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Abstract

Sequentially learning to place items in multi-position displays or lists is a task that
can be cast into the multiple-play semi-bandit setting. However, a major concern in
this context is when the system cannot decide whether the user feedback for each
item is actually exploitable. Indeed, much of the content may have been simply
ignored by the user. The present work proposes to exploit available information
regarding the display position bias under the so-called Position-based click model
(PBM). We first discuss how this model differs from the Cascade model and its
variants considered in several recent works on multiple-play bandits. We then
provide a novel regret lower bound for this model as well as computationally
efficient algorithms that display good empirical and theoretical performance.

1 Introduction

During their browsing experience, users are constantly provided – without having asked for it – with
clickable content spread over web pages. While users interact on a website, they send clicks to the
system for a very limited selection of the clickable content. Hence, they let every unclicked item with
an equivocal answer: the system does not know whether the content was really deemed irrelevant
or simply ignored. In contrast, in traditional multi-armed bandit (MAB) models, the learner makes
actions and observes at each round the reward corresponding to the chosen action. In the so-called
multiple play semi-bandit setting, when users are presented with L items, they are assumed to provide
feedback for each of those items.

Several variants of this basic setting have been considered in the bandit literature. The necessity
for the user to provide feedback for each item has been called into question in the context of the
so-called Cascade Model [7, 13, 5] and its extensions such as the Dependent Click Model (DCM)
[19]. Both models are particularly suited for search contexts, where the user is assumed to be looking
for something relative to a query. Consequently, the learner expects explicit feedback: in the Cascade
Model each valid observation sequence must be either all zeros or terminated by a one, such that no
ambiguity is left on the evaluation of the presented items, while multiple clicks are allowed in the
DCM.

In the Cascade Model, the positions of the items are not taken into account in the reward process
because the learner is assumed to obtain a click as long as the interesting item belongs to the list.
Indeed, there are even clear indications that the optimal strategy in a learning context consists in
showing the most relevant items at the end of the list in order to maximize the amount of observed
feedback [13] – which is counter-intuitive in recommendation tasks.

To overcome these limitations, [5] introduces weights – to be defined by the learner – that are
attributed to positions in the list, with a click on position l ∈ {1, . . . , L} providing a reward wl,
where the sequence (wl)l is decreasing to enforce the ranking behavior. However, no rule is given for
setting the weights (wl)l that control the order of importance of the positions. The authors propose an
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algorithm based on KL-UCB [9] and prove a lower bound on the regret as well as an asymptotically
optimal upper bound.

Another way to address the limitations of the Cascade Model is to consider the DCM as in [19]. Here,
examination probabilities vl are introduced for each position l: conditionally on the event that the
user effectively scanned the list up to position l, he/she can choose to leave with probability vl and in
that case, the learner is aware of his/her departure. This framework naturally induces the necessity to
rank the items in the optimal order.

All previous models assume that a portion of the recommendation list is explicitly examined by the
user and hence that the learning algorithm eventually has access to rewards corresponding to the
unbiased user’s evaluation of each item. In contrast, we propose to analyze multiple-play bandits in
the Position-based model (PBM) [4]. In the PBM, each position in the list is also endowed with a
binary Examination variable [7, 18] which is equal to one only when the user paid attention to the
corresponding item. But this variable, that is independent of the user’s evaluation of the item, is not
observable. It allows to model situations where the user is not explicitly looking for specific content,
as in typical recommendation scenarios.

Compared to variants of the Cascade model, the PBM is challenging due to the censoring induced by
the examination variables: the learning algorithm observes actual clicks but non-clicks are always
ambiguous. Thus, combining observations made at different positions becomes a non-trivial statistical
task. Some preliminary ideas on how to address this issue appear in the supplementary material of
[12]. In this work, we provide a complete statistical study of stochastic multiple-play bandits with
semi-bandit feedback in the PBM.

We introduce the model and notations in Section 2 and provide the lower bound on the regret in
Section 3. In Section 4, we present two optimistic algorithms as well as a theoretical analysis of
their regret. In the last section dedicated to experiments, those policies are compared to several
benchmarks on both synthetic and realistic data.

2 Setting and Parameter Estimation

We consider the binary stochastic bandit model with K Bernoulli-distributed arms. The model
parameters are the arm expectations θ = (θ1, θ2, . . . , θK), which lie in Θ = (0, 1)K . We will
denote by B(θ) the Bernoulli distribution with parameter θ and by d(p, q) := p log(p/q) + (1 −
p) log((1 − p)/(1 − q)) the Kullback-Leibler divergence from B(p) to B(q). At each round t, the
learner selects a list of L arms – referred to as an action – chosen among the K arms which are
indexed by k ∈ {1, . . . ,K}. The set of actions is denoted by A and thus contains K!/(K − L)!
ordered lists; the action selected at time t will be denoted A(t) = (A1(t), . . . , AL(t)).

The PBM is characterized by examination parameters (κl)1≤l≤L, where κl is the probability that the
user effectively observes the item in position l [4]. At round t, the selection A(t) is shown to the user
and the learner observes the complete feedback – as in semi-bandit models – but the observation at
position l, Zl(t), is censored being the product of two independent Bernoulli variables Yl(t) andXl(t),
where Yl(t) ∼ B(κl) is non null when the user considered the item in position l – which is unknown to
the learner – and Xl(t) ∼ B(θAl(t)) represents the actual user feedback to the item shown in position
l. The learner receives a reward rA(t) =

∑L
l=1 Zl(t), where Z(t) = (X1(t)Y1(t), . . . , XL(t)YL(t))

denotes the vector of censored observations at step t.

In the following, we will assume, without loss of generality, that θ1 > · · · > θK and κ1 > · · · >
κL > 0, in order to simplify the notations. The fact that the sequences (θl)l and (κl)l are decreasing
implies that the optimal list is a∗ = (1, . . . , L). Denoting by R(T ) =

∑T
t=1 ra∗ − rA(t) the regret

incurred by the learner up to time T , one has

E[R(T )] =

T∑
t=1

L∑
l=1

κl(θa∗l − E[θAl(t)]) =
∑
a∈A

(µ∗ − µa)E[Na(T )] =
∑
a∈A

∆aE[Na(T )], (1)

where µa =
∑L
l=1 κlθal is the expected reward of action a, µ∗ = µa∗ is the best possible reward in

average, ∆a = µ∗ − µa the expected gap to optimality, and, Na(T ) =
∑T
t=1 1{A(t) = a} is the

number of times action a has been chosen up to time T .
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In the following, we assume that the examination parameters (κl)1≤l≤L are known to the learner.
These can be estimated from historical data [4], using, for instance, the EM algorithm [8] (see also
Section 5). In most scenarios, it is realistic to assume that the content (e.g., ads in on-line advertising)
is changing much more frequently than the layout (web page design for instance) making it possible
to have a good knowledge of the click-through biases associated with the display positions.

The main statistical challenge associated with the PBM is that one needs to obtain estimates and
confidence bounds for the components θk of θ from the available B(κlθk)-distributed draws cor-
responding to occurrences of arm k at various positions l = 1, . . . , L in the list. To this aim,
we define the following statistics: Sk,l(t) =

∑t−1
s=1 Zl(s)1{Al(s) = k}, Sk(t) =

∑L
l=1 Sk,l(t),

Nk,l(t) =
∑t−1
s=1 1{Al(s) = k}, Nk(t) =

∑L
l=1Nk,l(t). We further require bias-corrected versions

of the counts Ñk,l(t) =
∑t−1
s=1 κl1{Al(s) = k} and Ñk(t) =

∑L
l=1 Ñk,l(t).

