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In MDE system-level approaches, the design of communication protocols and patterns is subject to the de-
sign of processing operations (computations) and to their mapping onto execution resources. However, this
strategy allows to capture simple communication schemes (e.g., processor-bus-memory) and prevents to eval-
uate the performance of both computations and communications (e.g., impact of application traffic patterns
onto the communication interconnect) in a single step. To solve these issues we introduce a novel design ap-
proach - the Ψ-chart - where we design communication patterns and protocols independently of a system’s
functionality and resources, via dedicated models. At the mapping step, both application and communication
models are bound to the platform resources and transformed to explore design alternatives for both compu-
tations and communications. We present the Ψ-chart and its implementation (i.e., communication models
and Design Space Exploration) in TTool/DIPLODOCUS, a UML/SysML framework for the modeling, simu-
lation, formal verification and automatic code generation of data-flow embedded systems. The effectiveness
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the physical layer of a ZigBee (IEEE 802.15.4) transmitter onto a multi-processor architecture.

CCS Concepts: rComputer systems organization → Embedded systems; rHardware → Methodolo-
gies for EDA; Software tools for EDA;

General Terms: Design, Experimentation

Additional Key Words and Phrases: Model Driven Engineering, Hardware/Software Co-Design, Design
Space Exploration, UML, SysML

ACM Reference Format:
Andrea Enrici, Ludovic Apvrille, Renaud Pacalet, 2015. A Model-Driven Engineering Methodology to Design
Parallel and Distributed Embedded Systems - the Ψ-chart approach. ACM Trans. Embedd. Comput. Syst. V,
N, Article XXXX (XXXX 2015), 25 pages.
DOI: 0000001.0000001

1. INTRODUCTION AND PROBLEM STATEMENT
Today’s embedded systems are more and more realized with architectures where the
processing operations, i.e., data and control information, are executed in parallel over
a network of interconnected subsystems (e.g., Multi-Processors Systems on Chip, MP-
SoC, electronic equipments in automotive and avionic systems ). The performance, cost
and time-to-market of these systems is not only driven by the design of data-processing
operations but also by the design of data-transfer operations. Therefore, it is of utmost
importance to account for the design of these data-transfer operations, communica-
tions, in the early phases of a design process.
Since the late nineties, the Y-chart [Kienhuis et al. 1997; Kienhuis et al. 2002], Fig. 1,
is one of the dominant Model Driven Engineering (MDE) approaches that guides the
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automation of design and Design Space Exploration of embedded systems for data-
dominated applications. In this approach, communications are typically described both
in an application model (i.e., the system’s functionality, box 1.1 in Fig. 1) and in an
architecture/platform model (i.e., the system’s resources, box 1.2 in Fig. 1). In the ap-
plication model, communications are represented in the form of logical dependencies
between computations (e.g., channels, events). In the architecture (platform) model,
communications are described in the form of the services offered by hardware/software
resources (e.g. CPU and its Operating System, DMA engines, buses). A design is then
evaluated (Design Space Exploration, box 3 in Fig. 1) based on a mapping model (box 2
in Fig. 1) that captures a selection of the architecture resources that execute the func-
tionality of the application model.
However, when creating a mapping model it is frequent to incur into a communication
mismatch between the description of communications contained in the application and
in the architecture models. This is due to the mismatch between the primitives and
operational semantics used to describe communications in the Model of Computation,
MoC, of the application (e.g., point-to-point data channels with blocking read()/write()
operations) and those in the Model of Computation of the architecture (e.g., configur-
ing and executing a DMA data transfer or a series of bus transactions).
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Fig. 1. The Y-chart approach for the design of programmable embedded systems

Several implementations of the Y-chart approach exist that differ in terms of the se-
mantics of the modeling language used to specify a system and or in terms of the pur-
poses and techniques of the DSE phase. Nevertheless, this communication mismatch
still remains an open issue. Typically, it is circumvented by designing communications
after mapping the application onto the architecture, as the mapping of communications
depends on the mapping of computations. However, this strategy heavily impacts the
modeling phase (i.e., portability) and the number of iterations (Model Improvements in
Fig.1) that occur after DSE when a mapping configuration does not satisfy the design
requirements. Communications that are modeled after the mapping of computations
cannot be ported to other target platforms, without additional re-design steps that are
time consuming and error-prone (labels 4 in Fig. 1). The DSE of communications oc-
curring after the DSE of computations, local optima are much more likely to be found
as a comprehensive view of all design constraints is missing. This further increases
the number of iterations in the Model Improvements phase (step 4 in Fig. 1).
To solve the communication mismatch in the frame of UML/SysML-based design, we
proposed a novel design approach: the Ψ-chart approach [Enrici et al. 2014], where
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communication protocols and patterns are modeled independently of the application
and architecture models, before mapping. In this publication, we present a complete
description of the following research work:

(1) A description of the Ψ-chart design approach, regardless of the specific semantics
issues of UML and SysML.

(2) A complete implementation of the Ψ-chart approach in TTool/DIPLODOCUS, a
UML/SysML toolkit for the hardware/software co-design of data-dominated em-
bedded systems, in terms of:

(2.1) The syntax and semantics of dedicated models for communication protocols
called Communication Patterns.

(2.2) The model transformations that integrate Communication Patterns into the De-
sign Space Exploration facilities offered by TTool/DIPLODOCUS. These trans-
formations target the simulation, formal verification and rapid prototyping via
the automatic generation of executable control code (i.e., the code that configures
and triggers the platform units onto which computations and communications
are mapped). The goal of these model transformations is to simplify the design
space that results by simultaneously accounting for communication and compu-
tation related constraints.

Section 2 provides a complete description of the Ψ-chart design approach and Section 3
introduces TTool/DIPLODOCUS. Section 4 and Section 5 describe our implementation
of the Ψ-chart approach in TTool/DIPLODOCUS: first we illustrate our UML/SysML
models for communication protocols and secondly we describe the model transforma-
tions. Section 6 shows the Ψ-chart design of the physical layer of a ZigBee transmitter
in TTool/DIPLODOCUS and compares it with design in the Y-chart implementation
of TTool/DIPLODOCUS. Section 7 discusses our contributions with respect to related
work and Section 8 concludes the paper.

2. A NOVEL DESIGN APPROACH
The Ψ-chart, Fig. 2, is an extension of the Y-chart, Fig. 1, where a third input is added
to capture communication protocols and patterns independently of the description of
communications that is present in the application and architecture models. This de-
sign paradigm is based on the following considerations.
A communication protocol can be defined as a set of rules for the exchange of infor-
mation between abstract components (e.g., master, slave, controller). These rules are
specified regardless of the particular characteristics of an implementation of these ab-
stract components (e.g., a master being an ARM CPU or an Intel CPU). Therefore, a
communication protocol can be modeled regardless of the specific resources of a plat-
form model. A communication protocol is also specified regardless of the algorithm and
the processing operations that produce/consume the information to transfer (e.g., Fast
Fourier Transforms, vector operations). Therefore, a communication protocol can be
described independently of an application model.
From the viewpoint of the total design time, the Ψ-chart reduces the number of itera-
tions that occur when, after DSE, a mapping solution results not to satisfy the desired
requirements. Many iterations are, in fact, caused by the re-design of the communica-
tions that occurs as a consequence of the communication mismatch, after the mapping
of computations. This pitfall is avoided in the Ψ-chart by positioning the design of com-
munications before the mapping phase.
From the viewpoint of the Design Space Exploration phase, the Ψ-chart allows to
jointly evaluate the performance of both communications and computations, without
the need to decouple their exploration in several steps. In the Ψ-chart, the complexity
of the design space increases with respect to the Y-chart approach. In the latter case,
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because of the communication mismatch, it is common to separate the design (i.e.,
model and explore) of a system in two steps: first computations and then communi-
cations. This leads to situations where only partial architectural trade-offs (i.e., local
optima) can be evaluated, that do not account for a global performance impact of both
communications and computations.
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Fig. 2. The Ψ-chart approach (left side) and a graphical visualization of its constituent models (right side).

