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Multichannel Audio Source Separation with
Probabilistic Reverberation Priors

Simon Leglaive, Roland Badeau, Senior Member, IEEE, Gaël Richard Senior Member, IEEE

Abstract—Incorporating prior knowledge about the sources
and/or the mixture is a way to improve under-determined audio
source separation performance. A great number of informed
source separation techniques concentrate on taking priors on
the sources into account, but fewer works have focused on con-
straining the mixing model. In this paper we address the problem
of under-determined multichannel audio source separation in re-
verberant conditions. We target a semi-informed scenario where
some room parameters are known. Two probabilistic priors on
the frequency response of the mixing filters are proposed. Early
reverberation is characterized by an autoregressive model while
according to statistical room acoustics results, late reverberation
is represented by an autoregressive moving average model. Both
reverberation models are defined in the frequency domain. They
aim to transcribe the temporal characteristics of the mixing filters
into frequency-domain correlations. Our approach leads to a
maximum a posteriori estimation of the mixing filters which is
achieved thanks to an expectation-maximization algorithm. We
experimentally show the superiority of this approach compared
with a maximum likelihood estimation of the mixing filters.

Index Terms—Multichannel audio source separation, proba-
bilistic priors, mixing model, MAP estimation, EM algorithm.

I. INTRODUCTION

AUDIO source separation is the task that aims to recover
a set of source signals from the observation of one or

several mixtures. Audio source separation can be used as
a pre-processing step for classification or recognition tasks.
Indeed, more relevant features can be computed on the sep-
arated sources or higher-level information can be extracted
from parametric models used for source separation. In music
information retrieval, audio source separation can for example
help improving the performance of tasks such as instrument
recognition [1], main melody extraction [2], [3] or singing
voice detection [4]. Audio source separation is more challeng-
ing when the separated sources are meant to be listened to by
humans, such as for interference removal in close-microphone
live recordings, remixing or upmixing applications.

When a punctual source is emitting in an enclosed space,
the signal recorded by a microphone will include multiple
reflections of the source signal on the surfaces and objects
in the room. The acoustic channel between a source and a
microphone is characterized by a Room Impulse Response
(RIR) and represents how the sound propagates in the room. In
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the context of audio source separation the mixture is referred
to as convolutive due to the filters involved in the mixing
process. Each RIR between a microphone and a source is
called a mixing filter. Non-punctual source models have also
been proposed using spatial covariance matrices in [5], [6].

Source separation is commonly achieved in a Time-
Frequency (TF) domain. Firstly because using a short-term
representation can be useful to describe the spectro-temporal
evolution of the sources. Secondly because it is possible to
exploit the sparsity of the sources in this domain. And thirdly
because expressing the mixture in this domain is easier: it can
be defined according to a frequency-dependent mixing matrix
built from the frequency response of the mixing filters.

Recent and now widely used approaches for tackling under-
determined audio source separation are based on variance
modeling frameworks [5]. In these probabilistic approaches,
the Short-Term Fourier Transform (STFT) coefficients of each
source are modeled as latent random variables following a
complex circularly symmetric distribution with a time and
frequency-dependent scale parameter. Within this framework,
Non-negative Matrix Factorization (NMF) techniques are pop-
ular to represent the spectro-temporal characteristics of the
sources [7]–[9]. The interpretability of a non-negative de-
composition makes it possible to incorporate deterministic
constraints or probabilistic priors on the sources [10], [11].
One can for example consider specific spectral structures as a
source/filter model [2]. User input can be taken into account
in the form of humming [12]. Even the musical score can be
incorporated within the decomposition [13], [14]. Deep neural
networks have also been used recently in the context of these
variance modeling frameworks [15].

Compared with the large number of constraints that have
been proposed about the sources, only a few methods consider
priors on the spatial mixing parameters (i.e. the mixing filters
or the spatial covariance matrices). In [16] the authors consider
a complex Wishart prior on the inverse of the spatial covari-
ance matrices. Geometrically calculated or pre-measured steer-
ing vectors representing the direct path between the source and
the microphones are used to parametrize the prior. In [17] the
authors consider Inverse-Wishart and Gaussian priors over the
spatial covariance matrices. The prior aims to represent that,
on average over all possible source and microphone positions
in the room, the spatial covariance matrix is equal to the sum of
two terms: the outer-product of the steering vector and a term
modeling the spatial correlations between the microphones due
to late reverberation. The method requires the knowledge of
the source positions and certain room characteristics.

In this article we propose two probabilistic priors over the
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frequency response of the mixing filters. The first one corre-
sponds to an autoregressive model of early reverberation. It is
based on our previous works [18], [19] in which we neglected
the influence of late reverberation. This is not the case in this
paper as we consider a second prior for late reverberation.
This prior aims to transcribe the time-domain exponential
decay of the late reverberation power into frequency-domain
correlations. Based on our late reverberation model in the
frequency domain [20], we use an Autoregressive Moving-
Average (ARMA) representation to characterize the late part
of the mixing filters. This prior requires the knowledge of the
reverberation time, the volume of the room and the total wall
area. The priors are taken into account within an Expectation-
Maximization (EM) algorithm so as to perform a Maximum
A Posteriori (MAP) estimation of the mixing filters. We show
that the source separation performance is improved compared
to the standard Maximum Likelihood (ML) estimation.

Section II introduces the general source separation frame-
work on which our work is built. It is mainly based on
the previous methods [21], [22] where the mixing filters are
estimated in the ML sense. In section III we introduce the
reverberation models that will be used in section IV to define
the priors on the mixing filters. The models are shown to be
consistent with real data. Source separation experiments are
detailed in section V where we compare the performance for
ML and MAP estimations of the mixing filters. We finally
draw conclusions in section VI.

II. SOURCE SEPARATION FRAMEWORK

We consider a mixture of J source signals sj(t) ∈ R
on I channels denoted by x(t) = [x1(t), ..., xI(t)]

T ∈ RI
where (·)T is the transposition operator. The mixture can be
decomposed according to the following additive model:

x(t) =

J∑
j=1

yj(t) + b(t), (1)

where yj(t) = [y1j(t), ..., yIj(t)]
T ∈ RI is the j-th source

image, i.e. the vector of size I containing the image of
the source signal sj(t) at each microphone i, and b(t) =
[b1(t), ..., bI(t)]

T ∈ RI is a noise vector. Introducing this
noise term in (1) is formally equivalent to considering an
extra source image. However as we will see later, the noise
model is usually different from the source image model; the
noise rarely corresponds to a sound source propagating in
an environment. It rather corresponds to a sensor noise or
a modeling error. Moreover this noise term can be necessary
for the separation algorithm, in order to prevent from potential
numerical instabilities or slow convergence.