A time t, and conditionally on the past actions A(1) up to A(t− 1), the Fisher information for θk is
given by I(θk) =

∑L
l=1Nk,l(t)κl/(θk(1− κlθk)) (see Appendix A). We cannot however estimate

θk using the maximum likelihood estimator since it has no closed form expression. Interestingly
though, the simple pooled linear estimator

θ̂k(t) = Sk(t)/Ñk(t), (2)

considered in the supplementary material to [12], is unbiased and has a (conditional) variance of
υ(θk) = (

∑L
l=1Nk,l(t)κlθk(1 − κlθk))/(

∑L
l=1Nk,l(t)κl)

2, which is close to optimal given the
Cramér-Rao lower bound. Indeed, υ(θk)I(θk) is recognized as a ratio of a weighted arithmetic mean
to the corresponding weighted harmonic mean, which is known to be larger than one, but is upper
bounded by 1/(1−θk), irrespectively of the values of the κl’s. Hence, if, for instance, we can assume
that all θk’s are smaller than one half, the loss with respect to the best unbiased estimator is no more
than a factor of two for the variance. Note that despite its simplicity, θ̂k(t) cannot be written as a
simple sum of conditionally independent increments divided by the number of terms and will thus
require specific concentration results.

It can be checked that when θk gets very close to one, θ̂k(t) is no longer close to optimal. This
observation also has a Bayesian counterpart that will be discussed in Section 5. Nevertheless, it is
always preferable to the “position-debiased” estimator (

∑L
l=1 Sk,l(t)/κl)/Nk,l(t) which gets very

unreliable as soon as one of the κl’s gets very small.

3 Lower Bound on the Regret

In this section, we consider the fundamental asymptotic limits of learning performance for online
algorithms under the PBM. These cannot be deduced from earlier general results, such as those of
[10, 6], due to the censoring in the feedback associated to each action. We detail a simple and general
proof scheme – using the results of [11] – that applies to the PBM, as well as to more general models.

Lower bounds on the regret rely on changes of measure: the question is how much can we mistake
the true parameters of the problem for others, when observing successive arms? With this in mind,
we will subscript all expectations and probabilities by the parameter value and indicate explicitly
that the quantities µa, a∗, µ∗,∆a, introduced in Section 2, also depend on the parameter. For ease of
notation, we will still assume that θ is such that a∗(θ) = (1, . . . , L).

3.1 Existing results for multiple-play bandit problems

Lower bounds on the regret will be proved for uniformly efficient algorithms, in the sense of [15]:
Definition 1. An algorithm is said to be uniformly efficient if for any bandit model parameterized by
θ and for all α ∈ (0, 1], its expected regret after T rounds is such that EθR(T ) = o(Tα).

For the multiple-play MAB, [1] obtained the following bound

lim inf
T→∞

EθR(T )

log(T )
≥

K∑
k=L+1

θL − θk
d(θk, θL)

. (3)
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For the “learning to rank” problem where rewards follow the weighted Cascade Model with decreasing
weights (wl)l=1,...,L, [5] derived the following bound

lim inf
T→∞

EθR(T )

log T
≥ wL

K∑
k=L+1

θL − θk
d(θk, θL)

.

Perhaps surprisingly, this lower bound does not show any additional term corresponding to the
complexity of ranking the L optimal arms. Indeed, the errors are still asymptotically dominated by
the need to discriminate irrelevant arms (θk)k>L from the worst of the relevant arms, that is, θL.

3.2 Lower bound step by step

Step 1: Computing the expected log-likelihood ratio. Denoting byFs−1 the σ-algebra generated
by the past actions and observations, we define the log-likelihood ratio for the two values θ and λ of
the parameters by

`(t) :=

t∑
s=1

log
p(Z(s); θ | Fs−1)

p(Z(s);λ | Fs−1)
. (4)

Lemma 2. For each position l and each item k, define the local amount of information by

Il(θk, λk) := Eθ

[
log

p(Zl(t); θ)

p(Zl(t);λ)

∣∣∣∣Al(t) = k

]
,

and its cumulated sum over the L positions by Ia(θ, λ) :=
∑L
l=1

∑K
k=1 1{al = k}Il(θk, λk). The

expected log-likelihood ratio is given by

Eθ[`(t)] =
∑
a∈A

Ia(θ, λ)Eθ[Na(t)]. (5)

The next proposition is adapted from Theorem 17 in Appendix B of [11] and provides a lower bound
on the expected log-likelihood ratio.
Proposition 3. Let B(θ) := {λ ∈ Θ |∀l ≤ L, θl = λl and µ∗(θ) < µ∗(λ)} be the set of changes of
measure that improve over θ without modifying the optimal arms. Assuming that the expectation of
the log-likelihood ratio may be written as in (5), for any uniformly efficient algorithm one has

∀λ ∈ B(θ), lim inf
T→∞

∑
a∈A Ia(θ, λ)Eθ[Na(T )]

log(T )
≥ 1.

Step 2: Variational form of the lower bound. We are now ready to obtain the lower bound in a
form similar to that originally given by [10].
Theorem 4. The expected regret of any uniformly efficient algorithm satisfies

lim inf
T→∞

EθR(T )

log T
≥ f(θ) , where f(θ) = inf

c�0

∑
a∈A

∆a(θ)ca , s.t. inf
λ∈B(θ)

∑
a∈A

Ia(θ, λ)ca ≥ 1.

Theorem 4 is a straightforward consequence of Proposition 3, combined with the expression of the
expected regret given in (1). The vector c ∈ R|A|+ , that satisfies the inequality

∑
a∈A Ia(θ, λ)ca ≥ 1,

represents the feasible values of Eθ[Na(T )]/ log(T ).

Step 3: Relaxing the constraints. The bounds mentioned in Section 3.1 may be recovered from
Theorem 4 by considering only the changes of measure that affect a single suboptimal arm.
Corollary 5.

f(θ) ≥ inf
c�0

∑
a∈A

∆a(θ)ca , s.t.
∑
a∈A

L∑
l=1

1{al = k}Il(θk, θL)ca ≥ 1 , ∀k ∈ {L+ 1, . . . ,K}.

Corollary 5 is obtained by restricting the constraint set B(θ) of Theorem 4 to ∪Kk=L+1Bk(θ), where
Bk(θ) := {λ ∈ Θ|∀j 6= k, θj = λj and µ∗(θ) < µ∗(λ)} .
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3.3 Lower bound for the PBM

Theorem 6. For the PBM, the following lower bound holds for any uniformly efficient algorithm:

lim inf
T→∞

EθR(T )

log T
≥

K∑
k=L+1

min
l∈{1,...,L}

∆vk,l(θ)

d(κlθk, κlθL)
, (6)

where vk,l := (1, . . . , l − 1, k, l, . . . , L− 1).

Proof. First, note that for the PBM one has Il(θk, λk) = d(κlθk, κlλk). To get the expression given
in Theorem 6 from Corollary 5, we proceed as in [5] showing that the optimal coefficients (ca)a∈A
can be non-zero only for the K−L actions that put the suboptimal arm k in the position l that reaches
the minimum of ∆vk,l(θ)/d(κlθk, κlθL). Nevertheless, this position does not always coincide with
L, the end of the displayed list, contrary to the case of [5] (see Appendix B for details).