The Ψ-chart approach is described by the following enumerated steps, where each
number points to the corresponding label in Fig. 2. In spite of the ordering associ-
ated by the numbers, steps 1.1-1.3 can be conducted in any order as the corresponding
models are created independently of each other. On the contrary, the numbering of
steps 2-5 coincides with the order dependencies of the design flow.

1.1 Application: a model of the system’s functionality (e.g., a video-compression algo-
rithm). This model must be created regardless the resources that are available for
execution purposes (i.e., hardware or software resources) and must express all po-
tential parallelism between operations. This model must express both the process-
ing of information (e.g., computations) and the dependencies (e.g., communications)
between these processing operations.

1.2 Architecture or platform: a model of the resources (e.g., bus, CPU, memory, mid-
dleware, OS) to support the execution of the applications’ functionality. This model
must express the topology of the available hardware/software resources, the ser-
vices that these resources offer (e.g., a bus transaction, and operating system call)
as well as their costs (e.g., in terms of silicon area, power consumption, computa-
tional power).

1.3 Communication: a model describing the communication protocols and patterns
used/needed by the target platform to transfer information between processing
operations. Such protocols must be expressed independently of the semantics as-
sociated with the dependencies between computations in the application model.
Similarly, they must also be expressed independently of the specific semantics of
the services offered by the platform model’s resources and services (e.g., bus, CPU,
memory, middleware, Operating System).

2 Couple each application and communication models to the architecture model
(mapping). In this step, each entity requesting a processing service in the appli-
cation models (e.g., a data-processing operation, a control task) is associated to a
resource providing the corresponding service in the architecture model (e.g., an
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Application Specific Integrated Circuit, a general-purpose CPU and its Operating
System). Also, a dependency between processing entities of the application model
is associated to a communication model. Subsequently, each entity requesting a
service (e.g., configure a transfer) in the communication models (e.g., a master) is
mapped onto a resource providing the corresponding service in the architecture
model (e.g., a DMA controller, a CPU).

3 Explore the design space (e.g., via simulation, formal verification) by associating
performance numbers to the mapping model and evaluate the compliance of the
mapping model to a set of pre-defined requirements (e.g., silicon area, power con-
sumption, computational power).

4 In case the mapping model does not provide the desired performance, the sys-
tem models are modified in order to find alternative solutions (labels number 4
in Fig. 2). In the architecture model, existing resources are re-structured or new
resources are introduced. The application and communication models are arranged
so as to express the same functional behavior in a different way. In the mapping
model, new associations between the application, the communications and the ar-
chitecture are explored.

5 The above steps are repeated iteratively until a solution is found that satisfies all
design requirements. At this point, the resulting design is passed to the implemen-
tation teams that realize it in terms of hardware and software components.

We further underline here that the Ψ-chart is a generic approach that defines a set
of design guidelines (i.e., separation of concerns between application, communication
and platform models) regardless of the specific semantics of the modeling language
(e.g., state machines, data-flow MoCs, UML/SysML) and the Design Space Exploration
techniques (e.g., simulation, formal verification) used by a given design framework.

2.1. The mapping methodology
Fig. 3 details the ordered steps that are necessary to create a complete mapping model
(step 2 in Fig. 2) in the Ψ-chart approach. We specify that Fig. 3 shows how to bind
information that is expressed in separate application, communication and platform
models.
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Fig. 3. The mapping methodology of the Ψ-chart (left side) and the models for each step (right side).
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Computation (level L0). The computational parts of the application model are
mapped to the platform model. For instance, a node in the application MoC that models
an FFT operation is mapped to a Digital Signal Processor (DSP) unit; a node modeling
a control task is mapped to a Central Processing Unit (CPU). Similarly, for variables
which are dependent on the specific characteristics of the mapped unit, a value is as-
signed accordingly. For instance, variables describing abstract data types (e.g., complex
numbers) are assigned a value (e.g., cpx32 in case the mapped DSP unit represents
complex numbers with 16 bits for the imaginary part and 16 bits for the real part).
Storage (level L1). Any behavior and variable in the application model that is related
to the storage of data or control information is mapped. A system engineer selects the
architecture units (e.g., memories, buffers) that will store the data and/or control in-
formation produced or consumed by the computations mapped at level L0. According
to the selected units and their characteristics, parameters are assigned a value, e.g.,
the size of a buffer.
At this point, data dependencies in the application model must be associated to the
communication models that describe the corresponding transfer of data. In our imple-
mentation of the Ψ-chart in TTool/DIPLODOCUS this is performed by the user who
explicitly associates a data channel between computations to a Communication Pat-
tern (Section 4). We specify that this solution is not imposed by the design principles of
the Ψ-chart approach. Other types of relations may be deployed according to the char-
acteristics of the specific design framework into which the Ψ-chart is implemented
(e.g., matching signature operations).
Communication configuration (level L2). The behavior and parameters of a com-
munication model are mapped to the platform model. A system engineer selects the
architecture units that will be in charge of configuring the data transfers that move
data from the source to the destination storage units mapped at level L1.
Routing (level L3). The route that data will take to be transferred between a source
and a destination storage is chosen in terms of transfer units (e.g., bus, bridge) accord-
ing to the topology of the architecture model.

3. AN OVERVIEW OF DESIGN IN TTOOL/DIPLODOCUS
TTool/DIPLODOCUS [Apvrille et al. 2006; Apvrille 2008] is a UML/SysML framework
for the hardware/software co-design of data-dominated embedded systems.
In TTool/DIPLODOCUS, an application model is denoted with SysML Block Definition
and Block Instance diagrams that are composed by a set of blocks interconnected by
data and control dependencies via ports and channels. The internal behavior of each
block is described by a SysML Activity Diagram. An application is described in terms
of the two following abstraction principles:

— Data abstraction: only the amount of data exchanged between application blocks is
modeled. Internal decisions that depend on the value of data are expressed in terms
of non-deterministic and static operators (i.e., conditional choice based on the value
of a random variable).

— Functional abstraction: algorithms are described using abstract cost operators that
express the complexity of processing data in terms of the number of operations re-
quired to execute them (e.g., number of integer operations).

A platform model is denoted using a UML Deployment Diagram that represents a set
of interconnected resources, e.g., bus, CPU and its operating system, DMA, memory.
These resources are characterized by performance parameters (e.g., the scheduling pol-
icy and the number of cores for a CPU) that are used for DSE (e.g., simulation, formal
verification) and by implementation characteristics (e.g., addresses of memory areas)
that are used for rapid prototyping (i.e., control code synthesis). A mapping model is
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created from an instance of the platform model where dedicated UML artifacts are
added to map the computations and their dependencies. The abstract cost operators
are assigned a value according to the performance characteristics (e.g., operating fre-
quency) of the platform’s units. TTool/DIPLODOCUS allows a user to map functions
that belong to different functional views, namely from different application models.
Design Space Exploration in TTool/DIPLODOCUS evaluates the performance of
a mapping solution by simulating the workload of computations and data-
transfers [Knorreck 2011]. A formal verification engine [Knorreck 2011] is also avail-
able to verify system properties (e.g., liveness, reachability, scheduling). DSE can be
performed both manually via the tool’s GUI or automatically via a set of scripts that
configure the DSE engine to evaluate different mapping alternatives.
The above abstraction principles have been defined as TTool/DIPLODOCUS targets
early design and DSE, when not all the details about a system’s application (e.g., value
and type of data) and platform (e.g., Operating System, size and policy of cache mem-
ories for a CPU) are known. The validation of the effectiveness of these abstractions
has been described in [Jaber 2011], where TTool/DIPLODOCUS was used for the de-
sign of the physical layer of a LTE base station jointly with Freescale Semiconductors.
The resulting design in TTool/DIPLODOCUS lead to performance results that differed
by only 10% with respect to the final implementation. To obtain these performance
figures, design in TTool/DIPLODOCUS required only a few weeks, whereas manual
development of a functionally equivalent system amounted to 6 months.
In the following, we describe our implementation of the Ψ-chart in TTool/DIPLODO-
CUS.