A. Mixing model

Using the STFT, we can write the mixture for all (f, n) ∈
{0, ..., F − 1} × {0, ..., N − 1} as:

xfn =

J∑
j=1

yj,fn + bfn, (2)

where xfn = [x1,fn, ..., xI,fn]T , yj,fn = [y1j,fn, ..., yIj,fn]T

and bfn = [b1,fn, ..., bI,fn]T are the complex-valued vectors
containing the STFT coefficients1 of xi(t), yij(t) and bi(t)
respectively, at TF point (f, n). Each source image can be
characterized by the associated source signal and a set of
mixing filters. A widely used approximation in source sep-
aration consists in considering that the mixing filters are short
compared with the length of the STFT analysis window. Under
this hypothesis the convolutive mixing can be approximated
by an instantaneous mixing in each frequency band [23]. A
source image thus writes:

yj,fn = aj,fsj,fn, (3)

where aj,f = [a1j,f , ..., aIj,f ]T ∈ CI contains the frequency
response of the mixing filters between source j and the I
microphones and sj,fn ∈ C represents the STFT of source
j. This short mixing filters assumption is experimentally
discussed in section V-C. From (2) and (3) the mixture can be
written in matrix form:

xfn = Afsfn + bfn, (4)

where Af = [aij,f ]ij ∈ CI×J is referred to as the mixing
matrix and sfn = [s1,fn, ..., sJ,fn]T ∈ CJ contains the
coefficients of the J source STFTs. Compared with the mixing
equation (2) which only involves the source images, the
convolutive model (4) highlights the way the source signals
are mixed, through the introduction of the mixing matrix. This
formalism is thus well suited for representing the physics of
the mixing process such as the propagation of sound in a
room. However it reaches its limits when the sources cannot
be considered as punctual or when the mixing process involves
long reverberations for example. In these cases, other models
less oriented on the representation of the mixing physical
phenomena can be used. One possible approach consists in
directly modeling the source images using spatial covariance
matrices [5], [6]. As we focus in this paper on incorporating
physically motivated priors on the mixing filters, we will only
consider the convolutive model (4).

B. Local Gaussian source model

1) Source distribution: The local Gaussian model is widely
used in audio source separation [24], [21], [6], [10], [25]. Each
coefficient sj,fn is modeled as a random variable following a
centered proper complex Gaussian distribution:

sj,fn ∼ Nc(0, vj,fn). (5)

Nc(µ,Σ) is the multivariate proper complex Gaussian distri-
bution with Probability Density Function (PDF):

Nc(x;µ,Σ) =
1

det(πΣ)
exp[−(x− µ)HΣ−1(x− µ)], (6)

where Σ is the positive definite covariance matrix, (·)H
is the Hermitian transposition operator and det(·) the ma-
trix determinant. The term proper means that the pseudo-
covariance matrix E[(x − µ)(x − µ)T ] is zero where E[·] is

1Due to the Hermitian symmetry property that holds for real-valued signals,
the STFT is a redundant TF transform. Therefore, the set of frequency bins
{0, ..., F − 1} only includes the positive frequencies.
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the mathematical expectation. Moreover if the mean vector
µ is also zero, the distribution is circularly symmetric. The
sources are assumed mutually independent, we can thus write
the distribution of the source vector introduced in (4) as:

sfn ∼ Nc(0,Σs,fn), Σs,fn = diag
(
[vj,fn]j

)
, (7)

where diag([cm]m) is the diagonal matrix constructed from
the coefficients cm for m = 1, ...,M .

2) NMF source power parametrization: The variance vj,fn
in the source model (5) represents the short-term Power
Spectral Density (PSD) of source j; it is the PSD of each frame
of the short-term analysis of the source signal. The popularity
of the local Gaussian model comes in particular from the possi-
bility of introducing a parametric modeling of the source PSD.
The importance of such a parametrization lies in the under-
determined nature of the source separation problem. Indeed
we have to estimate the FN parameters {vj,fn}fn for each
source. The idea is thus to represent the PSD of each source by
a set of parameters whose cardinality is lower than FN . In this
work we chose the widely used rank-reduction technique based
on NMF. The idea of representing the short-term PSD of audio
sources by a non-negative decomposition can be traced back to
[26]. The Gaussian generative model based on NMF was then
introduced in [7] and extended to multichannel audio source
separation in [21]. It is based on the following factorization
of the matrix Vj = [vj,fn]fn ∈ RF×N+ :

Vj = WjHj , (8)

where Wj ∈ RF×Kj+ and Hj ∈ RKj×N+ . Kj is the factoriza-
tion rank and is generally chosen such that Kj(F+N)� FN .
Wj is a matrix containing spectral templates while Hj con-
tains the activation of these templates over the time frames.
The non-negativity constraint of this decomposition generally
leads to physically meaningful spectral templates. For example
they can correspond to the spectrum of the music notes in the
source signal. The rows of Hj then represent the activations
of the notes over time frames.

3) Local stationarity: One important hypothesis that will be
used in the following consists in assuming the independence
of the source STFT frames and the local stationarity of the
source signals (i.e. over the support of each frame) [27]. For
some category of signals, particularly Gaussian and generally
harmonisable α-stable [28], this local stationarity assumption
implies the independence of the TF points of the STFT such
that:

p({sfn}f,n) =
∏
f,n

p(sfn). (9)

This widely used assumption is introduced for convenience
because it strongly simplifies the models. However it is clearly
not consistent with an STFT representation of the signals, in
particular due to the framing and overlapping procedure.

C. Noise model
As in [21], we assume a time-stationary and isotropic noise

following a centered proper complex Gaussian distribution:

bfn ∼ Nc(0,Σb,f ), Σb,f = σ2
b,fII , (10)

where σ2
b,f > 0 and Im is the identity matrix of size m.

D. Parameter estimation

Let X = {xfn}f,n be the set of observed data and
η =

{
{Wj}j , {Hj}j , {Af}f , {σ2

b,f}f
}

the set of parameters.
In the most general case the parameters are estimated in a
MAP sense:

η? = arg max
η

ln p(η|X)

= arg max
η

ln p(X|η) + ln p(η), (11)

where ln p(X|η) is the log-likelihood and ln p(η) the log-
prior over the parameters. This estimation can be done by
maximizing a lower bound of the criterion (11), typically
with an EM algorithm [29]. Let S = {sfn}f,n denote the
set of latent or hidden variables. At the E-step of the EM
algorithm we compute the following lower bound, from the
current estimation η′ of the parameters:

QMAP(η|η′) = QML(η|η′) + ln p(η), (12)

where QML(η|η′) is defined as the conditional expectation of
the complete-data log-likelihood. From (4), (5) and (10) it
writes:

QML(η|η′) =ES|X,η′ [ln p(X,S|η)]

c
=−N

F−1∑
f=0

[
ln det(Σb,f )