The discrete minimization that appears in the r.h.s. of Theorem 6 corresponds to a fundamental
trade-off in the PBM. When trying to discriminate a suboptimal arm k from the L optimal ones, it
is desirable to put it higher in the list to obtain more information, as d(κlθk, κlθL) is an increasing
function of κl. On the other hand, the gap ∆vk,l(θ) is also increasing as l gets closer to the top
of the list. The fact that d(κlθk, κlθL) is not linear in κl (it is a strictly convex function of κl)
renders the trade-off non trivial. It is easily checked that when (θ1 − θL) is very small, i.e. when all
optimal arms are equivalent, the optimal exploratory position is l = 1. In contrast, it is equal to L
when the gap (θL − θL+1) becomes very small. Note that by using that for any suboptimal a ∈ A,
∆a(θ) ≥

∑K
k=L+1

∑L
l=1 1{al = k}κl(θL − θk), one can lower bound the r.h.s. of Theorem 6 by

κL
∑K
k=L+1(θL − θk)/d(κLθk, κLθL), which is not tight in general.

Remark 7. In the uncensored version of the PBM – i.e., if the Yl(t) were observed –, the expression
of Ia(θ, λ) is simpler: it is equal to

∑L
l=1

∑K
k=1 1{Al(t) = k}κld(θk, λk) and leads to a lower

bound that coincides with (3). The uncensored PBM is actually statistically very close to the weighted
Cascade model and can be addressed by algorithms that do not assume knowledge of the (κl)l but
only of their ordering.

4 Algorithms

In this section we introduce two algorithms for the PBM. The first one uses the CUCB strategy of [3]
and requires an simple upper confidence bound for θk based on the estimator θ̂k(t) defined in (2).
The second algorithm is based on the Parsimonious Item Exploration – PIE(L) – scheme proposed
in [5] and aims at reaching asymptotically optimal performance. For this second algorithm, termed
PBM-PIE, it is also necessary to use a multi-position analog of the well-known KL-UCB index [9]
that is inspired by a result of [16]. The analysis of PBM-PIE provided below confirms the relevance
of the lower bound derived in Section 3.

PBM-UCB The first algorithm simply consists in sorting optimistic indices in decreasing order
and pulling the corresponding first L arms [3]. To derive the expression of the required “exploration
bonus” we use an upper confidence for θ̂k(t) based on Hoeffding’s inequality:

UUCBk (t, δ) =
Sk(t)

Ñk(t)
+

√
Nk(t)

Ñk(t)

√
δ

2Ñk(t)
,

for which a coverage bound is given by the next proposition, proven in Appendix C.

Proposition 8. Let k be any arm in {1, . . . ,K}, then for any δ > 0,

P
(
UUCBk (t, δ) ≤ θk

)
≤ eδ log(t)e−δ.

Following the ideas of [6], it is possible to obtain a logarithmic regret upper bound for this algorithm.
The proof is given in Appendix D.
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Theorem 9. Let C(κ) = min1≤l≤L[(
∑L
j=1 κj)

2/l+(
∑l
j=1 κj)

2]/κ2
L and ∆ = mina∈σ(a∗)\a∗ ∆a,

where σ(a∗) denotes the permutations of the optimal action. Using PBM-UCB with δ = (1 +
ε) log(t) for some ε > 0, there exists a constant C0(ε) independent from the model parameters such
that the regret of PBM-UCB is bounded from above by

E[R(T )] ≤ C0(ε) + 16(1 + ε)C(κ) log T

(
L

∆
+
∑
k/∈a∗

1

κL(θL − θk)

)
.

The presence of the termL/∆ in the above expression is attributable to limitations of the mathematical
analysis. On the other hand, the absence of the KL-divergence terms appearing in the lower bound (6)
is due to the use of an upper confidence bound based on Hoeffding’s inequality.

PBM-PIE We adapt the PIE(l) algorithm introduced by [5] for the Cascade Model to the PBM in
Algorithm 1 below. At each round, the learner potentially explores at position L with probability 1/2
using the following upper-confidence bound for each arm k

Uk(t, δ) = sup
q∈[θmin

k (t),1]

{
q

∣∣∣∣∣
L∑
l=1

Nk,l(t)d

(
Sk,l(t)

Nk,l(t)
, κlq

)
≤ δ

}
, (7)

where θmin
k (t) is the minimum of the convex function Φ : q 7→

∑L
l=1Nk,l(t)d(Sk,l(t)/Nk,l(t), κlq).

In other positions, l = 1, . . . , L − 1, PBM-PIE selects the arms with the largest estimates θ̂k(t).
The resulting algorithm is presented as Algorithm 1 below, denoting by L(t) the L-largest empirical
estimates, referred to as the “leaders” at round t.

Algorithm 1 – PBM-PIE
Require: K, L, observation probabilities κ, ε > 0

Initialization: first K rounds, play each arm at every position
for t = K + 1, . . . , T do

Compute θ̂k(t) for all k
L(t)← top-L ordered arms by decreasing θ̂k(t)
Al(t)← Ll(t) for each position l < L

B(t)← {k|k /∈ L(t), Uk(t, (1 + ε) log(T )) ≥ θ̂LL(t)(t)
if B(t) = ∅ then
AL(t)← LL(t)

else
With probability 1/2, select AL(t) uniformly at random from B(t), else AL(t)← LL(t)

end if
Play action A(t) and observe feedback Z(t); Update Nk,l(t+ 1) and Sk,l(t+ 1).

end for

The Uk(t, δ) index defined in (7) aggregates observations from all positions – as in PBM-UCB – but
allows to build tighter confidence regions as shown by the next proposition proved in Appendix E.
Proposition 10. For all δ ≥ L+ 1,

P (Uk(t, δ) < θk) ≤ eL+1

(
dδ log(t)e δ

L

)L
e−δ.

We may now state the main result of this section that provides an upper bound on the regret of
PBM-PIE.
Theorem 11. Using PBM-PIE with δ = (1 + ε) log(t) and ε > 0, for any η < mink<K(θk −
θk+1)/2, there exist problem-dependent constants C1(η), C2(ε, η), C3(ε) and β(ε, η) such that

E[R(T )] ≤ (1 + ε)2 log(T )

K∑
k=L+1

κL(θL − θk)

d(κLθk, κL(θL − η))
+ C1(η) +

C2(ε, η)

T β(ε,η)
+ C3(ε).

The proof of this result is provided in Appendix E. Comparing to the expression in (6), Theorem 11
shows that PBM-PIE reaches asymptotically optimal performance when the optimal exploring
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position is indeed located at index L. In other case, there is a gap that is caused by the fact the
exploring position is fixed beforehand and not adapted from the data.

We conclude this section by a quick description of two other algorithms that will be used in the
experimental section to benchmark our results.

Ranked Bandits (RBA-KL-UCB) The state-of-the-art algorithm for the sequential “learning to
rank” problem was proposed by [17]. It runs one bandit algorithm per position, each one being
entitled to choose the best suited arm at its rank. The underlying bandit algorithm that runs in each
position is left to the choice of the user, the better the policy the lower the regret can be. If the bandit
algorithm at position l selects an arm already chosen at a higher position, it receives a reward of zero.
Consequently, the bandit algorithm operating at position l tends to focus on the estimation of l-th
best arm. In the next section, we use as benchmark the Ranked Bandits strategy using the KL-UCB
algorithm [9] as the per-position bandit.