4. COMMUNICATION MODELS IN TTOOL/DIPLODOCUS: COMMUNICATION PATTERNS
The communication models of the Ψ-chart that we implemented for
TTool/DIPLODOCUS are called Communication Patterns (CPs). These models
describe communication protocols at the datalink layer of the ISO/OSI reference
model [Zimmermann 1980]. CPs are deployed to model communication protocols
at Electronic System-Level of abstraction. Therefore, CPs do not consider the ef-
fects of caching on communications (e.g., the transfers between a cache and main
memory due to a cache miss) that occur at a micro-architecture level of abstraction.
Caching effects are abstracted in the timing attributes of a generic CPU block in
the platform model. An attribute, called cache-miss ratio, is used by the DSE engine
of TTool/DIPLODOCUS as a penalty that is associated to each read/write operation
between generic CPUs and memory blocks of the platform model.
A Communication Pattern describes the behavior of a communication protocol,
intended as a set of rules for the exchange of data between components of an embed-
ded system. A component is intended as a generic architecture unit, regardless its
implementation, i.e., hardware, software or both.
The following tuple provides a formal description of the UML/SysML diagrams and
operators that compose a Communication Pattern.

CP = (MCP ,ADCP ,SDCP )

—MCP is the main Activity Diagram (interface) of a Communication Pattern CP
—ADCP is the set of Activity Diagrams that are referenced in the entire Communica-

tion Pattern CP
— SDCP is the set of Sequence Diagrams that are referenced in the entire Communi-

cation Pattern CP
An Activity Diagram AD is defined as the following tuple:

AD = (RSD,RAD, Cop, N, L)
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—RSD is the set of Sequence Diagrams referenced by AD. A reference to a Sequence
Diagram r ∈ RSD is considered as a node n ∈ N that has one incoming and one
outgoing edges.

—RAD is the set of Activity Diagrams referenced by AD. A reference to an Activity
Diagram r ∈ RSD is considered as a node n ∈ N that has one incoming and one
outgoing edges.

— Cop is the set of control operators that are used to compose the references to other
diagrams. A control operator c ∈ CAD can be of type c ∈ {parallelism,
sequence, choice, iteration, start, final}. start is the start node (symbol) of the Ac-
tivity Diagram. final is the end node (symbol) of a path (defined in Property 5)
within an Activity Diagram.

—N is the set of nodes that compose the Activity Diagram. A node n ∈ N is either a
reference to a diagram r ∈ {RSD,RAD} or a control operator c ∈ Cop.

—L is a set of links (edges). Each link l ∈ L interconnects a pair of nodes n1, n2 ∈ N
with the following notation:

ln1,n2 = n1 → n2

A Sequence Diagram SD is defined as the following tuple:

SD = (ISD, E,MSD,ASD,≺,VISD
)

— ISD is the set of instances that are used to describe the components of a communi-
cation protocol. An instance i ∈ ISD can be of type i ∈ {controller, transfer,
storage}.

—Ei is a set of events that compose the lifeline of an instance i ∈ ISD. Each event
e ∈ E can be one of type e ∈ {SNDm, RCVm, ACTa}, where:
— SNDm is the dispatch (send) of a message m ∈MSD

—RCVm is the reception of a message m ∈MSD

—ACTa is the occurrence of an action a ∈ ASD

—MSD is the set of parameterized messages that are exchanged by instances ISD.
A message m ∈ MSD is part of a library that is composed of messages m ∈
{Read(), Write(), T ransferRequest(), T ransferTerminated()}. To ease the trans-
formation of CPs (Section 5), we currently consider only synchronous messages in
MSD. We envisage to extend the semantics of messages to the asynchronous case in
our future work.

—ASD are the actions performed by instances ISD of type controller on variables VISD

of a Sequence Diagram s ∈ SD. As part of these actions, a parameterized timing
function called wait() is also available.

—≺ is a total order relation of events e ∈ Ei.
— VISD

is a set of user attributes (variables) of an instance i ∈ ISD. A variable v ∈ VICP

can be of type v ∈ {integer, boolean, address}. It can be assigned a value in Sequence
Diagrams s ∈ SD. This value is of type read-only in the guards of the choice control
operator, within an Activity Diagram.

We used two types of diagrams to enforce a separation of concerns between the general
algorithm of a communication protocol (Activity Diagrams) as well as its data and
event exchanges (Sequence Diagrams). This allows CPs to be more modular, easy to
(re-)use and to port thus reducing the number of iterations that occur when models
are modified (labels 4 in Fig. 2) as opposed to the case where only one type of diagram
is used. In a design based on the Ψ-chart, Communication Patterns are instantiated
from a library. This improves the scalability of a design as it limits the number of
CPs that must be instantiated for each data dependency of the application model (this
number can be large in applications such as 5G signal-processing algorithms). Each
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time that data are transferred with a CP that has already been deployed, that CP
must only be re-mapped and must not be re-instantiated.
To the best of our knowledge, Message Sequence Charts (MSCs) [Reniers 1999] are the
closest models to CPs that are currently in use to capture communication protocols. A
MSC is an interaction diagram that provides a language to specify the communication
behavior between a set of system components and their surrounding environment via
the exchange of messages. UML 2.0 Sequence Diagrams are inspired by MSCs.

4.1. Semantics properties for well-formed CPs
To transform a Communication Pattern for DSE and prototyping (Section 5), we spec-
ified the following semantic properties that define a well-formed CP:

(1) Property 1. Non-modeling of returned data: data that is returned upon the
reception of a message is not modeled as we assume it to be implicit. For instance,
data that is returned upon the issue of a Read() message is not modeled.

(2) Property 2. Access to attributes: variables in VISD
are read-only in Activity

Diagrams. They are initialized in the Sequence Diagrams SD and their value can
be changed by actions ASD only. Only variables of type int and boolean can be used
to govern the execution of control operators CAD. Variables of type address are used
for automatic generation of the executable system control code.

(3) Property 3. Active instances: instances of type controller are the only type of
active instances. Both controller and transfer instances are allowed to both send
and receive messages. However, transfer instances are only allowed to forward
incoming messages. Instances of type storage are only allowed to receive messages.

(4) Property 4. Starting diagram: in any Activity Diagram of a Communication
Pattern, the starting symbol must always be followed by a reference to a non-empty
Sequence Diagram.

(5) Property 5. Path: we define a (generic) path as a set of interconnected nodes that
terminate with the final node, as follows:
path = (n1, ln1,n2), {(ni, lni,ni+1)+i:2→m−1}, (nm, lm,final, final), with n ∈ N, l ∈ L

(6) Property 6. Complete path: in any Activity Diagram of a Communication Pat-
tern, a continuous path must interconnect the start and the final nodes via a set
of control operators and references to diagrams in N and links l ∈ L. It is defined
as follows:

complete path = (start, lstart,n1), {(ni, lni,ni+1)+i:1→m−1},
(nm, lm,final, final), with n ∈ N, l ∈ L

where the repetition operator (...)+ defines one or multiple occurrences of the con-
tent enclosed by the parenthesis. The above path can be developed as:

complete path = {start, lstart,n1
, n1, ln1,n2

, n2, ln2,n3
, ..., lnm,final, final}

where m defines the length of the path in terms of interconnected nodes.
(7) Property 7. Parallelism control operator: the parallelism operator is consid-

ered as a single node n ∈ N . It is composed of a fork and a join bars that are used as
delimiters to, respectively, fork and join the execution of k branches of sequentially
interconnected diagrams.