+ Trace
(
Σ−1

b,fR̂xx,f −Σ−1
b,fAfR̂

H
xs,f

−Σ−1
b,fR̂xs,fA

H
f + Σ−1

b,fAfR̂ss,fA
H
f

)]
−

J∑
j=1

F−1∑
f=0

N−1∑
n=0

[
ln(vj,fn) +

p̂j,fn
vj,fn

]
, (13)

where ES|X,η′ [·] is the conditional expectation of S given X,
c
= denotes equality up to a constant (independent of η in (13))
and the statistics denoted by letters with a hat are defined
at the E-step in Algorithm 1. If no prior is considered on
the parameters the second term in the right-hand side of (11)
and (12) disappears. The estimation is thus done in an ML
sense. We see that for both MAP and ML estimations the
E-step can be reduced to the computation of the conditional
expectation in (13). In the M-step we then maximize (13)
(for ML estimation) or (12) (for MAP estimation) in order
to obtain the new estimation of the parameters. These two
steps are iterated until convergence. An alternative consists in
only increasing and not maximizing the Q-function at the M-
step. In that case the algorithm is referred to as a Generalized
EM (GEM). In this work we will only consider priors on the
mixing filters, i.e. on the set {Af}f , so that only the update
of the mixing matrix will be modified in the M-step compared
with the ML case. We summarize in Algorithm 1 one iteration
of the GEM algorithm. For more details about the derivation
see [21], [22]. For ML estimation the update of the mixing
filters at line 11 of Algorithm 1 is given by:

Af = R̂xs,fR̂
−1
ss,f . (14)

Finally, up to an additive constant independent of vj,fn,
we can recognize in the last line of (13) the Itakura-Saito
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Algorithm 1: One iteration of the GEM algorithm
E-step:

1: Σs,fn = diag([vj,fn]j) with vj,fn = [WjHj ]fn
2: Σx,fn = AfΣs,fnAH

f + Σb,f

3: Gs,fn = Σs,fnAH
f Σ−1

x,fn

4: ŝfn = Gs,fnxfn
5: Σpost

s,fn = (IJ −Gs,fnAf )Σs,fn

6: R̂ss,fn = ŝfnŝHfn + Σpost
s,fn

7: p̂j,fn = [R̂ss,fn]j,j
8: R̂ss,f = 1

N

∑
n R̂ss,fn

9: R̂xx,f = 1
N

∑
n xfnxHfn

10: R̂xs,f = 1
N

∑
n xfnŝHfn

M-step:
11: Update Af according to (14) (ML estimation) or Algo-

rithm 2 (MAP estimation)
12: Σb,f = Trace(R̂xx,f −AfR̂

H
xs,f − R̂xs,fA

H
f

+AfR̂ss,fA
H
f )II/I

13: Wj ,Hj = IS-NMF(P̂j) with P̂j = [p̂j,fn]fn

(IS) divergence [7] between vj,fn = [WjHj ]fn and the
posterior mean of the source power spectrograms p̂j,fn =
ES|X,η′ [|sj,fn|2]. Therefore the update of the source parame-
ters at line 13 of Algorithm 1 is done by computing an NMF
on P̂j = [p̂j,fn]fn ∈ RF×N+ using the IS divergence. It can be
done with the standard multiplicative update rules (see [7]).

E. Source reconstruction

The sources are estimated in the Minimum Mean Square
Error (MMSE) sense:

ŝfn = Esfn|xfn [sfn]. (15)

We know that sfn and bfn are two independent proper
complex Gaussian random vectors. From the linearity of the
normal law and (4) we can write the posterior distribution
of the sources as sfn|xfn ∼ Nc(ŝfn,Σpost

s,fn) where ŝfn and
Σpost

s,fn are defined at lines 4 and 5 of Algorithm 1 respectively.
The sources and mixing filters are however estimated up

to a frequency-dependent scale factor. This ambiguity can be
fixed with a normalization strategy as in [21]. Nevertheless we
prefer to provide as the output of the source separation system
the reconstructed source images:

ŷj,fn = âj,f ŝj,fn, (16)

where ŝj,fn = [ŝfn]j and âj,f is the j-th column of the
estimated mixing matrix Âf . This strategy implicitly solves
the scale ambiguity. The time-domain signals are then recon-
structed by inverse STFT.

III. REVERBERATION MODELING

The aim of this work is to propose a new way of esti-
mating the mixing matrix Af . Based on physically motivated
reverberation models, we define probabilistic priors over the
frequency response of the mixing filters aij,f . We then derive a
MAP estimation of the mixing matrix. Compared with the ML
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Fig. 1: Simulated room impulse response using the Roomsi-
move toolbox [31]. The room is a 10 × 6.6 × 3 m shoebox.
The reverberation time is 250 ms. The source to microphone
distance is 1.38 m. The mixing time is defined in (17).

estimation given by (14), we take the dependencies between
frequency points into account for estimating the mixing matrix.
As explained in this section, these frequency correlations are
induced by the specific temporal dynamics of the mixing fil-
ters, which actually are room responses. For the sake of clarity
we first introduce the reverberation models by considering
a single room response and by using specific notations not
related to the previously introduced source separation problem.
We then use these models in section IV to define priors on the
frequency responses aij,f of the mixing filters in the context
of source separation.

Let h(t) = he(t) +hl(t), t = 0, ..., T −1, denote the whole
RIR and he(t), hl(t) the early and late parts respectively,
having disjoint temporal supports (see Fig. 1). The room fre-
quency response (RFR) is similarly defined for f = 0, ..., T−1
by H(f) = He(f) + Hl(f) where H(·)(f) is the T -point
Discrete Fourier Transform (DFT) of h(·)(t). As the RIR is
real-valued, the RFR satisfies the Hermitian symmetry, i.e.
H(·)(T − f) = H(·)(f)∗ where (·)∗ denotes the complex
conjugate. We assume that T is even and we will refer to
as positive frequencies the set of indices {0, ..., T/2}.

The time instant when late reverberation starts is referred
to as the mixing time. It is usually defined according to the
volume V of the room in m3 [30]:

t0 =
⌊
C0

√
V fs

⌋
samples, (17)

where C0 = 2 × 10−3 is a normalization constant, fs is
the sampling rate in Hz and b·c the floor function. The time
instant separating early and late reverberations in Fig. 1 is set
according to this definition of the mixing time.