PBM-TS The observations Zl(t) are censored Bernoulli which results in a posterior that does not
belong to a standard family of distribution. [12] suggest a version of Thompson Sampling called
“Bias Corrected Multiple Play TS” (or BC-MP-TS) that approximates the true posterior by a Beta
distribution. We observed in experiments that for parameter values close to one, this algorithm does
not explore enough. In Figure 1(a), we show this phenomenon for θ = (0.95, 0.85, 0.75, 0.65, 0.55).
The true posterior for the parameter θk at time t may be written as a product of truncated scaled beta
distributions

πt(θk) ∝
∏
l

θ
αk,l(t)
k (1− κlθk)βk,l(t),

where αk,l(t) = Sk,l(t) and βk,l(t) = Nk,l(t) − Sk,l(t). To draw from this exact poste-
rior, we use rejection sampling with proposal distribution Beta(αk,m(t), βk,m(t))/κm, where
m = arg max1≤l≤L(αk,l(t) + βk,l(t)).

5 Experiments

5.1 Simulations

In order to evaluate our strategies, a simple problem is considered in which K = 5, L = 3,
κ = (0.9, 0.6, 0.3) and θ = (0.45, 0.35, 0.25, 0.15, 0.05). The arm expectations are chosen such that
the asymptotic behavior can be observed after reasonable time horizon. All results are averaged based
on 10, 000 independent runs of the algorithm. We present the results in Figure 1(b) where PBM-UCB,
PBM-PIE and PBM-TS are compared to RBA-KL-UCB. The performance of PBM-PIE and
PBM-TS are comparable, the latter even being under the lower bound (it is a common observation,
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Figure 1: Simulation results for the suggested strategies.
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#ads (K) #records min θ max θ
5 216, 565 0.016 0.077
5 68, 179 0.031 0.050
6 435, 951 0.025 0.067
6 110, 071 0.023 0.069
6 147, 214 0.004 0.148
8 122, 218 0.108 0.146
11 1, 228, 004 0.022 0.149
11 391, 951 0.022 0.084

Table 1: Statistics on the queries: each line corresponds
to the sub-dataset associated with a query.

100 101 102 103 104 105

Round t

0

100

200

300

400

500

600

700

800

R
eg

re
t
R

(T
)

PBM-TS
PBM-UCB
PBM-PIE
RBA-KLUCB

Figure 2: Performance of the proposed algo-
rithms under the PBM on real data.

e.g. see [12], and is due to the asymptotic nature of the lower bound). The curves confirm our analysis
for PBM-PIE and lets us conjecture that the true Thompson Sampling policy might be asymptotically
optimal. As expected, PBM-PIE shows asymptotically optimal performance, matching the lower
bound after a large enough horizon.

5.2 Real data experiments: search advertising

The dataset was provided for KDD Cup 2012 track 2 1 and involves session logs of soso.com, a
search engine owned by Tencent. It consists of ads that were inserted among search results. Each of
the 150M lines from the log contains the user ID, the query typed, an ad, a position (1, 2 or 3) at
which it was displayed and a binary reward (click/no-click). First, for every query, we excluded ads
that were not displayed at least 1, 000 times at every position. We also filtered queries that had less
than 5 ads satisfying the previous constraints. As a result, we obtained 8 queries with at least 5 and
up to 11 ads. For each query q, we computed the matrix of the average click-through rates (CTR):
Mq ∈ RK×L, where K is the number of ads for the query q and L = 3 the number of positions. It is
noticeable that the SVD of each Mq matrix has a highly dominating first singular value, therefore
validating the low-rank assumption underlying in the PBM. In order to estimate the parameters of the
problem, we used the EM algorithm suggested by [4, 8]. Table 1 reports some statistics about the
bandit models reconstructed for each query: number of arms K, amount of data used to compute the
parameters, minimum and maximum values of the θ’s for each model.

We conducted a series of 2, 000 simulations over this dataset. At the beginning of each run, a query
was randomly selected together with corresponding probabilities of scanning positions and arm
expectations. Even if rewards were still simulated, this scenario is more realistic since the values of
the parameters were extracted from a real-world dataset. We show results for the different algorithms
in Figure 2. It is remarkable that RBA-KL-UCB performs slightly better than PBM-UCB. One can
imagine that PBM-UCB does not benefit enough from position aggregations – only 3 positions are
considered – to beat RBA-KL-UCB. Both of them are outperformed by PBM-TS and PBM-PIE.

Conclusion

This work provides the first complete analysis of the PBM in an online context. The proof scheme
used to obtain the lower bound on the regret is interesting on its own, as it can be generalized to
various other settings. The tightness of the lower bound is validated by our analysis of PBM-PIE but
it would be an interesting future contribution to provide such guarantees for more straightforward
algorithms such as PBM-TS or a ‘PBM-KLUCB’ using the confidence regions of PBM-PIE. In
practice, the algorithms are robust to small variations of the values of the (κl)l, but it would be
preferable to obtain some control over the regret under uncertainty on these examination parameters.

1http://www.kddcup2012.org/
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A Properties of θ̂k(t) (Section 2)

Conditionnally to the actions A(1) up to A(t − 1), the log-likelihood of the observations
Z(1), . . . , Z(t− 1) may be written as

t−1∑
s=

K∑
k=1

L∑
l=1

1{Al(t) = k} [Zl(t) log(κlθk) + (1− Zl(t)) log(1− κlθk)]

=

K∑
k=1

L∑
l=1

Sk,l(t) log(κlθk) + (Nk,l(t)− Sk,l(t)) log(1− κlθk).

Differenciating twice with respect to θk and taking the expectation of (Sk,l(t))l, contional to
A(1), . . . , A(t− 1), yields the expression of I(θk) given in Section 2.

B Proof of Theorem 4

B.1 Proof of Lemma 2

Under the PBM, the conditional expectation of the log-likelihood ratio defined in (4) writes

Eθ[`(t)|A(1), . . . , A(t)] = Eθ

[
t∑

s=1

∑
a∈A

1{A(s) = a}
L∑
l=1

log
pal(Xl(s)Yl(s); θ)

pal(Xl(s)Yl(s);λ)

∣∣∣∣∣ A(1), . . . , A(t)

]

=

t∑
s=1

∑
a∈A

1{A(s) = a}
L∑
l=1

E

[
log

pal(Xl(s)Yl(s); θ)

pal(Xl(s)Yl(s);λ)

∣∣∣∣ A(s) = a

]

=
∑
a∈A

Na(t)

L∑
l=1

K∑
k=1

1{al = k}d(κlθk, κlλk)

=
∑
a∈A

Na(t)Ia(θ, λ),

using the notation Ia(θ, λ) =
∑L
l=1

∑K
k=1 1{al = k}d(κlθk, κlλk).

B.2 Details on the proof of Proposition 3

Lemma 12. Let θ = (θ1, . . . , θK) and λ = (λ1, . . . , λK) be two bandit models such that the
distributions of all arms in θ and λ are mutually absolutely continuous. Let σ be a stopping time
with respect to (Ft) such that (σ < +∞) a.s. under both models. Let E ∈ Fσ be an event such that
0 < Pθ(E) < 1. Then one has∑

a∈A
Ia(θ, λ)Eθ[Na(σ)] ≥ d(Pθ(E),Pλ(E)),

where Ia(θ, λ) is the conditional expectation of the log-likelihood ratio for the model of interest.

The proof of this lemma directly follows from the above expressions of the log-likelihood ratio and
from the proof of Lemma 1 in Appendix A.1 of [11].

We simply recall the following technical lemma for completeness.

Lemma 13. Let σ be any stopping time with respect to (Ft). For every event A ∈ Fσ ,

Pλ(A) = Eθ[1{A} exp(−`(σ))].