parallelism = fork {(lfork,n1
, n1)t (lni,ni+1

, ni+1)ti:1→m (nm, lnm,join)t}t:1→k join

Above, index t is used to label each parallel interconnected branch.
(8) Property 8. Choice control operator: the choice control operator is composed

of one incoming and k outgoing edges, one for each outgoing branch. Each outgoing
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branch is labeled by a guardk that specifies a boolean condition for the correspond-
ing branch to be executed.

choice = {guardi, pathi}i:1→k

The empty boolean condition is a valid guard that is always evaluated as true.
(9) Property 9. Sequence control operator: the sequence control operator is given

by the simple interconnection of two or more references to diagrams in RSD and
RAD. We formally define a sequence path as follows:

path = (n1, ln1,n2
), {(ni, lni,ni+1

)+i:2→m−2}, (nm−1, lnm−1,nm
, nm)

l ∈ L, n ∈ {RSD, RAD}
(10) Property 10. Iteration control operator: the iteration control operator (i.e., a

for-loop) has one incoming and two outgoing edges. These two outgoing edges are
connected to the body of the loop and to the exit branch. These two branches both
constitute a path. A condition is composed of a set of 3 clauses, as in standard
for-loops: an initialization, a stop condition and an increment.

iteration = condition, {branchexit, branchbody}
branchexit, branchbody = path

condition = initialization; stop condition; increment

(11) Property 11. No recursion: recursion is not allowed for any outgoing branch of
any control operator c ∈ Cop.

(12) Property 12. Start and final nodes: an Activity Diagram is allowed to contain
one and only one start node. It must contain at least one final node. Moreover, the
following links are not valid connections between nodes:

{ln,start, lfinal,n}, with l ∈ L, n ∈ N
(13) Property 13. Mapping of instances of type storage: An instance i ∈ ISD of

type i ∈ controller cannot be mapped onto a memory block that describes a cache
memory in a platform model. In DIPLODOCUS, the effects of caching are modeled
by the cache-miss ratio parameter of a generic CPU block [Apvrille et al. 2006;
Apvrille 2008].

4.2. Modeling a DMA data transfer with UML/SysML Communication Patterns
In this subsection we present the model of a generic DMA transfer with CPs. The main
Activity Diagram of the Communication Pattern is illustrated in Fig. 4a. In this dia-
gram we decomposed the communication protocol in three Sequence Diagrams: first
the data transfer is configured (ConfigureTransfer in Fig. 4a), then data are trans-
ferred (TransferCycle in Fig. 4a) and the data transfer is terminated (TerminateTrans-
fer in Fig. 4a). Data are transferred iteratively, as expressed by the for-loop operator,
based on the value assigned to the control variable counter in diagram Configure-
Transfer.
The Sequence Diagram ConfigureTransfer is depicted in Fig. 4b. Here, we model how a
generic CPU unit configures the DMA controller unit. These two units are represented
as two instances of type controller, interconnected by an instance of type transfer. The
CPU instance sends the source and destination addresses as well as the amount of
data to transfer as parameters of the message TransferRequest() to the DMA con-
troller, via the transfer instance. The DMA controller, upon reception of the message,
assigns variable dataToTransfer to counter. The value of these variables is not known
at modeling phase as CPs are independent of the data dependencies in the application
model. A value will be assigned at mapping phase, step L1 in Fig. 3.
In the Sequence Diagram of Fig. 5, TransferCycle, we model one DMA transfer cycle.
For this purpose we instantiate the DMA controller of Fig. 4b, a source and destination
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ConfigureTransfer
sd

for(i=counter; i>0; i-- )

TerminateTransfer
sd

TransferCycle
sd

TransferRequest( dataToTransfer, sourceAddress, destinationAddress)

TransferRequest( dataToTransfer, sourceAddress, destinationAddress)

CPU_Controller DMA_ControllerTransferInstance_1

(a) (b)

counter = dataToTransfer

Fig. 4. The main Activity Diagram of a DMA data transfer (a), Sequence Diagram ConfigureTransfer (b).

storage instances interconnected by two transfer instances. In this diagram, the DMA
controller reads samples out of the source storage instance via a parameterized Read()
message. Subsequently, it writes data to the destination storage instance via a Write()
message. As the values of parameters size, sourceAddress and destinationAddress
depend on the architecture units, they will be assigned a value when mapping the in-
stances onto DMA and memory units as described in subsection 2.1. Parameter size
defines the amount of data that the DMA channel transfers each transfer cycle.

Read( sourceAddress, size )

Read( sourceAddress, size )

Write( destinationAddress, size )

Write( destinationAddress, size )

DMA_Controller SOURCE_StorageTransferInstance_2 TransferInstance_3 DESTINATION_Storage

Fig. 5. The Sequence Diagram TransferCycle of Fig. 4a.

In the Sequence Diagram TerminateTransfer of Fig. 4a, the DMA controller informs
the CPU instance that the transfer is terminated via an acknowledgment message.

5. THE TRANSFORMATION OF COMMUNICATION PATTERNS IN TTOOL/DIPLODOCUS
The introduction in the design flow of dedicated communication models adds modu-
larity and allows to capture more complex transfers than those occurring on simple
paths such as processor-bus-memory. It allows to evaluate performance in a single de-
sign step, thus adding better chances to avoid local optima. However, these additional
models also increase the complexity of the design space, as the impact of both compu-
tations and communications must be evaluated within the same design phase.
In this section, we discuss the model transformations that we implemented to sim-
plify the design space and to allow for a one-step evaluation of the impact of
both communications and computations. Subsection 5.2 describes the transforma-
tion of Communication Patterns for the simulation and formal verification engine of
TTool/DIPLODOCUS [Knorreck 2011]. Subsection 5.3 describes the transformation of
a mapping model into executable control code. By executable control code, we mean
the code that configures and triggers the data-processing units (e.g., CPU, DSP) onto
which the computations of the application model have been mapped. This code also
configures and triggers the data-transfer operations described by the CPs.

5.1. The software architecture of TTool/DIPLODOCUS
Fig. 6 illustrates the software architecture of TTool/DIPLODOCUS that is relevant to
the model-to-code transformations presented in this section. At its topmost level, the
Diagram Editor is an in-house Java Graphical User Interface that permits designers
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to draw UML/SysML diagrams. Graphical models are first converted into an Inter-
mediate Format (IF) Java data structure (Models-to-data-structure Transformation,
Intermediate Format in Fig. 6). This software data structure constitutes a common
layer from which models are transformed for DSE via formal verification, simulation
and for implementation (prototyping) via the synthesis of the executable control code.
TTool/DIPLODOCUS is also capable to produce the source code for Design Space Ex-
ploration from a textual representation of a design, specified in a dedicated language
called Task Modeling Language (TML) [Waseem et al. 2006]. This TML representation
can be automatically generated by the tool from the IF data structure, as depicted in
Fig. 6, or manually input by the user, as an alternative to UML/SysML diagrams.

Diagram Editor (Ψ-chart design)

Models-to-data-structure Transformations

Intermediate Format (IF, Java data structure)

feedback to
animate

UML/SysML
diagrams

LOTOS UPPAAL TML C code C++ code

Simulation,
Formal Verification

Formal
Verification

Application
Code

Synthesis

Mapping

ArchitectureCommunicationApplication

Task
Modeling
Language

Formal
Verification

Fig. 6. The software architecture of TTool for the UML/SysML profile DIPLODOCUS

5.2. From UML/SysML models to the simulation and formal verification source code
The challenge of translating Communication Patterns for simulation and formal ver-
ification lays in providing transformation rules and a transformation algorithm that
integrate the existing transformation process [Knorreck 2011] without modifying the
internal functioning of the simulation and formal verification engine. This engine eval-
uates the functionality of a system described as a network of tasks interconnected by
data and control dependencies. The internal behavior of each task is specified as a
state machine that references operators for reading/writing to data channels, send-
ing/receiving control information and governing the execution of activities (e.g., for-
loop, choice, random sequence). These tasks and operators are proper to the above
mentioned Task Modeling Language (TML). Therefore, in the rest of this subsection,
we describe the transformation of CPs in terms of TML concepts rather than in terms
of the elements that constitute the IF data structure.

