 0.056843(s) 0.002168(s) 11.113082(s) 0.079009(s) 0(s) 0(s)

Table 2: Sequential cross-validation MSE on setting 2.

In this setting considering a white noise, non-linear auto-regression with ORFF and OVK has a clear
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advantage over VAR(1). ORFF is able to capture the non-linearity in the fraction of time of OVK.
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Figure 3: Generated time serie with isotropic noise of variance σ2 = 0.009, sine non-linearity φs and
random dependency structure with five interactions.
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Figure 4: Generated time serie with toeplitz noise of variance ν = 0.9, exponential non-linearity φe and
random dependency structure with five interactions.

3.1.4 Setting 3: Exponential model

Setting 3. follows the same generation model as setting 2 (see eq. (2)). except that the non-linearities
are exponential function, i.e. h(x) = A exp(−γx2).

model VAR(1) ORFF OVK Dumb
noise White Toeplitz White Toeplitz White Toeplitz White Toeplitz
SCV-MSE 0.231230 0.514921 0.001226 0.252975 0.002951 0.122719 1.400892 0.954048
variance 0.248992 0.296253 0.001086 0.361397 0.002547 0.235188 0.016690 0.228641
time 0.002972(s) 0.003604(s) 0.002865(s) 0.002745(s) 1.140541(s) 5.369245(s) 0(s) 0(s)

Table 3: Sequential cross-validation MSE on setting 3.

4 Real data

5 Conclusions
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Figure 5: Generated time serie with isotropic noise of variance σ2 = 0.009, sine non-linearity φs and
random dependency structure with five interactions.
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Figure 6: Generated time serie with toeplitz noise of variance ν = 0.9, exponential non-linearity φe and
random dependency structure with five interactions.
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6 Supplementary material.
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