A. Early reverberation
1) Model of early contributions: As represented in Fig. 1

the early part of the room response can be represented by a
sum of early contributions. Let us consider R early contribu-
tions, each one is associated with an attenuation term ρk and
a delay τk, k = 0, ..., R− 1, such that He(f) ≈ G(f) with:

G(f) =

R−1∑
k=0

ρkδ
f
k where δk = e−j2πτk/T . (18)
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From (18) it follows that {G(f)}f=R,...,T−1 satisfies a recur-
sive equation of the form (see, e.g., [32]):

R∑
r=0

ϕerG(f − r) = 0, (19)

such that {ϕer}Rr=0 and {δs}R−1
s=0 are respectively the coeffi-

cients and roots of the same polynomial of order R. Without
loss of generality we assume that ϕe0 is equal to one. We
consider that He(f) follows (19) up to a deviation κ(f):

R∑
r=0

ϕerHe(f − r) = κ(f). (20)

κ(f) is modeled as a centered proper complex white Gaussian
noise with variance σ2

κ. From (20), {He(f)}f can be seen as
following an autoregressive (AR) model of order R, denoted
AR(R). We can finally write the joint PDF of the sequence of
He(f) for f = 0, ..., T/2:

p({He(f)}f ) = p(He(0), ...,He(R− 1))
T/2∏
f=R

Nc

(
−

R∑
r=1

ϕerHe(f − r), σ2
κ

)
. (21)

2) Anechoic case (R = 1): Theoretically the order R
of the AR model (20) should be equal to the number of
early contributions we consider. For example, for the RIR
represented in Fig. 1 we should choose R = 13. However by
considering that the direct path is dominating the early echoes,
it is sufficient to choose R = 1. In this case, according to (18)-
(20) we can write:

He(f) = δ0He(f − 1) + κ(f), (22)

where δ0 = e−j2πτ0/T and τ0 = b(r0/c)fsc with r0 the
distance between the source and the microphone in meters
and c the speed of sound in m.s−1. This AR(1) model also
expresses that, as the temporal support of the early part of
the RIR is concentrated on the time instants close to zero,
the associated frequency response tends to be smooth. From
equation (22) we can write:

|He(f)| ≈ |He(f − 1)|, (23)

arg(He(f)) ≈ arg(He(f − 1))− 2πτ0/T. (24)

We represent in Fig. 2 the phase and magnitude relations
between He(f) and He(f − 1) according to (23) and (24).
He(f) corresponds to the early part of the RIR represented in
Fig. 1 (red part), it contains 13 early contributions. Nonetheless
we observe that considering an order R = 1 is a reasonable
approximation.

B. Late reverberation
Late reverberation corresponds to a stage of propagation

where we usually consider the sound as diffuse. It means that
the sound energy is uniformly distributed in the room and over
all directions [33]. It corresponds to the part of the RIR where
many reflections occur. Contrary to what we did for early
reverberation, there are so many reflections that we cannot
characterize each one individually. We conversely have to use
statistical methods to describe late reverberation.
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Fig. 2: Phase (left figure) and magnitude (right figure) relations
between He(f) and He(f−1) illustrating (23) and (24). Blue
dots: data from the early part of the RIR represented in Fig. 1,
red lines: line x = y.

1) Statistical characterization: It is well known that for a
diffuse sound field the reverberation power decays exponen-
tially [34]. This temporal dynamics induces specific frequency
correlations between the coefficients of an RFR. Schroeder in
[35] defined the frequency correlation functions of frequency
responses in rooms. However he neglected the influence of the
direct path and early echoes, resulting in a mismatch between
theoretical and experimental results, as observed in [36]. We
showed in [20] that considering the validity of the exponential
decay only for late reverberation yields a more accurate match
between theory and experiments.

We first characterize the temporal dynamics of the late
RIR by defining the Power Temporal Profile (PTP) for
t = 0, ..., T − 1:

h̄l(t) = E[|hl(t)|2] = P 2
0 e
−2t/τ1t∈{t0,...,T−1}(t), (25)

where 1t∈T (t) is the indicator function which equals 1 if t ∈
T , 0 otherwise, P 2

0 is a constant related to the total power of
late reverberation and τ is linked to the reverberation time2

T60 through:

τ =
T60fs

3 ln(10)
. (26)

It is important to mention that different realizations of the
room responses can be interpreted as different observations
at several source and microphone positions in the room. Ac-
cording to the theory of statistical room acoustics, {Hl(f)}f
is a proper centered and wide sense stationary (WSS) com-
plex Gaussian random process. We define the autocovariance
function (ACVF) γ(m) and the PSD φ(t) of this process by:

γ(m) = E[Hl(f)Hl(f −m)∗]; (27)

φ(t) =
1

T
E[|FT {Hl(f)}|2], (28)

where FT {·} is the T -point DFT. We have to mention that
as we work in discrete time and frequency, all signals are T -
periodic. Strictly speaking the RFR is thus a T -periodic WSS
random process. Moreover φ(t) has to be understood as a
discretized PSD function. One can refer to [37] for a review

2The reverberation time in seconds is defined as the time it takes for the
sound energy to decrease by 60 dB after extinction of the source.



6

of some properties of periodic random processes. It can be
shown that the PSD is related to the PTP by [20]:

φ(t) = T h̄l(T − t). (29)

From the Wiener-Khinchin theorem and (29) we obtain the
theoretical ACVF:

γ(m) = σ2
rev

1− e2/τ

1− e2(T−t0+1)/τ

1− e(j2πm/T+2/τ)(T−t0+1)

1− ej2πm/T+2/τ
,

(30)
where σ2

rev is defined by:

σ2
rev = E[|Hl(f)|2] = Crev

1− α
παS

, (31)

with α the average absorption coefficient (without dimension)
and S the total wall area in m2. Crev = 75 is an empirical
constant that has been shown to be consistent with real data
in [20]. The average absorption coefficient can be computed
using Norris-Eyring’s formula [38, p. 24]:

α = 1− e−24 ln(10)V/(cST60). (32)

2) ARMA model: As proposed in [20] we consider an
invertible and causal ARMA(P,Q) model for representing the
late part of the RFR {Hl(f)}f :

Φ(L)Hl(f) = Θ(L)ε(f), (33)

where Φ(L) =
∑P
p=0 ϕ

l
pL

p, Θ(L) =
∑Q
q=0 θqL

q

with ϕl0 = θ0 = 1 and L is the lag operator, i.e.
LHl(f) = Hl(f − 1). ε(f) is a centered proper complex
white Gaussian noise of variance σ2

ε for f ∈ [0, ..., T − 1]
and is extended by T -periodicity elsewhere. The important
point here is that the ARMA parameters can be estimated
from the sole knowledge of the theoretical ACVF given by
(30), without the need of any data. Finally from this ARMA
model we can write the following relationship involving the
joint PDF of the sequence of Hl(f) for f = 0, ..., T/2:

p({Hl(f)}f ) ∝
T/2∏
f=0

Nc

(
Φ(L)

Θ(L)
Hl(f); 0, σ2

ε

)
. (34)

It is not an equality because we have omitted a term related to
the Jacobian of the inverse ARMA filter transformation which
does not depend on {Hl(f)}f .