5.2.1. The transformation process. The overall transformation process is depicted in
Fig. 7. Our contribution is the translation of a mapped Communication Pattern into a
set of equivalent TML tasks, CPs-to-TML transformation in Fig. 7. These TML tasks
represent the functional behavior of a CP’s controller instances (the only active in-
stances of a CP, as defined in Section 4). Additionally, we integrated the CPs-to-TML
transformation with the existing TML representation of an application model, Merge
TMLCP and TMLAPP in Fig. 7.
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TML and TML
CP APP

transformation
Intermediate Format
(Java data structure) CPs TML

CP

MergeCPs−to−TML
TML SYS

Simulation and
formal verification

engine

Application-to-TML
transformation

application TML
APP

Fig. 7. An overview of the code generation process for simulation and formal verification

For each instance of type controller icontroller ∈ ISD in a Communication Pattern, a
TML task TMLtask

icontroller is produced. The internal behavior of TMLtask
icontroller is defined

by the events eicontroller ∈ Eicontroller . Each eicontroller is translated into its equivalent
TML instruction, e.g., messages are translated into the TML instructions to read/write
data from/to channels and receive/dispatch control information. The resulting set of
equivalent TML tasks, TMLCP in Fig. 7, is then interconnected to the TML tasks of
the data-processing operations from the application model, TMLAPP in Fig. 7. These
interconnections are created according to the mapping information that associates a
Communication Pattern to a data-dependency between a computation producing data
and a computation consuming these data (step L1 in Fig. 3). This results into a holistic
representation of the system functionality, TMLSYS, that constitutes the input to the
the existing simulation and formal verification environment [Knorreck 2011].

5.3. From UML/SysML models to the executable system control code
Code generation from system-level models is challenging as target platforms are com-
posed of a set of heterogeneous units (e.g., DSPs, CPUs, DMAs, Hardware Accelera-
tors) with different characteristics such as Instruction Set Architecture, Application
Programming Interface and memory organization. For a given functionality, it may be
desirable to generate executable code for different target platforms. In this context, the
key issue is how to efficiently add implementation details that are platform-specific, to
system-level models that make use of high level abstractions in order to be platform-
independent.
To address this issue, the approach that we propose, Fig. 8, is based on two sepa-
rate compilation steps. First, an input mapping model is translated by a model-to-
executable-code compiler into C code that is compliant with a target platform’s Appli-
cation Programming Interface (API) and data structures. In this first compilation step,
implementation details (e.g., data structures, register files) are added by a library of
platform-specific entities called Model Extension Constructs (MECs). By linking to the
compiler a library of MECs for a different platform (or for a different platform config-
uration), the code generation process achieves the desired cross-platform portability.
Secondly, this C code is given as input to a commercially available compiler (e.g., gcc,
Turbo C) to produce an executable file.
In the rest of this sub-section we detail our implementation of the code generation pro-
cess in Fig. 8 for TTool/DIPLODOCUS. In this context, the model-to-executable-code
compiler, Fig. 8, has been developed in Java in order to be easily plugged to the ex-
isting software architecture (Fig. 6). As this work is a first contribution that lays the
ground for future developments, we specify here that our implementation is focused on
signal-processing platforms. We also precise that, specifically to our implementation,
the executable output file is a monolithic application that runs as a single process on
top of the software stack (e.g., Board Support Package, Operating System) of a control
processor in the target platform.
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5.3.1. The compilation process. The compilation process of Fig. 8 is an extension of the
the code-generation engine first proposed in [Gonzalez Pina 2013]. Compilation step
I in Fig. 8 takes as input the equivalent representation of a mapping model from the
Intermediate Format Java data structure of TTool/DIPLODOCUS (Fig. 6). It outputs
a set of C files and a Makefile to automate the second compilation step. In the out-
put C files, processing and communication operations from the initial mapping model
are transformed into three routines that contain initialization, execution and clean-up
code. Additionally, a fourth routine, called fire-rule, is assigned to an operation to spec-
ify the logical dependencies that must be satisfied for its execution.
The front-end of our model compiler in Fig. 8 is a parser that checks the correctness
and coherency of a mapping (e.g., the mapping of instances of a Communication Pat-
tern must respect the topology specified in the platform model) and converts the IF
Java data structure into a directed graph representation, G = (O,E). In this graph,
processing and communication operations constitute the vertexes o ∈ O. The edges
e ∈ E in G represent dependencies between operations that are created based on the
information entered by a user when mapping the models in the Ψ-chart.
Subsequently, the compiler’s middle-end takes as input the operation graph G, ana-
lyzes its schedulability and produces an annotated version G′, where edges and nodes
are enriched with scheduling information. G′ is then processed in order to allocate
memory regions for input/output data of each processing and communication opera-
tion. This produces a second annotated graph, G′′, that is transformed in C code by the
compiler’s back-end. The latter is a C code generator that also takes as input a library
of data structures and code snippets that are compliant to the target platform’s API. To
cope with the heterogeneity of units in a target platform, the back-end relies on ded-
icated Model Extension Constructs (MECs). A MEC is associated to each annotated
operation o ∈ O′′, where O′′ ∈ G′′. It maps o to the code snippets and the data struc-
tures offered by the platform unit to which o had been bound in the initial mapping
model.

Mapping model

Intermediate Format
Java data structure

Parser

Front End

G=(O,E) G'=(O',E') G''=(O'',E'')

Middle End Back End

Compilation step I

Compilation step II

Executable control code

C files, Makefile

Scheduling
analysis

Memory
allocation

C code
generator
with MECs

Commercial
compiler
e.g., gcc

API data structures
and code snippets

(platform dependent)

Fig. 8. An overview of the two-step compilation process to generate the executable system control code

5.3.2. Scheduling of operations. Scheduling information is annotated in G′ = (O′, E′)
based on the events generated by the availability of data produced/consumed by op-
erations o ∈ O, O ∈ G, according to the Synchronous Data Flow Model of Compu-
tation. This MoC has been selected as our code generation engine currently targets
radio signal-processing applications. As part of our future work, we will extend the
scheduling of G to other MoCs. Our implementation of the scheduling analyzer favors
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an event-driven programming model rather than threads, as using threads and syn-
chronization mechanisms would lead to rigid descriptions that are difficult to be scaled
according to the different scenarios that can occur in data-dominated systems [Ouster-
hout 1996; Dabek et al. 2002]. For instance, in a signal-processing system composed
of multiple applications, in case one or more of these applications stops execution, it
would be more difficult to re-synchronize its execution using threads [Lee 2006].

5.3.3. Memory allocation. The compiler’s middle-end in Fig. 8 allocates memory regions
for operations according to the mapping information introduced by a user at step L1
(mapping of storage resources) in Fig. 3). This results into a static allocation policy
that we propose to extend to a more dynamic solution (i.e., the memory regions are
selected by a memory manager at run-time), as part of our future work, Section 8.

5.3.4. Portability of the code-generation approach. Our framework addresses platforms
where the scheduling of operations is centralized by a general-purpose control pro-
cessor. The latter configures and dispatches the execution of operations to a set of
physically distributed units (e.g., DSPs, DMAs), according to the events generated by
the consumption/production of data. For a design project that includes multiple plat-
forms with a centralized controller and distributed execution units, a library of MECs
must be provided to compile mapping models to sets of code snippets and data struc-
tures that are compliant to different APIs. For each platform, dedicated MECs must
be provided by re-using those from other projects as templates. To target architectures
where both control and execution of operations are physically distributed onto differ-
ent units, the C code generator that must be adapted to produce multiple applications
that will each be executed by a different control processor. Therefore, synchronization
primitives must also be added to coordinate the parallel execution of these applica-
tions.