A full proof of Lemma 13 can be found in the Appendix A.3 of [11] (proof of Lemma 15).
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B.3 Lower bound proof (Theorem 4)

In order to prove the simplified lower bound of Theorem 4 we basically have two arguments:

1. a lower bound on f(θ) can be obtained by enlarging the feasible set, that is by relaxing some
constraints;

2. Lemma 15 can be used to lower bound the objective function of the problem.

The constant f(θ) is defined by

f(θ) = inf
c�0

∑
a 6=a∗(θ)

∆a(θ)ca (8)

s.t inf
λ∈B(θ)

∑
a∈A

Ia(θ, λ)ca ≥ 1. (9)

We begin by relaxing some constraints: we only allow the change of measure λ to belong to the sets
Bk(θ) := {λ ∈ Θ|∀j 6= k, θj = λj and µ∗(θ) < µ∗(λ)} defined in Section 3:

f(θ) = inf
c�0

∑
a6=a∗(θ)

∆a(θ)ca (10)

s.t ∀k /∈ a∗(θ), ∀λ ∈ Bk(θ),
∑
a∈A

Ia(θ, λ)ca ≥ 1. (11)

The K − L constraints (11) only let one parameter move and must be true for any value satisfying
the definition of the corresponding set Bk(θ). In practice, for each k, the parameter λk must be set to
at least θL. Consequently, these constraints may then be rewritten

f(θ) = inf
c�0

∑
a6=a∗(θ)

∆a(θ)ca (12)

s.t ∀k /∈ a∗(θ),
∑

a 6=a∗(θ)

ca

L∑
l=1

1{al = k}d(κlθk, κlθL) ≥ 1. (13)

Proposition 14 tells us that coefficients ca are all zeros except for actions a ∈ A which can be written

a = vk,lk where lk = arg minl≤L
∆vk,l

(θ)

d(κlθk,κlθL) . Thus, we obtain the desired lower bound by rewriting
(12) as

f(θ) ≥
K∑

k=L+1

min
l∈{1,...,L}

∆vk,l(θ)

d(κlθk, κlθL)
.

Proposition 14. Let c = {ca : a 6= a∗} be a solution of the linear problem (LP) in Theorem 4.
Coefficients are all zeros except for actions awhich can be written as a = (1, . . . , lk−1, k, lk, . . . , L−
1) := vk,lk where k > L and lk = arg minl≤L

∆vk,l
(θ)

d(κlθk,κlθL) .

Proof. We denote by πk(a) the position of item k ∈ {1, . . . ,K} in action a (0 if k /∈ a). Let lk be

the optimal position of item k > L for exploration: lk = arg minl≤L
∆vk,l

(θ)

d(κlθk,κlθL) . Following [5],
we show by contradiction that ca > 0 implies that a can be written vk,lk for a well chosen k > L.
Let α 6= a∗ be a suboptimal action such that ∀k > L, α 6= vk,lk and cα > 0. We need to show a
contradiction. Let us introduce a new set of coefficients c′ defined as follows, for any a 6= a∗:

c′a =


0 if a = α

ca +
d(κπk(α)θk,κπk(α)θL)

d(κlkθk,κlkθL) cα if ∃k > L s.t. a = vk,lk and k ∈ α
ca otherwise.
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According to Lemma 15, these coefficients satisfy the constraints of the LP. We now show that these
new coefficients yield a strictly lower value to the optimization problem:

c(θ)− c′(θ) = cα∆α(θ)−
∑

k>L:k∈α

d(κπk(α)θk, κπk(α)θL)

d(κlkθk, κlkθL)
cα∆vk,lk

(θ)

> cα

( ∑
k>L:k∈α

∆vk,πk(α)
(θ)−

∑
k>L:k∈α

d(κπk(α)θk, κπk(α)θL)

d(κlkθk, κlkθL)
∆vk,lk

(θ)

)
. (14)

The strict inequality (14) is shown in Lemma 16. Let k > L be one of the suboptimal arms in α. By
definition of lk, the corresponding term of the sum in equation (14) is positive. Thus, we have that
c(θ) > c′(θ) and, hence, by contradiction, we showed that ca > 0 iff a can be written a = vk,lk for
some k > L.

Lemma 15. Let c be a vector of coefficients that satisfy constraints (13) of the optimization problem.
Then, coefficients c′ as defined in Proposition 14 also satisfy the constraints:

∀k /∈ a∗(θ),
∑

a6=a∗(θ)

c′a

L∑
l=1

1{al = k}d(κlθk, κlθL) ≥ 1.

Proof. We use the same α as introduced in Proposition 14. Let us fix k /∈ a∗(θ). Let us define

L(c) =
∑

a6=a∗(θ)

ca

L∑
l=1

1{al = k}d(κlθk, κlθL).

We have

L(c′)− L(c) = −cα
L∑
l=1

1{αl = k}d(κlθk, κlθL) +
∑
l:αl>L

d(κlθk, κlθL)

d(κlkθk, κlkθL)
cα

× 1{αl = k}d(κlkθk, κlkθL).

If k /∈ α, clearly, L(c′) − L(c) = 0. Else, k ∈ α and we note p its position in α: p = πk(α). We
rewrite:

L(c′)− L(c) = cαd(κpθk, κpθL)

(
−1 +

d(κlkθk, κlkθL)

d(κlkθk, κlkθL)

)
= 0.

Thus, the coefficients c′ satisfy the constraints from Proposition 14.

Lemma 16. Let α be as in the proof of Proposition 14.

∆α(θ) >
∑

k>L:k∈α

∆vk,πk(α)
(θ).

Proof. Let k1, . . . , kp be the suboptimal arms in α by increasing position. Let v(α) be the action in
A with lower regret such that it contains all the suboptimal arms of α in the same positions. Thus,
v(α) = (1, . . . , πk1(α)− 1, k1, πk1(α), . . . , πk2(α)− 2, k2, πk2(α)− 1, . . . , L− p). By definition,
one has that ∆α(θ) ≥ ∆v(α)(θ). In the following, we show that ∆v(α)(θ) ≥

∑
k>L:k∈α ∆vk,πk(α)

(θ)

for p = 2 (that is to say α contains 2 suboptimal arms k1 and k2).

For the sake of readability, we write πi instead of πki(α) in the following.

∆v(α)(θ) =

L∑
l=1

κl(θl − θ(vk1,π1 )l) +

L∑
l=1

κl(θ(vk1,π1 )l − θv(α)l)

= ∆vk1,π1
(θ) + [κπ2θπ2−1 + . . .+ κLθL−1]− [κπ2θk2 + κπ2+1θπ2−1 + . . .+ κLθL−2]

= ∆vk1,π1
(θ) + ∆vk2,π2

(θ) + [κπ2
(θπ2−1 − θπ2

) + . . .+ κL(θL−1 − θL)]−
[κπ2+1(θπ2−1 − θπ2

) + . . .+ κL(θL−2 − θL−1)]

= ∆vk1,π1
(θ) + ∆vk2,π2

(θ) +R(θ).
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Thus, one has to show that R(θ) = κπ2(θπ2−1 − θπ2) + κπ2+1(2θπ2 − θπ2−1 − θπ2+1) + . . . +
κL(2θL−1 − θL−2 − θL) > 0. In fact, using that κl ≥ κl+1 for all l < L, we have

R(θ) ≥ κπ2+1(θπ2−1 − θπ2
+ 2θπ2

− θπ2−1 − θπ2+1) + . . .+ κL(2θL−1 − θL−2 − θL)

≥ κπ2+2(θπ2+1 − θπ2+2) + . . .+ κL(2θL−1 − θL−2 − θL)

≥ . . .
≥ κL(θL−1 − θL)

> 0.