3) Validation: To validate the late reverberation model we
verify on data the consistency of the theoretical ACVF and its
ARMA parametrization. We consider a 10×6.6×3 m shoebox
with reverberation time T60 = 250 ms. We simulate 196 RIRs
from the image source method using the Roomsimove toolbox
[31]. According to a uniform grid of points in the room, the
relative source/microphone position varies between the 196
RIRs and each RIR corresponds to one realization of the
same random process. From this set of realizations we conduct
a Monte-Carlo simulation to obtain the empirical ACVF for
the late part of the RFR. We also compute the theoretical
ACVF (30) from the same room parameters as the ones used
to simulate the RIRs. Finally we compute an ARMA(7, 2)
parametrization from the theoretical ACVF (see [20] and [39,
ch. 2] for the estimation procedure). We represent in Fig. 3 the
three ACVFs: computed from the data, from expression (30),
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Fig. 3: Real (top figure) and imaginary (bottom figure) parts
of the RFR ACVFs for late reverberation. Blue solid line:
empirical ACVF, red dash-dot line: theoretical ACVF from
(30), green dashed line: ARMA(7, 2) parametrization.

and the ARMA parametrization. We observe a good match
between theory and experiments. The validity of the model is
also verified on measured RIRs in [20].

IV. PRIORS ON THE MIXING FILTERS

We now incorporate the reverberation models introduced in
section III into the source separation framework presented in
section II. We consider that the mixing matrix Af can be
decomposed as:

Af = Ae,f + Al,f , (35)

where Ae,f = [aeij,f ]ij ∈ CI×J and Al,f = [alij,f ]ij ∈ CI×J
correspond respectively to the early and late parts of the
mixing filters.

A. Early reverberation prior

1) Prior: We consider that, independently for all i, j, the
filter aeij,f follows the AR(1) model (22). According to (21)
for R = 1 and by considering no prior on aeij,0 for all i, j we
can write:

ln p({Ae,f}f ) =− IJ(F − 1) ln(πσ2
κ)

− 1

σ2
κ

F−1∑
f=1

∣∣∣∣∣∣Ae,f −∆ ◦Ae,f−1

∣∣∣∣∣∣2
F
, (36)

where ∆ = [δij ]ij ∈ CI×J , || · ||2F is the Frobenius norm
and ◦ is the element-wise matrix product. δij = e−j2πτij/La

with La the length of the mixing filters and τij = b(rij/c)fsc
where rij is the distance between the j-th source and the i-th
microphone in meters.



7

2) Hyperparameters: This prior is parametrized by the set
of AR coefficients {δij}ij and the variance σ2

κ. The AR
coefficients can be estimated within the GEM algorithm or
fixed if we know the distance rij between each source j and
microphone i. In a Bayesian context the variance σ2

κ is fixed
and expresses how confident we are about the fact that aeij,f
is close to δijaeij,f−1.

B. Late reverberation prior

1) Prior: We consider that each filter alij,f independently
follows for all i, j the ARMA model (33). We can also write
that the filter vector alj,f = [al1j,f , ..., a

l
Ij,f ]T ∈ CI follows:

Φ(L)alj,f = Θ(L)εf , (37)

with εf ∼ Nc(0,Σε,f = σ2
ε II). As Σε,f is proportional to

the identity matrix we do not consider any spatial correlation
between the mixing filters. Finally, according to (34) we can
write the following late reverberation prior:

ln p({Al,f}f )
c
=

F−1∑
f=0

−J ln det(πΣε,f )

− Trace

[(
Φ(L)

Θ(L)
Al,f

)H
Σ−1

ε,f

(
Φ(L)

Θ(L)
Al,f

)]
.

(38)

2) Hyperparameters: This prior is parametrized by the
ARMA coefficients {ϕlp}p, {θq}q and the variance σ2

ε . We
will use an ARMA(7, 2) model. The ARMA coefficients are
learned from the theoretical ACVF in (30). This function only
depends on the reverberation time, the room volume and the
total wall area through the exponential decay factor τ (26), the
mixing time t0 (17), the variance σ2

rev (31) and the absorption
coefficient α (32). These parameters are assumed to be known.
As for the early reverberation prior, the variance σ2

ε is fixed
and expresses how confident we are about the prior.

C. MAP estimation

As explained in section II-D, only the M-step of the GEM
algorithm (summarized in Algorithm 1) is modified in order
to take the priors on the mixing filters into account. The MAP
estimation of the set of mixing filters Ae = {Ae,f}f and
Al = {Al,f}f at the M-step is done by minimizing:

L(Ae,Al) = −QML(η|η′)− ln p({Ae,f}f )− ln p({Al,f}f ),
(39)

where QML(η|η′) is defined in (13) with Af = Ae,f + Al,f ,
ln p({Ae

f}f ) is defined in (36) and ln p({Al
f}f ) in (38). The

whole procedure is summarized in Algorithm 2 and is ex-
plained below. The final GEM algorithm for MAP estimation
corresponds to Algorithm 1 where line 11 is replaced by
Algorithm 2.

1) M-step for Ae: Canceling the gradient of L(Ae,Al)
with respect to Ae,f leads to the updates summarized in Algo-
rithm 2 Part 1. ⊗ denotes the Kroenecker product and vec(·)
concatenates the columns of a matrix into a single column
vector. We see that at each frequency the update of Ae,f

depends on Ae,f−1 and/or Ae,f+1. This coordinate descent

should thus be repeated over the whole set of frequencies until
a stopping criterion is reached (e.g. convergence or maximum
number of iterations).

2) Update of the AR coefficients: The AR coefficients
{δij}i,j that parametrize the early reverberation prior (36) can
be either fixed if we know the relative distance between each
source and microphone, or estimated at the M-step of the GEM
algorithm, from the current estimation of the early mixing
filters {aeij,f}. We choose the second option because firstly,
knowing the source to microphone distance can be difficult
in practice, and secondly we did not observe a significant
improvement over the source separation results by setting the
AR coefficients to their true values. We thus estimate in the
M-step the AR coefficients that minimize the cost function
(39) under the constraint |δij | = 1 imposed by the model.
This is equivalent to maximizing the prior (36) under the same
constraint. It is important to note that this prior is here seen
as a log-likelihood because we assume that the filters {aeij,f}
are observed from their current estimation. The update of the
AR coefficients is obtained using the method of Lagrange
multipliers. It is given in Part 2 of Algorithm 2.

3) M-step for Al: Unfortunately we cannot easily cancel
out the gradient of L(Ae,Al) with respect to Al,f due to
the MA part of the ARMA model. We thus have to consider
another descent method to minimize L(Ae,Al) with respect
to Al. We studied various approaches including a gradient
descent with optimal step size, the Barzilai and Borwein
approach [40] and a conjugate gradient method without or
with preconditioning [41]. We obtained the best results in
terms of convergence speed with the third approach (with
preconditioning). We detail the method here.