6. CASE STUDY
In this section, we deploy our implementation of the Ψ-chart in TTool/DIPLODOCUS
to design the physical (PHY) layer of a ZigBee (IEEE 802.15.4 standard) [IEEE
802.15.4 2003] transmitter. Subsequently, we demonstrate, for a set of different map-
ping alternatives, how the Ψ-chart approach improves the portability of a design and
reduces the number of design iterations, with respect to the Y-chart.
The IEEE 802.15.4 standard specifies both the MAC and the PHY layers of the IEEE
802.15.4 protocol. It is a standard for low-rate Wireless Personal Area Networks
(WPANs) [Cooklev 2004], which are used to convey information over relatively short
distances. ZigBee has been deployed for several applications including Wireless Sensor
Networks (WSN) for building automation, remote control, health care, smart energy,
telecommunication services. Among the different schemes that can be derived from
the IEEE 802.15.4 standard for a ZigBee transmitter, we selected the one proposed
by [Koteng 2006], shown in Fig. 9, because of its simplicity in terms of implementa-
tion.

Bit-to-
symbol

Symbol
-to-chip N

Pulse
shaping

Modulation
D/A

converter
RF

Frontend

Digital Modulator

Fig. 9. The functional block diagram of the ZigBee transmitter as proposed by [Koteng 2006].
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6.1. The platform
The target hardware architecture for our case study is Embb [Muhammad et al. 2008],
a generic baseband architecture dedicated to signal processing applications.
Fig. 10a shows the UML Deployment Diagram of the Embb architecture, as modeled in
TTool/DIPLODOCUS. Embb is composed of a Digital Signal Processing part (DSP part)
and a general purpose control processor (the main CPU). In the DSP part, left-hand
side of Fig. 10a, samples coming from the air are processed in parallel by a distributed
set of Digital Signal Processing Units (DSPU1 through DSPUn) interconnected by a
crossbar (Crossbar). Fig. 10b illustrates the internal architecture of a DSPU: each unit
is equipped with a local micro-controller (µC) that allows to reduce the intervention
of the main CPU, a Processing Sub-System (PSS), a computational unit, and a Direct
Memory Access controller (DMA) to transfer data in and out of the DSPU’s local mem-
ory (the Memory Sub-System, MSS). The latter is mapped on the global address map
of the main CPU and is accessible by the DMAs, the µCs and the system interconnect.
The system interconnect permits exchanges of control and data items: it is composed of
a crossbar (Crossbar), a bridge (Main Bridge) and a main bus (Main Bus). The system
interconnect is shared between the DSP part and the main CPU, where the control op-
erations of an application are executed. The main CPU is in charge of configuring and
controlling the processing operations performed by the DSPUs and the data transfers.
The main CPU has direct access to a memory unit (MAINmemory) and a bus intercon-
nect (MAINbus) that communicates with the DSP part via the Main Bridge.
According to our design experience with the Embb platform, the best configuration for

<<HWA>>

DSP2
<<HWA>>

DSP3

<<HWA>>
DSP...

<<HWA>>
DSPn

<<HWA>>

DSP4

<<HWA>>
DSP1

<<CPU>>

Main CPU

<<MEMORY>>

Main Memory

<<BUS>>
Crossbar

<<BRIDGE>>

Main Bridge <<BUS>>
Main Bus

<<BUS>>
DSP_Bus

<<HWA>>

DSP_µC

<<CPU>>
DSP_PSS

<<MEMORY>>

DSP_MSS

<<DMA>>

DSP_DMA
<<BRIDGE>>

DSP_Bridge

(b)(a)Digital Signal Processing part General Purpose Control Processor

connection to Crossbar

Fig. 10. The UML Deployment Diagrams of an instance of Embb, part (a), with its Digital Signal Processing
part (left side) and main CPU (right side). Part (b) shows the internal architecture of each DSP unit.

signal-processing applications, in terms of performance is the one with the following
four DSP units:

— Front End Processor (FEP): it implements Discrete Fourier Transform and vector
processing operations.

— Interleaver (INTL): it implements permutations (i.e., interleaving and de-
interleaving) of sequences of data samples.

— Mapper (MAPPER): it transforms a frame of input symbols into a frame of complex
numbers representing the points of a 2D constellation diagram, via Look-Up-Tables.

— Analog to Digital-Digital to Analog Interface (ADAIF): a dispatcher that is capable
of receiving up to 4 input streams from 4 A/D converters and of transmitting up to
4 output streams to 4 D/A converters.

As Embb is a reconfigurable platform where each DSP unit is programmable via a
unique set of registers with specific memory access policies, we linked the library of
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Model Extension Constructs corresponding to the above configuration to the model-to-
executable-code compiler of Fig. 8.

6.2. The application
Fig. 11 shows the TTool/DIPLODOCUS diagram corresponding to data-flow model of
Fig. 9 implemented for Embb. Here, the block labeled Source produces the data to be
transmitted in the form of a flow of bits. These data are then converted to symbols
by the Symbol2ChipSeq block. In this block, we model the mapping of each incoming
4-bits symbol to one of the 16 sequences of 32 chips as defined by the IEEE standard
802.15.4. The Chip to Octet block, then transforms each incoming chip (bit) of a chip
sequence into an unsigned 8-bits integer as expressed in equation 1:

{0; 1} → {0x00; 0x01} (1)

Chip to Octet also separates the even-indexed chips that are used to modulate the in-
phase (I branch) carrier component from the odd-indexed chips that are used to modu-
late the quadrature (Q branch) carrier component. The output is then transformed by
means of a Component Wise Lookup (CWL block) that maps unsigned 8-bits integers
to signed 16 bits integers as expressed by equation 2:

{0x00; 0x01} → {0xffff; 0x0001} (2)

At this point, given the separation of the I and Q branches, their pulse shaping can
be executed independently. The application graph exposes this parallelism by forking
the output data of block CWL to two distinct Component Wise Product (CWP) blocks,
CWP I for the I branch and CWP Q for the Q branch. These blocks multiply the input
samples with a half-sine wave to realize the O-QPSK modulation. The quadrature
shift between the I and Q branches is implemented by means of an offset between the
memory addresses of the output samples. This results into a frame of complex samples
(16 bits for the real part and 16 bits for the imaginary part) that is then collected by
block Sink and transmitted over the air.
Each block of the model in Fig. 11 is composed of two tasks: one modeling the data-
processing and one modeling the related control operations. By convention we name
the data-processing tasks with a heading X that stands for eXecution and the control
tasks with a heading F that stands for Firing.

6.3. Communications
6.3.1. The communication mismatch. In TTool/DIPLODOCUS, communications are de-

scribed as in the application model of Fig. 11 as point-to-point data channels be-
tween tasks. In the platform model of Fig. 10, communications are represented as
read/write operations performed by CPU and DSP units to/from memory units. There-
fore, communication mismatches arise when data are transferred via paths, in the
platform model, that encompass a sequence of more than one pair bus-bridge be-
tween a source CPU/DSP and its destination memory. For instance, when data are
transferred (i) from MainMemory to any of the DSP local memories and vice-versa,
and (ii) from a DSP local memory to any other DSP local memory. The only case in
which there is a match between the application and the architecture MoC is the path
MainCPU-MainBus-MainMemory or by the path that links a DSP PSS to its local memory.