C Proof of Proposition 8

In this section, we fix an arm k ∈ {1, . . . ,K} and obtain an upper confidence bound for the estimator
θ̂k(t) := Sk(t)/Ñk(t). Let τi be the instant of the i-th draw of arm k (the τi are stopping times w.r.t.
Ft). We introduce the centered sequence of successive observations from arm k

Z̄k,i =

L∑
l=1

1{Al(τi) = k}(Xl(τi)Yl(τi)− θkκl). (15)

Introducing the filtration Gi = Fτi+1−1, one has E[Z̄k,i|Gi−1] = 0, and therefore, the sequence

Mk,n =

n∑
i=1

Z̄k,i

is a martingale with bounded increments, w.r.t. the filtration (Gn)n. By construction, one has

Mk,Nk(t) = Sk(t)− Ñk(t)θk = Ñk(t)(θ̂k(t)− θk).

We use the so-called peeling technique together with the maximal version of Azuma-Hoeffding’s
inequality [2]. For any γ > 0 one has

P
(
Mk,Nk(t) < −

√
Nk(t)δ/2

)
≤

log(t)
log(1+γ)∑
i=1

P
(
Mk,Nk(t) < −

√
Nk(t)δ/2 , Nk(t) ∈ [(1 + γ)i−1, (1 + γ)i)

)

≤

log(t)
log(1+γ)∑
i=1

P
(
∃i ∈ {1, . . . , (1 + γ)i} : Mk,i < −

√
(1 + γ)i−1δ/2

)

≤

log(t)
log(1+γ)∑
i=1

exp

(
−δ(1 + γ)i−1

(1 + γ)i

)
=

log(t)

log(1 + γ)
exp

(
− δ

(1 + γ)

)
.

Choosing γ = 1/(δ − 1), gives

P

(
θ̂k(t)− θk < −

√
Nk(t)δ/2

Ñk(t)

)
≤ δe log(t)e−δ.

D Regret analysis for PBM-UCB (Theorem 9)

We proceed as Kveton et al. (2015) [14]. We start by considering separately rounds when one of the
confidence intervals is violated. We denote by Bt,k =

√
Nk(t)(1 + ε) log t/2/Ñk(t) the PBM-UCB

exploration bonus and by B+
t,k =

√
Nk(t)(1 + ε) log T/2/Ñk(t) an upper bound of this bonus (for

t ≤ T ). We define the event Et = {∃k ∈ A(t) : |θ̂k(t) − θk| > Bt,k}. Then, the regret can be
decomposed into

R(T ) =

T∑
t=1

∆A(t)1Et + ∆A(t)1Ēt .
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and, similarly to [14] (Appendix A.1), the first term of this sum can be bounded from above in
expectation by a constant C0(ε) that does not depend on T using Proposition 8. So, it remains to
bound the regret suffered even when confidence intervals are respected, that is the sum on the r.h.s of

E[R(T )] < C0(ε) + E[

T∑
t=1

∆A(t)1{Ēt,∆A(t) > 0}].

It can be done using techniques from [6, 14]. We start by defining events Ft, Gt, Ht in order to
decompose the part of the regret at stake. Then, we show an equivalent of Lemma 2 of [14] for our
case and finally we refer to the proof of Theorem 3 in Appendix A.3 of [14].

For each round t ≥ 1, we define the set of arms St = {1 ≤ l ≤ L : NAl(t)(t) ≤
8(1+ε) log T(

∑L
s=1 κs)

2

κ2
L∆2

A(t)

} and the related events

• Ft = {∆A(t) > 0, ∆A(t) ≤ 2
∑L
l=1 κlB

+
t,Al(t)

};

• Gt = {|St| ≥ l};

• Ht = {|St| < l , ∃k ∈ A(t), Nk(t) ≤ 8(1+ε) log T(
∑l
s=1 κs)

2

κ2
L∆2

A(t)

}, where the constraint on

Nk(t) only differs from the first one by its numerator which is smaller than the previous
one, leading to an even stronger constraint.

Fact 17. According to Lemma 1 in [14], the following inequality is still valid with our own definition
of Ft :

T∑
t=1

∆A(t)1{Ēt,∆A(t) > 0} ≤
T∑
t=1

∆A(t)1{Ft}.

Proof. Invoking Lemma 1 from [14] needs to be justified as our setting is quite different. Taking
action A(t) means that

L∑
l=1

κlUAl(t)(t) ≥
L∑
l=1

κlUl(t).

Under event Ēt, all UCB’s are above the true parameter θk so we have

L∑
l=1

κl(θAl(t) + 2Bt,Al(t)) ≥
L∑
l=1

κl(θl +Bt,l) ≥
L∑
l=1

κlθl.

Rearranging the terms above and using Bt,l(t) ≤ B+
t,l(t), we obtain

L∑
l=1

κlB
+
t,Al(t)

≥ 2

L∑
l=1

κlBt,Al(t) ≥ ∆A(t).

We now have to prove an equivalent of Lemma 2 in [6] that would allow us to split the right-hand
side above in two parts. Let us show that Ft ⊂ (Gt ∪Ht) by showing its contrapositive: if Ft is true
then we cannot have (Ḡt ∩ H̄t). Assume both of these events are true. Then, we have

∆A(t)

Ft
≤ 2

L∑
l=1

κlB
+
t,Al(t)

≤ 2

L∑
l=1

κl

√
NAl(t)(t)

ÑAl(t)(t)

√
(1 + ε) log(T )

2ÑAl(t)(t)

= 2

L∑
l=1

κl
NAl(t)(t)

ÑAl(t)(t)

√
(1 + ε) log(T )

2NAl(t)(t)
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≤
√

2(1 + ε) log T

κL

L∑
l=1

κl√
NAl(t)(t)

=

√
2(1 + ε) log T

κL

∑
l/∈St

κl√
NAl(t)(t)

+
∑
l∈St

κl√
NAl(t)(t)


(Ḡt∩H̄t)
<

√
2(1 + ε) log T

κL

κL∆A(t)

2
√

2(1 + ε) log T

(∑
l/∈St κl∑L
s=1 κs

+

∑
l∈St κl∑l
s=1 κs

)
≤ ∆A(t)

which is a contradiction. The end of the proof proceeds exactly as in the end of the proof of Theorem
6 in of [6]: events Gt and Ht are split into subevents corresponding to rounds where each specific
suboptimal arm of the list is in St or verifies the condition of Ht. We define

Gk,t = Gt ∩ {k ∈ A(t), Nk(t) ≤
8(1 + ε) log T

(∑L
s=1 κs

)2

κ2
L∆2

A(t)

},

Hk,t = Ht ∩ {k ∈ A(t), Nk(t) ≤
8(1 + ε) log T

(∑l
s=1 κs

)2

κ2
L∆2

A(t)

}.

The way we defined these subevents allows to write the two following bounds :
K∑
k=1

1{Gk,t} = 1{Gt}
K∑
k=1

1{k ∈ St} ≥ l1{Gt}

so 1{Gt} ≤
∑
k 1{Gk,t}/l. And,

1{Ht} ≤
K∑
k=1

1{Hk,t}.

We can now bound the regret using these two results:
T∑
t=1

∆A(t)(1{Gt}+ 1{Ht}) ≤
T∑
t=1

K∑
k=1

∆A(t)

l
1{Gk,t}+

T∑
t=1

K∑
k=1

∆A(t)1{Hk,t}

=

T∑
t=1

K∑
k=1

∆A(t)

l
1{Gk,t, A(t) 6= a∗}+

T∑
t=1

K∑
k=1

∆A(t)1{Hk,t, A(t) 6= a∗}.