Our objective is to minimize L(Ae,Al) with respect to the
vector of parameters of size IJF :

al =
[

vec
(
Al,0

)T
, vec

(
Al,1

)T
, ..., vec

(
Al,F−1

)T ]T
. (40)

We decompose the gradient vector g (column vector of size
IJF ) as the concatenation of the F gradients:

g = [gT0 ,g
T
1 , ...,g

T
F−1]T , (41)

with gf = vec
(

1
2∇Al,f

L(Ae,Al)
)

. We can show from (39)
that:

gf =N vec
(
Σ−1

b,f (Ae,fR̂ss,f − R̂xs,f )
)

+N
(
R̂T

ss,f ⊗Σ−1
b,f

)
vec
(
Al,f

)
+

Φ∗(L−1)

Θ∗(L−1)

(
(IJ ⊗Σ−1

ε,f )
Φ(L)

Θ(L)
vec
(
Al,f

))
, (42)

where Φ∗(L−1) =
∑P
p=0(ϕlp)

∗L−p and Θ∗(L−1) =∑Q
q=0 θ

∗
qL
−q . We want to solve g = 0 which is here

equivalent to solving a positive definite linear system. For
that purpose we use the Preconditioned Conjugate Gradient
(PCG) method [41]. From (42) and the fact that Σε,f is
diagonal we can define the following preconditioning matrix:

D =


D0 0 · · · 0
0 D1 · · · 0
...

...
. . .

...
0 0 · · · DF−1

 , (43)
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Algorithm 2: MAP update of the mixing filters

Part 1: Update {Ae,f}f by coordinate descent

1: while stopping criterion not reached do
2: vec(Ae,0) =

[
NR̂T

ss,0 ⊗ II + 1
σ2
κ

(IJ ⊗Σb,0)
]−1

× vec
[
NR̂xs,0 −NAl,0R̂ss,0 + 1

σ2
κ
Σb,0

(
∆∗ ◦Ae,1

)]
3: for all f ∈ {2, ..., F − 2} do
4: vec(Ae,f ) =

[
NR̂T

ss,f ⊗ II + 2
σ2
κ

(IJ ⊗Σb,f )
]−1

× vec
[
NR̂xs,f −NAl,fR̂ss,f

+ 1
σ2
κ
Σb,f

(
∆ ◦Ae,f−1 + ∆∗ ◦Ae,f+1

)]
5: end for
6: vec(Ae,F−1) =

[
NR̂T

ss,F−1⊗II + 1
σ2
κ

(IJ⊗Σb,F−1)
]−1

× vec
[
NR̂xs,F−1 −NAl,F−1R̂ss,F−1

+ 1
σ2
κ
Σb,F−1

(
∆ ◦Ae,F−2

)]
7: end while

Part 2: Update {δij}i,j

8: δij =
( F−1∑
f=1

aeij,f (aeij,f−1)∗
)/∣∣∣ F−1∑

f=1

aeij,f (aeij,f−1)∗
∣∣∣

Part 3: Update {Al,f}f with the PCG method

9: Initialize g from (41) and (42)
10: Initialize ω = [ωT0 ,ω

T
1 , ...,ω

T
F−1]T with ωf = D−1

f gf
and Df given by (44)

11: while stopping criterion not reached do
12: γ = [γT0 ,γ

T
1 , ...,γ

T
F−1]T with

γf = N(R̂T
ss,f⊗Σ−1

b,f )ωf + Φ∗(L−1)
Θ∗(L−1) (IJ⊗Σ−1

ε,f ) Φ(L)
Θ(L)ωf

13: µ = (ωHg)/(ωHγ)
14: al ← al − µω
15: Compute g from (41) and (42)
16: gp = D−1g where D is given by (43) and (44)
17: α = −(γHgp)/(ω

Hγ)
18: ω ← gp + αω
19: end while
Part 4: Update {Af}f
20: Af = Ae,f + Al,f

where the diagonal matrix Df is given by:

Df = N diag(R̂T
ss,f ⊗Σ−1

b,f ) +
1

σ2
ε

IIJ

Nψ∑
s=0

|ψs|2. (44)

The parameters {ψs}
Nψ
s=0 are the coefficients of the polynomial

Ψ(L) which approximates the transfer function of the in-
verse ARMA model Φ(L)/Θ(L). For the chosen ARMA(7, 2)
model, we obtain a very accurate approximation by setting
Nψ = 2048. We summarize the PCG method for the update
of {Al,f}f in Part 3 of Algorithm 2.

V. EXPERIMENTS

We present in this section the dataset and the evaluation
criteria used for the experiments. We discuss the short mixing

mix duration src. prop. s1 s2 s3 s4 s5

1 28 s instr. piano brushes bass - -
DoA -45◦ 0◦ 45◦ - -

2 14 s instr. drums voice piano bass -
DoA 0◦ -45◦ 45◦ -20◦ -

3 24 s instr. drums guitar bass - -
DoA 0◦ -45◦ 45◦ - -

4 28 s instr. drums voice guitar guitar -
DoA 0◦ -45◦ 45◦ -20◦ -

5 18 s instr. bass guitar drums - -
DoA 45◦ -45◦ 0◦ - -

6 15 s instr. drums voice guitar bass -
DoA 0◦ -45◦ 45◦ -20◦ -

7 25 s instr. drums voice guitar guitar bass
DoA 0◦ -45◦ -20◦ 45◦ 20◦

8 12 s instr. drums voice bass - -
DoA 0◦ -45◦ 45◦ - -

TABLE I: Description of the dataset: duration (in seconds)
and source properties, i.e. instrument and DoA (in degrees),
for each mixture.

filters assumption used for writing the source image model
(3). We also describe our initialization strategy before running
the GEM algorithm. We explain how the algorithm parameters
are chosen and we finally detail the source separation results.
Audio examples are available from our demo web page3.

A. Dataset

Our experiments were conducted from the audio tracks
without effects provided by the Musical Audio Signal Sep-
aration (MASS) dataset [42]. We created 8 stereo mixtures
by simulating mixing filters with the Roomsimove toolbox
[31]. The room was a 4.45 × 3.55 × 2.5 m shoebox with a
reverberation time of 128 ms. The microphone spacing was
set to 1 m, as the distance between the source and the center
of the microphone pair. The direction of arrival (DoA) and
the type of the sources are described in Table I for each
mixture, along with the duration in seconds. As the MASS
dataset provides stereo sources, each one is first converted to
mono, downsampled to 16 kHz and filtered with the associated
RIRs to create a source image. We finally sum all the source
images to create a mixture.

B. Evaluation criteria

We evaluate the source separation performance in terms of
reconstructed source images. We use standard energy ratios:
the Signal-to-Distortion Ratio (SDR), Signal-to-Interference
Ratio (SIR), Signal-to-Artifact Ratio (SAR) and source Image-
to-Spatial distortion Ratio (ISR). These criteria expressed in
decibels (dB) are defined in [43]. We used the BSS Eval
Toolbox available at [44] to compute these measures.