6.3.2. The platform’s communication protocols and mechanisms. Data in Embb are trans-
ferred in one of the two following ways: (i) via a DMA transfer (to upload data to
process in MSS and to download processing results) and (ii) via load/store instructions
issued by the main CPU (i.e., General Purpose Control Processor) to read/write data
from/to the main memory.
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Fig. 11. The TTool/DIPLODOCUS model of the ZigBee transmitter

6.3.3. Communication Patterns. As described above, the communication protocols and
patterns that we need to model are DMA transfers with interrupt mechanisms. The CP
for a DMA transfer has already been illustrated in Section 2 and will not be repeated.
In this Communication Pattern, the interrupt signal that is sent by a DMA controller
to a CPU controller is represented by the message TranferTerminated(), Fig. 4a.
A novel Communication Pattern that we need in this case study is the one shown in
Fig. 12a. Here, the main Activity Diagram captures a memory copy transfer that is
used in Embb to move data from the MainMemory to the local memory of any DSP unit,
via a store operation issued by the MainCPU. The Sequence Diagram TransferCycle in
Fig. 12a, models the message exchanges in the same way as the diagram in Fig. 5,
except for the decrement of attribute counter.
Additionally, we also need the CP illustrated in Fig. 12b. This model captures a pair of
sequential DMA transfers and can be used to describe a copy operation from one source
storage to two different destination storages. The main Activity Diagram of this CP is
composed of two references to Activity Diagrams, that each describe a DMA transfer
as the one illustrated in Fig. 12c for DMATransfer1.

6.4. The mapping
According to the mapping methodology of Section 2.1, we first map the computa-
tions of the application model. Such a mapping results in each control task (e.g.,
F Symbol2ChipSeq) being executed by the Main CPU unit and the data-processing
tasks (e.g., X Symbol2ChipSeq) being executed by the DSPUs PSS. Secondly, the mem-
ories where to store input/output data are chosen. This results into a mapping where
the local memory of each DSPU is used to store the input/output data for the com-
putations that have been mapped onto the DSP’s Processing SubSystem, e.g., task
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Fig. 12. The main AD for a CP modeling a CPU memory copy (a). The main AD for a CP modeling the
sequence of two DMA transfers (b). Part (c) shows the AD referenced by DMATransfer1 in (b).

X Symbol2ChipSeq is mapped to the Mapper PSS, the input/output data are mapped
to the Mapper local Memory SubSystem (MSS).
From our library we instantiate and map 4 Communication Patterns:

— CP01: a memory copy CP that transfers the output data of task X Source. It is com-
posed of: 1 controller instance (CPU Controller), 2 storage instances (Src Storage,
Dst Storage) and 2 transfer instances.

— CP02: a DMA CP that transfers the output data of X Symbol2ChipSeq. It is com-
posed of: 2 controller instances (CPU Controller, DMA Controller), 2 storage in-
stances (Src Storage, Dst Storage) and 4 transfer instances.

— CP03: a DMA CP that transfers the output data of X Chip2Octet. It is composed
of: 2 controller instances (CPU Controller, DMA Controller), 2 storage instances
(Src Storage, Dst Storage) and 4 transfer instances.

— CP04: the sequence of two DMA CPs that transfer the output data of X CWP I
and X CWP Q. It is composed of: 4 controller instances (2 CPU Controllers, 2
DMA Controllers), 4 storage instances (2 Src Storage, 2 Dst Storage) and 8 transfer
instances.

The above CPs are mapped onto the units listed in Table I. Due to lack of space, we do
not show the mapping at routing level (L3 in Fig. 3) of the transfer instances.

Table I. The mapping of the CPs’ controller and storage instances

Identifier Instance Architecture unit
CP01 Src Storage,

Dst Storage
Main Memory
MAPPERMSS

CP02
DMA Controller,

Src Storage,
Dst Storage

MAPPERDMA
MAPPERMSS

INTLMSS

CP03
DMA Controller,

Src Storage,
Dst Storage

INTLDMA
INTLMSS
FEPMSS

CP04
DMA Controllers,

Src Storages,
Dst Storages

FEPDMA
FEPMSS

ADAIFMSS

Table II shows a set of mapping alternatives for the DMA controllers of Communica-
tion Patterns CP01-CP04. In subsections 6.5 and 6.6, we discuss the Model Improve-
ments phase (step 4 in Fig.1 and Fig.2) of these alternatives and present the related
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costs in the frame of the Ψ-chart and Y-chart versions of TTool/DIPLODOCUS, respec-
tively. We then compare the costs for the two approaches in subsection 6.7.

Table II. A summary of the mapping alternatives for the DMA controllers of the CPs

Mapping configuration CP01 CP02 CP03 CP04
Configuration I CPU load-store MAPPER DMA INTL DMA FEP DMA
Configuration II CPU load-store ADAIF DMA INTL DMA FEP DMA
Configuration III MAPPER DMA MAPPER DMA INTL DMA FEP DMA
Configuration IV ADAIF DMA, ADAIF DMA MAPPER DMA INTL DMA FEP DMA

6.5. Model Improvements in the frame of the Ψ-chart
Exploring the alternatives in Table II means to (re-)bind CPs to different platform
units. As CPs are part of a pre-mapping library of models, there are no costs associated
to their instantiation. When mapping alternative I, the 4 CPs must be bound to the
platform model from scratch, while alternatives II-IV only require to change the bind-
ing of CP02 and CP01. Generally speaking, in case a novel CP must be created from the
composition of ”primitive” communication protocols from the library, additional costs
to improve models only involve the creation of a novel main Activity Diagram.

6.6. Model Improvements in the frame of the Y-chart approach
Because of communication mismatches, the mapping phase in the Y-chart of Fig. 1
is altered as shown in Fig. 13. As a consequence, the design process involves more
iterations, i.e., re-modeling and re-mapping steps (4). In Fig. 13, steps (1.1), (1.2) and
(3) are equivalent to those in Fig. 1, while steps (2.1)-(2.3) are described as follows:

2.1 Partial mapping model: it captures the mapping of computation operations only.
2.2 Hybrid application model: it is an instance of the Pure application model, where

additional tasks are added between processing operations to capture data-transfers
due to one or more communication mismatches that prevent the creation of a single
mapping model.

2.3 Complete mapping model: it is an instance of the Partial mapping model that in-
cludes the mapping of communications described in the Hybrid application model.

By way of example, Fig. 14 shows the Hybrid application model for mapping configu-
ration I in Table II.

6.7. A comparison between the Model Improvements phase in the Y-chart and in the Ψ-chart
To quantitatively evaluate the benefits of the Ψ-chart over the Y-chart when improv-
ing a design in terms of communications, we measured the time taken by a user to
bind a CP (Ψ-chart) versus the time required to model and map the tasks that cap-
ture communication protocols in the Hybrid application model (Y-chart in Fig.13).
In the Y-chart version of TTool/DIPLODOCUS, for the DMA transfer and the CPU
memory-copy operations, the average time required for modeling is 30 seconds. The
average time required to map a task or a channel is 5 seconds. In the Ψ-char version
of TTool/DIPLODOCUS, the average time required to map a CP (regardless of the spe-
cific protocol being captured) is 60 seconds.
Table IV summarizes the costs associated to the mapping configurations of Table II. In
configuration I, the costs associated to the Y-chart design are given by the creation of
6 tasks and 12 channels (blocks DMAmapper, DMA INTL, DMA FEP in Fig.14) that amounts
to 180 s as well as by their mapping that amounts to 90 s. Instead the costs associ-
ated to the Ψ-chart-based design amount to 240 s, due to the mapping of the 4 CPs. In
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Fig. 13. The Y-chart in TTool/DIPLODOCUS as it results from being altered by communication mismatches.
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Fig. 14. The TTool/DIPLODOCUS Hybrid application model for mapping configuration I in Table II.

configuration II, the transfer of data from task TX Symbol2ChipSeq to TX Chips2Octet
in Fig.11 is assigned to a different DMA engine. In the Ψ-chart-based design, this re-
quires to change the binding of CP02 and costs 60 s. In the Y-chart-based design, this
requires to change the mapping of block DMAmapper in Fig.14 and costs 30 s (remapping
of 2 tasks and 4 channels). In configuration III, a DMA transfer is used instead of the
CPU memory-copy operation to move data from the source to TX Symbol2ChipSeq. In
the Ψ-chart-based design, this requires to instantiate a CP for a DMA from the library
and to bind it to the platform model, thus it requires 60 s. In the Y-chart-based design,
this requires the modeling and mapping of 2 tasks and 4 channels that results in 90
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s. In configuration IV, a double DMA transfer is used instead to move data from the
source to TX Symbol2ChipSeq. In the Ψ-chart-based design, this requires to instantiate
a CP for a double DMA from the library and to bind it to the platform model, thus it
requires 60 s. In the Y-chart-based design, this requires the modeling and mapping of
4 tasks and 8 channels that costs 180 s.