For each arm k, there is a finite number Ck := |Ak| of actions inA containing k; we order them such
that the corresponding gaps are in decreasing order ∆k,1 ≥ . . . ≥ ∆k,Ck > 0. So we decompose
each sum above on the different actions A(t) possible:

. . . ≤
T∑
t=1

K∑
k=1

∑
a∈Ak

∆k,a

l
1{Gk,t, A(t) = a}+

T∑
t=1

K∑
k=1

∑
a∈Ak

∆k,a1{Hk,t, A(t) = a}.

The two sums on the right hand side look alike. For arm k fixed, events Gk,t and Hk,t imply almost
the same condition on Nk(t), only Hk,t is stronger because the bounding term is smaller. We now
rely on a technical result by [6] that allows to bound each sum.
Lemma 18. ([6], Lemma 2 in Appendix B.4) Let k be a fixed item and |Ak| ≥ 1, C > 0, we have

T∑
t=1

∑
a∈Ak

1{k ∈ A(t), Nk(t) ≤ C/∆2
k,a, A(t) = a}∆k,a ≤

2C

∆min,k

where ∆min,k is the smallest gap among all suboptimal actions containing arm k. In particular, when
k /∈ a∗ the smallest gap is ∆min,k = κL(θL − θk). While, when k ∈ a∗ it is less obvious what the
minimal gap is, however it corresponds the second best action A2 containing only optimal arms:
∆min,k = ∆A2

.
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So, bounding each sum with the above lemma, we obtain

T∑
t=1

∆A(t)(1{Gt}+1{Ht}) ≤
16(1 + ε) log T

κ2
L


(∑L

s=1 κs

)2

l
+

(
l∑

s=1

κs

)2


︸ ︷︷ ︸
C(l;κ)

(
L

∆A2

+
∑
k/∈a∗

1

κL(θL − θk)

)
.

This bound can be optimized by minimizing C(l;κ) over l.

E Regret analysis for PBM-PIE (Theorem 11)

The proof follows the decomposition of [5]. For all t ≥ 1, we denote f(t, ε) = (1 + ε) log t.

E.1 Controlling leaders and estimations

Define η0 = mink∈{1,...,L−1}(θk − θk+1)/2 and let η < η0. We define the following set of rounds

A = {t ≥ 1 : L(t) 6= (1, . . . , L)}.

Our goal is to upper bound the expected size of A. Let us introduce the following sets of rounds:

B = {t ≥ 1 : ∃k ∈ L(t), |θ̂k(t)− θk| ≥ η},
C = {t ≥ 1 : ∃k ≤ L,Uk(t) ≤ θk},
D = {t ≥ 1 : t ∈ A \ (B ∪ C),∃k ≤ L, k /∈ L(t), |θ̂k(t)− θk| ≥ η}.

We first show that A ⊂ (B ∪C ∪D). Let t ∈ A \ (B ∪C). Let k, k′ ∈ L(t) such that k < k′. Since
t /∈ B, we have that |θ̂k(t)− θk| ≤ η and |θ̂k′(t)− θk′ | ≤ η. Since η ≤ (θk − θk′)/2, we conclude
that θ̂k(t) ≥ θ̂k′(t). This proves that (L1(t), . . . ,LL(t) is an increasing sequence. We have that
LL(t) > L otherwise L(t) = (1, . . . , L) which is a contradiction because t ∈ A. Since LL(t) > L,
there exists k ≤ L such that k /∈ L(t). We show by contradiction that |θ̂k(t)− θk| ≥ η. Assume that
|θ̂k(t)− θk| ≤ η. We also have that θ̂LL(t)(t)− θLL(t) ≤ η because LL(t) ∈ L(t) and t /∈ B. Thus,
θ̂k(t) > θ̂LL(t)(t). We have a contradiction because this would imply that k ∈ L(t). Finally we have
proven that if t ∈ A \ (B ∪ C), then t ∈ D so A ⊂ (B ∪ C ∪D).

By a union bound, we obtain
E[|A|] ≤ [|B|] + [|C|] + [|D|].

In the following, we upper bound each set of rounds individually.

Controlling E[|B|]: We decompose B =
⋃K
k=1(Bk,1 ∪Bk,2) where

Bk,1 = {t ≥ 1 : k ∈ L(t),LL(t) 6= k, |θ̂k(t)− θk| ≥ η}
Bk,2 = {t ≥ 1 : k ∈ L(t),LL(t) = k, |θ̂k(t)− θk| ≥ η}

Let t ∈ Bk,1: k ∈ A(t) so E[k ∈ A(t)|t ∈ Bk,1] = 1. Furthermore, for all t, 1{t ∈ Bk,1} is Ft−1

measurable. Then we can apply Lemma 22 (with H = Bk,1 and c = 1).

E[|Bk,1|] ≤ 2(2 + κ−2
L η−2).

Let t ∈ Bk,2: k ∈ B(t) but because of the randomization of the algorithm, k ∈ A(t) with probability
1/2, i.e. E[k ∈ A(t)|t ∈ Bk,2] ≥ 1/2. We get

E[|Bk,2|] ≤ 4(4 + κ−2
L η−2)

By union bound over k, we get E[|B|] ≤ 2K(10 + 3κ−2
L η−2).
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Controlling E[|C|]: We decompose C =
⋃L
k=1 Ck where Ck = {t ≥ 1 : Uk(t) ≤ θk}

We first require to prove Proposition 10.

Proof. Theorem 2 of [16] implies that

P

(
L∑
l=1

Nk,l(t)d(
Sk,l(t)

Nk,l(t)
, κlθk) ≥ δ

)
≤ e−δ

(
dδ log(t)e δ

L

)L
eL+1.

The function Φ : x→
∑L
l=1Nk,l(t)d

(
Sk,l(t)
Nk,l(t)

, κlx
)

is convex and non-decreasing on [θmink (t), 1];

the convexity is easily checked and θmink (t) is defined as the minimum of this convex function. By
definition, we have, either, Uk(t, δ) = 1 and then Uk(t, δ) > θk, or, Uk(t, δ) < 1 and Φ(Uk(t, δ)) =
δ, consequently

P (Uk(t, δ) < θk) = P (Φ(Uk(t, δ)) ≤ Φ(θk)) = P (δ ≤ Φ(θk)) .

Remember that Uk(t) = Uk(t, (1 + ε) log(t)) = Uk(t, f(t, ε)). Thus, applying Proposition 10, we
obtain for arm k,

E[|Ck|] ≤
∞∑
t=1

P(Uk(t) ≤ θk) ≤ deL+1e+
eL+1

LL

∞∑
t=deL+1e+1

(2 + ε)2L(log t)3L

t1+ε
≤ C3(ε),

for some constant C3(ε).

Controlling E[|D|]: Decompose D as D =
⋃L
k=1Dk where

Dk = {t ≥ 1 : t ∈ A \ (B ∪ C), k /∈ L(t), |θ̂k(t)− θk| ≥ η}.

For a given k ≤ L, Dk is the set of rounds at which k is not one of the leaders, and is not accurately
estimated. Let t ∈ Dk. Since k /∈ L(t), we must have LL(t) > L. In turn, since t /∈ B, we have
|θ̂LL(t)(t)− θLL(t)| ≤ η, so that

θ̂LL(t) ≤ θLL(t) + η ≤ θL + η ≤ (θL + θL+1)/2.

Furthermore, since t /∈ C and 1 ≤ k ≤ L, we have Uk(t) ≥ θk ≥ θL ≥ (θL + θL+1)/2 ≥ θ̂LL(t).
This implies that k ∈ B(t) thus E[k ∈ A(t)|t ∈ Dk] ≥ 1/(2K). We apply Lemma 22 with H ≡ Dk

and c = 1/(2K) to get

E[|D|] ≤
L∑
k=1

E[|Dk|] ≤ 4K(4K + κ−2
L η−2).