C. Short mixing filters assumption

The aim of this section is to discuss the short mixing filters
assumption used to express the convolutive mixture in the
STFT domain. We assume that the mixing filters length is
equal to the reverberation time. On the one hand, for rewriting
the time-domain convolution as a multiplication in the STFT

3http://perso.telecom-paristech.fr/leglaive/demoMASSwPRP.html
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measures setting average scores

SDR
Af is blindly estimated 0.0

Ae,f is oracle and Al,f is zero 0.9
Af is oracle 7.9

ISR
Af is blindly estimated 5.3

Ae,f is oracle and Al,f is zero 7.6
Af is oracle 15.6

SIR
Af is blindly estimated 2.1

Ae,f is oracle and Al,f is zero 3.9
Af is oracle 13.5

SAR
Af is blindly estimated 6.4

Ae,f is oracle and Al,f is zero 10.8
Af is oracle 12.0

TABLE II: Preliminary source separation results (in dB)
averaged over the 29 sources of the dataset.

domain as in (3), we theoretically have to use an STFT analysis
window longer than the reverberation time [23]. On the other
hand, we cannot choose a too long analysis window because of
the local stationarity assumption on the source signals. More-
over, the true mixing filters are still tractable in the limit case
where the analysis window length equals the reverberation
time. For example, considering the dataset presented above,
we can choose a 128 ms long window and think of the mixing
matrix Af in (4) as containing the frequency response of the
mixing filters. Even if this approach is theoretically arguable,
it can be shown to be effective in terms of oracle source
separation results4. This may explain why this mixing model
is still widely used in audio source separation. Indeed, even
if it is not accurate for representing the true mixing process
(time-domain convolution), its simplicity is useful for blind
audio source separation and it allows us to achieve satisfactory
oracle performance.

To validate this argument, we conducted a preliminary
source separation experiment with the baseline method sum-
marized in Algorithm 1 (for the ML estimation case). The
STFT analysis window length is equal to the reverberation
time (128 ms). We consider three settings: (1) Af is blindly
estimated in the M-step according to equation (14); (2) the
early part Ae,f is fixed to oracle values (using the true mixing
filters truncated at the mixing time) and the late part Al,f is
fixed to zero; (3) the whole mixing matrix Af = Ae,f +Al,f

is fixed to oracle values. All other parameters are blindly
estimated. The results averaged on the 29 sources of the dataset
are shown in Table II. We first observe that even if the length
of the STFT analysis window equals the length of the mixing
filters, we achieve good separation results when Af is oracle.
We also observe that when we neglect the late reverberation
by setting Al,f to zero, the separation performance drastically
decreases compared with the case where the whole mixing
matrix is oracle. This shows the importance of achieving a
good estimation for both the early and late parts of the mixing
filters.

The conclusion of this preliminary experiment is the follow-
ing one: if we were able to estimate the true mixing filters,

4Moreover, one could wonder if the residual noise in the mixture model
(4) does not become overwhelmingly large due to the short mixing filters
approximation which is not satisfied. Experimental results which are not
detailed here show that most of the mixture power is represented by the
estimated source images and the residual noise is negligible.

which correspond to room responses, we would achieve good
source separation performance, even if the mixing filters length
equals the STFT analysis window length. The aim of this work
is precisely to incorporate constraints on the estimation of the
mixing filters to go towards this objective.

D. Blind initialization

The GEM algorithm is very sensitive to the parameter
initialization. In order to obtain satisfactory separation results,
we have to provide a “good initialization”. As in [6], [19] we
first tried the initialization procedure based on a hierarchical
clustering algorithm to estimate the mixing filters [45] and a
permutation solving method [46]. From the estimated mixing
filters the sources can be recovered via projection of the
mixture over the source directions and binary masking in
the TF plan. The NMF parameters can then be estimated
from the separated sources. However with this approach we
obtained less satisfactory initialization results than with a more
empirical method inspired from the one described in [21,
section IV.H]. The initialization procedure we used is restricted
to stereo mixtures and is detailed in the Appendix.

E. Algorithm parameters

1) STFT parameters: We use half-overlapping sine win-
dows. The STFTs are computed using the MATLAB code
provided in the context of the SiSEC challenge at [47].
According to the discussion in section V-C, we fix the length
of the analysis window to 128 ms or 2048 points at a sampling
rate of 16 kHz.

2) NMF order: We arbitrarily choose an NMF of order 10
for all the sources.

3) Stopping criterion for the descent algorithms: It was
sufficient in terms of convergence to repeat the coordinate
descent for the update of {Ae,f}f for 2 iterations. The
stopping criterion for the PCG method used in the update of
{Al,f}f is set to 20 iterations.

4) Prior hyperparameters: The AR coefficients for the
early reverberation prior are estimated in the M-step of the
GEM algorithm. The ARMA(7, 2) coefficients for the late
reverberation prior are learned from the theoretical ACVF (30)
which is defined according to some known room parameters.
The variances of both priors are critical hyperparameters
because they have a strong influence on the separation results.
Indeed, we see in Fig. 4 that the average SDR for the mixture
4 of the dataset varies from 0.2 to 4.2 dB according to the
value of the variances. These variances control the strength of
the priors, the smallest they are, the strongest the priors will
be and conversely. In particular, if their values are too high
the priors have no effect on the results compared with an ML
estimation of the mixing filters; their estimation will indeed
be dominated by the contribution from the log-likelihood.

F. Source separation results

For comparing ML and MAP estimations we run 500
iterations of the GEM algorithms from the same initialization.
As can be seen in Fig. 4, the source separation results for
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SDR ISR SIR SAR
mix ML MAP BEST MAP CV ML MAP BEST MAP CV ML MAP BEST MAP CV ML MAP BEST MAP CV

1 -4.4 -4.3 -5.9 3.9 4.1 3.5 0.4 0.4 -3.4 10.4 9.8 7.3
2 -1.3 0.0 -1.0 4.1 4.0 4.5 -0.7 1.2 0.5 7.4 8.5 7.5
3 2.6 3.8 3.7 6.1 8.1 8.4 5.6 6.5 6.7 6.6 9.4 6.9
4 0.6 4.2 4.0 5.8 8.4 8.2 2.3 6.8 6.7 7.9 9.6 9.5
5 1.1 2.0 1.2 6.5 7.6 6.3 2.0 1.6 1.0 6.2 6.3 5.1
6 1.3 2.5 2.5 4.4 5.9 5.9 2.9 5.7 5.7 4.6 6.1 6.1
7 -0.7 0.1 0.0 5.0 5.1 5.1 0.5 0.8 0.7 3.4 4.6 4.3
8 1.2 1.2 -0.1 7.5 7.5 6.9 5.2 5.2 3.6 6.7 6.7 6.8

mean 0.0 1.2 0.7 5.3 6.2 6.0 2.1 3.4 2.7 6.4 7.5 6.6

TABLE III: Source separation results in dB: without prior (ML), with prior and best variances on the grid-search (MAP BEST),
with prior and variances chosen by cross-validation (MAP CV). The mean is computed over the 29 sources of the dataset.
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Fig. 4: Average SDR over a grid-search on the prior variances
for mixture 4 of the dataset.