E.2 Regret decomposition

We decompose the regret by distinguishing rounds in A ∪B and other rounds. More specifically, we
introduce the following sets of rounds for arm k > L:

Ek = {t ≥ 1 : t /∈ (B ∪ C ∪D),L(t) = a∗, A(t) = vk,L}.
The set of instants at which a suboptimal action is selected now can be expressed as follows

{t ≥ 1 : A(t) 6= a∗} ⊂ (B ∪ C ∪D) ∪ (∪k=L+1Ek).

Using a union bound, we obtain the upper bound

E[R(T )] ≤

(
L∑
l=1

κl

)
E[|B ∪ C ∪D|] +

K∑
k=L+1

∆vk,L(θ)E[|Ek|].

From previous boundaries, putting it all together, there exist C1(η) and C3(ε), such that(
L∑
l=1

κl

)
(E[|B|] + E[|C|] + E[|D|]) ≤ C1(η) + C3(ε).

At this step, it suffices to bound events Ek for all k > L.
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E.3 Bounding event Ek

We proceed similarly to [9]. Let us fix an arm k > L. Let t ∈ Ek: arm k is pulled in position L, so
by construction of the algorithm, we have that k ∈ B(t) and thus Uk(t) ≥ θ̂LL(t)(t). We first show
that this implies that Uk(t) ≥ θL − η. Since t ∈ Ek, we know that LL(t) = L, and since t /∈ B,
|θ̂L(t)− θL| ≤ η. This leads to

Uk(t) ≥ θ̂LL(t)(t) = θ̂L(t) ≥ θL − η.

Recall that Nk,L(t) is the number of times arm k was played in position L. By denoting d+(x, y) =
1{x < y}d(x, y), we have that

Nk,L(t)d+(Sk,L(t)/Nk,L(t), κL(θL − η)) ≤ Nk,L(t)d+(Sk,L(t)/Nk,L(t), κLUk(t))

≤
L∑
l=1

Nk,l(t)d
+(Sk,l(t)/Nk,l(t), κlUk(t)) ≤ f(t, ε).

This implies that 1{t ∈ Ek} ≤ 1{Nk,L(t)d+(Sk,L(t)/Nk,L(t), κL(θL − η)) ≤ f(t, ε)}.
Lemma 19. ([9], Lemma 7) Denoting by ν̂Lk,s the empirical mean of the first s samples of Zk,L, we
have

T∑
t=1

1{A(t) = vk,L, Nk,L(t)d+(Sk,L(t)/Nk,L(t), κL(θL − η)) ≤ f(t, ε)}

≤
T∑
s=1

1{sd+(ν̂Lk,s, κL(θL − η)) ≤ f(T, ε)}.

We apply Lemma 19 which is a direct translation of Lemma 7 from [9] to our problem. This yields

|Ek| ≤
T∑
s=1

1{sd+(ν̂Lk,s, κL(θL − η)) ≤ f(T, ε)}.

Let γ > 0. We define KT = (1+γ)f(T,ε)
d+(κLθk,κL(θL−η)) . We now rewrite the last inequality splitting the sum

in two parts.

T∑
s=1

P(sd+(ν̂Lk,s,κL(θL − η)) ≤ f(T, ε)) ≤ KT +

∞∑
s=KT+1

P(KT d
+(ν̂Lk,s, κL(θL − η)) ≤ f(T, ε))

≤ KT +

∞∑
s=KT+1

P(d+(ν̂Lk,s, κL(θL − η)) ≤ d(κLθk, κL(θL − η))/(1 + γ))

≤ KT +
C2(γ, η)

T β(γ,η)
,

where last inequality comes from Lemma 20. Fixing γ < ε, we obtain the desired result, which
concludes the proof.
Lemma 20. For each γ > 0, there exists C2(γ, η) > 0 and β(γ, η) > 0 such that

∞∑
s=KT+1

P

(
d+(ν̂Lk,s, κL(θL − η)) ≤ d(κLθk, κL(θL − η)

1 + γ

)
≤ C2(γ, η)

T β(γ,η)
.

Proof. If d+(ν̂Lk,s, κL(θL − η)) ≤ d(κLθk,κL(θL−η))
1+γ , then there exists some r(γ, η) ∈ (θk, θL − η)

such that ν̂Lk,s > κLr(γ, η) and

d(κLr(γ, η), κL(θL − η)) =
d(κLθk, κL(θL − η))

1 + γ
.
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Hence,

P

(
d+(ν̂k,s, κLθL) <

d(κLθk, κLθL)

1 + γ

)
≤ P (d(ν̂k,s, κLθk) > d(κLr(γ, η), κLθk), ν̂k,s > κLθk)

≤ P(ν̂k,s > κLr(γ, η)) ≤ exp(−sd(κLr(γ, η), κLθk)).

We obtain,
∞∑

t=KT

P

(
d+(ν̂k,s, κLθL) <

d(κLθk, κLθL)

1 + γ

)
≤ exp(−KT d(κLr(γ, η), κLθk))

1− exp(−d(κLr(γ, η), κLθk))
≤ C2(γ, η)

T β(γ,η)
,

for well chosen C2(γ, η) and β(γ, η).

F Lemmas

In this section, we recall two necessary concentration lemmas directly adapted from Lemma 4 and 5
in Appendix A of [5]. Although more involved from a probabilistic point of view, these results are
simpler to establish than proposition 8 as their adaptation to the case of the PBM relies on a crude
lower bound for Ñk(t), which is sufficient for proving Theorem 11..
Lemma 21. For k ∈ {1, . . . ,K} consider the martingale Mk,n =

∑n
i=1 Z̄k,i, where Z̄k,i is defined

in (15). Consider Φ a stopping time such that either Nk(Φ) ≥ s or Φ = T + 1. Then

P[|Mk,Nk(Φ)| ≥ Nk(Φ)η,Nk(Φ) ≥ s] ≤ 2 exp(−2sη2). (16)

As a consequence,

P[|θ̂k(Φ)− θk| ≥ η, Φ ≤ T ] ≤ 2 exp(−2sκ2
Lη

2). (17)

Proof. The first result is a direct application of Lemma 4 of [5] as (Zl(t))t with Zl(t) = Xl(t)Yl(t)
is an independent sequence of [0, 1]-valued variables.

For the second inequality, we use the fact that Ñk(t) ≥ κLNk(t). Hence,

P[|θ̂k(Φ)− θk| ≥ η, Φ ≤ T ] ≤ P
[ |Mk,Nk(Φ)|
κLNk(Φ)

≥ η, Φ ≤ T
]
.

which is upper bounded using (16).

Lemma 22. Fix c > 0 and k ∈ {1, . . . ,K}. Consider a random set of rounds H ⊂ N, such that,
for all t, 1{t ∈ H} is Ft−1 measurable and such that for all t ∈ H , {k ∈ B(t)} is true. Further
assume, for all t, one has E[1{k ∈ A(t)}|t ∈ H] ≥ c > 0. We define τs a stopping time such that∑τs
t=1 1{t ∈ H} ≥ s. Consider the random set Λ = {τs : s ≥ 1}. Then, for all k,∑

t≥0

P[t ∈ Λ, |θ̂k(t)− θk| ≥ η] ≤ 2c−1(2c−1 + κ−2
L η−2)

The proof of this lemma follows that of Lemma 5 in [5] using the same lower bound for Ñk(t) as
above.
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