MAP estimation are highly dependent on the prior variances.
Moreover the results we observe in Fig. 4 are considerably
different if we take another mixture from our dataset. This
justifies the use of a grid-search on the variances to assess the
performance of MAP estimation.

1) Results with best variances on the grid: For all the
variances in the grid (σ2

κ, σ
2
ε ) ∈ {100, 10−1, ..., 10−9} ×

{100, 10−1, ..., 10−9} we first compute the source separation
performance that leads to the best average SDR individually
for each mixture. ML and MAP results with this strategy are
shown on average for each mixture in Table III, in columns
ML and MAP BEST respectively. The mean results in the
last line of Table III are computed by averaging over all the
sources of the dataset. We see that over all the mixtures, the
SDR improvement due to MAP estimation ranges from 0.1 to
3.6 dB. On average, MAP estimation leads to an improvement
of 0.9 dB of ISR, 1.3 dB of SIR, 1.1 dB of SAR and 1.2 dB
of SDR. We also represent in Fig. 5a a scatter plot of the
SDR for the 29 sources of our dataset. On y and x axes we
represent respectively the MAP and ML results. Red circles
(resp. blue stars) above (resp. below) the line x = y represent
better separation results with MAP (resp. ML) estimation. We
observe that globally the improvement due to MAP estimation
is significant as it leads to an increase of the SDR on almost
all the sources. When it is not the case, the decrease is small as
blue stars are very close to the line x = y. Those results show
that for each mixture there exist values for the variances that
lead to an improvement of the source separation performance.

2) Results with variances chosen by cross-validation: We
now present the results where the variances are chosen by

cross-validation on the same grid as before. For each fold
we consider 7 mixtures out of 8 as a training set and we
keep the last one for testing. The variances are chosen as the
ones that lead to the best average SDR over all the sources
in the training set. Interestingly, for every fold the chosen
variances are (σ2

κ, σ
2
ε ) = (10−6, 10−7). The MAP results for

this cross-validation are shown in column MAP CV of Table
III. Compared with ML estimation we observe a decrease of
the SDR on mixtures 1 and 8 by 1.5 and 1.3 dB respectively.
However for all the other mixtures, the SDR is increased
by taking the priors into account. The improvement ranges
from 0.1 to 3.4 dB. On average MAP estimation with cross-
validation leads to an improvement of 0.7 dB of ISR, 0.6 dB
of SIR, 0.2 dB of SAR and 0.7 dB of SDR. We observe from
the scatter plot in Fig. 5b that with MAP estimation the quality
of the separated sources never degrades much, but on some
sources the improvement is important. Indeed, red circles tend
to be further from line x = y than blue stars.

VI. CONCLUSIONS

In this paper we introduced two probabilistic priors for con-
straining the estimation of the mixing filters in multichannel
audio source separation. The priors aim to capture the temporal
characteristics of the mixing filters by modeling the frequency
correlations of their frequency responses. Experiments showed
that these new priors lead to better source separation results
than a standard approach with unconstrained mixing filters.
However the results are highly dependent on the variances of
the priors. In future works we could use a conjugate prior on
the variances so that their values are constrained to be close
to the ones we obtained with cross-validation, but not exactly
equal.

This work targeted a semi-informed scenario where the
reverberation time, the volume and the total wall area of
the room were assumed to be known to define the late
reverberation prior. In future works we could try to blindly
estimate the reverberation time (see, e.g, [48]). Moreover it
could be interesting to conduct a sensitivity analysis of the
method with respect to errors on these room parameters.

Future works will also include the extension of our model to
non-punctual sources using spatial covariance matrices. These
matrices can be factorized as the outer product of sub-sources
mixing matrices [10] on which we could consider the same
priors as the ones presented in this paper.
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Fig. 5: Scatter plot of the SDR (in dB) for the 29 sources of the dataset. MAP and ML results are on y and x axis respectively.
The source with a SDR around -20 dB corresponds to the brushes in the mixture 1 of the dataset. This source is not accurately
modeled by an NMF.

Finally we could consider not only modeling the frequency
correlations of the mixing filters but also the spatial corre-
lations. As used in [6], [17] for stereo audio source separa-
tion, the spatial correlation functions are theoretically defined
according to the distance between the microphones. For that
purpose we could consider a full noise covariance matrix in
equation (37) or use a vector ARMA model to represent late
reverberation in the frequency domain.

APPENDIX
BLIND INITIALIZATION FOR STEREO MIXTURES

The initialization procedure we used is as follows:
1) Stack left and right mixture STFTs so as to create a

2F ×N complex-valued matrix.
2) Compute a Kinit-component IS-NMF and split the re-

sulting matrix containing the frequency atoms in two
matrices associated to left and right channels. Kinit is
chosen between 3 and 5 depending on the mixture.

3) Reconstruct Kinit left (i = 1) and right (i = 2)
components cik,fn by Wiener filtering (see, e.g., [7]).
By considering an anechoic model we can write
cik,fn = ρike

−j2πfτik/La |ck,fn|ej arg(ck,fn).
4) Compute c̃ik,fn = cik,fn/e

j arg(c1k,fn) such
that we can write c̃1k,fn = ρ1k|ck,fn| and
c̃2k,fn = ρ2k|ck,fn|e−j2πf(τ2k−τ1k)/La .

5) Compute c̄ik,f = 1
N

∑
n c̃ik,fn.

6) Compute and unwrap ξk,f = arg(
c̄2k,f
c̄1k,f

) such that we
can write ξk,f = −2πf(τ2k − τ1k)/La.

7) Assuming punctual and spatially disjoint sources, ξk,f
forms J clusters as multiple components are spatially
associated with the same source. Use the K-means
algorithm to cluster the ξk,f .

8) By denoting Kj the set of indices k associ-
ated to source j, initialize the mixing filters as
aij,f = 1

#Kj
∑
k∈Kj c̄ik,f .

9) Compute a pre-separation by projection of the mixture
over the source direction and TF masking. We used the
MATLAB code provided in the context of the SiSEC
challenge at [47].

10) Initialize the NMF parameters from the separated
sources using the Kullback-Leibler divergence.

11) Initialize σ2
b,f = 10−2

∑
i,n |xi,fn|2/(IN).

MAP estimation requires the initialization of aeij,f and alij,f
individually. For that purpose we simply split the initial mixing
filters in the time domain according to the mixing time in (17).
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École Normale Supérieure, Cachan, France, in 2001,
and the Ph.D. degree in the field of signal processing
from the ENST in 2005. He received the Habilitation
degree from the Université Pierre et Marie Curie
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