Table III. A summary of the costs required to improve model alternatives in the Y and in the Ψ charts

Mapping configuration Model improvement costs
Y-chart

Model improvement costs
Ψ-chart

Configuration I modeling: 180 s, mapping: 90 s mapping: 240 s
Configuration II modeling: 0 s, mapping: 30 s mapping: 60 s
Configuration III modeling: 60 s, mapping: 30 s mapping: 60 s
Configuration IV modeling: 120 s, mapping: 60 s mapping: 60 s

We specify, that these costs are only related to the improvements of the models for
communication protocols and patterns. They are not representative of the total design
costs as they do not include the time taken to create the application and platform mod-
els, nor the time required to explore the design space of each configuration, etc.
From the above discussion, the total costs for exploring the 4 mapping alternatives
amounts to 570 s for the Y-chart and to 420 s for the Ψ-chart. Thus, the latter reduces
the design costs associated to the model improvements phase by a factor of 26%.

7. RELATED WORK
Many design approaches at Electronic System-Level (ESL) have been proposed
since [Balarin et al. 1997] and [Kienhuis et al. 1997] first discussed the importance to
separate application and platform design and its methodological consequences. Exist-
ing tools and environments are the implementation of two strategies: (i) the platform-
based approach and (ii) the layered approach, [Lukasiewycz et al. 2009].
In the platform-based approach, resources are allocated from a platform template that
is instantiated from a library of generic components. Subsequently, an application
model is mapped according to a set of mapping constraints. These approaches follow
the Y-chart paradigm. We discuss here a few relevant implementations.
The work in [Lukasiewycz et al. 2009] introduces a DSE approach to enable concur-
rent process binding and communication routing. Design in [Lukasiewycz et al. 2009]
is based on the Y-chart. This work differentiates from other implementations of the
Y-chart, as the allocation and binding of communications occurs in a single mapping
step, together with the allocation and binding of computations. Similarly to our con-
tributions, this avoids expensive design iterations (i.e., re-modeling and re-mapping
of communications). To cope with the increase in complexity of the design space, the
authors in [Lukasiewycz et al. 2009] propose the transformation of the initial specifi-
cations into graph-based models and symbolic representations.
The authors in [Pimentel and Erbas 2003] propose a transformation method for com-
munication refinement. In this work, communication events (e.g., check data, load
data, store data) are refined from the abstract read and write operations generated
from the simulation of an application modeled as a Kahn Process Network (KPN). The
refinement of communication events aims to provide a match between the abstract se-
mantics of the communications in the application model and those in the architecture
units. Nevertheless, this design flow does not provide a solution to explicitly describe
the behavior of the platform units in terms of communication protocols and services
(e.g., network behavior). While this refinement methodology lays the ground for the
application scheduling analysis, only read and write accesses from a processor to a lo-
cal or shared memory can be described. In terms of model improvements, the whole
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refinement process must be re-done from scratch if a given mapping results not to be
compliant with the desired performance requirements. This is opposed to the Ψ-chart,
where only the mapping of the communication models must be repeated.
Independently of our work, [van Stralen and Pimentel 2012; van Stralen 2014] ex-
tend the Y-chart approach with a third input to explicitly model fault-tolerance pat-
terns. The authors remark that the resulting methodology appears to be a Ψ-chart
but claim that there is no difference with respect to the principles of the Y-chart (i.e.,
separation between the design of the system’s functionality and that of the resources).
With respect to our contributions, the work in [van Stralen and Pimentel 2012; van
Stralen 2014] has a common denominator: to include an important design aspect (i.e.,
fault-tolerant versus communication patterns) early, as a third input to the design
flow. However, in [van Stralen and Pimentel 2012; van Stralen 2014] communication
schemes and protocols may be accounted in a fault-tolerant pattern only if that spe-
cific pattern considers faults that affect the interconnect architecture. Additionally, the
model for a fault-tolerant pattern is not independent of the application and platform
models. More in detail, a hardware fault-tolerant pattern requires to modify the plat-
form model (e.g., to consider faults in processors where computations are mapped). A
software fault-tolerant pattern may require to also modify the application model (e.g.,
a fault tolerant technique called Double Modular Redundancy requires each compu-
tation to be performed twice and then to compare the outcome). Indeed, to represent
these dependencies among models, the Ψ-chart of [van Stralen and Pimentel 2012; van
Stralen 2014] graphically collocates the fault-tolerant patterns at a level of abstraction
that is lower than the application and platform model.
On the other hand, in the layered approach the partitioning of computations is done
before the design and exploration of communications. Typically, this approach does not
follow the Y-chart: the design flow starts with a single specification of the system func-
tionality. This is subsequently transformed into an implementation model through a
set of refinement steps. These steps progressively disclose implementation details and
account for different mapping constraints (e.g., computation, communication, schedul-
ing). Relevant examples of this design paradigm are the System-on-Chip Environment
(SCE) [Dömer et al. 2008], SystemCoDesigner [Keinert et al. 2009] and Koski [Kangas
et al. 2006].
The System-on-Chip Environment (SCE) [Dömer et al. 2008] is a top-down methodol-
ogy that takes as input a single specification of the whole system functionality. This
model is refined down to an implementation through four hierarchical steps: archi-
tecture, scheduling, network and communication. At each refinement step, resources
can be allocated and partitioned or a given configuration is explored and evaluated
(functionality, performance). In terms of DSE, SCE favors a progressive pruning of
the design space by first exploring computations and subsequently communications.
Conversely, in the Ψ-chart, both computations and communications are explored in a
single phase that privileges the study of their interactions. In terms of the expres-
sive power of communication protocols and patterns, SCE is equivalent to the Ψ-chart
as complex architectures (e.g. hierarchical bus-based, explicit DMA transfers) can be
represented, explored and realized. The framework that supports SCE operates on de-
scriptions specified in the standard SpecC language [Zhao et al. 2000]. The latter is a
System-Level Design Language based on ANSI-C that provides additional constructs
for modeling hardware (hierarchy, concurrency, synchronization, exception handling
and timing). A system specified in SpecC can be fully realized in terms of both syn-
thesizable hardware and compilable software. On the other hand, the higher level of
abstraction of the DIPLODOCUS profile allows software realizations only, but faster
verification thanks to the functional and data abstractions (Section 3) that reduce the
combinatorial state-explosion problem typical of complex design spaces.
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SystemCoDesigner [Keinert et al. 2009] is a SystemC-based tool for the Design Space
Exploration and behavioral synthesis of streaming applications. The input of the de-
sign flow is a SystemC specification of the application behavior. In this model, commu-
nication between actors is based on FIFO semantics and the behavior of the commu-
nication mechanism is encoded as a Finite State Machine (FSM). DSE automatically
searches for an optimal allocation of resources and an optimal binding of processes onto
resources. For each solution, the performance is evaluated via simulation. Before DSE,
a library provides generic communication resources that are mapped onto four dif-
ferent FIFO primitives for hardware/hardware, hardware/software, software/software
and software/hardware communication.
Koski [Kangas et al. 2006] is a framework for the design of Multiprocessor Systems-on-
Chip, where the design flow starts with a single UML 2.0 model that captures the sys-
tem’s requirements, application and architecture. Design Space Exploration in Koski
is carried out in two phases: first, coarse-grain exploration is performed by statically
analyzing the application model. Secondly, alternative architectures are iteratively ex-
plored via simulations and refinement of the system’s models. The optimization ob-
jective of the DSE phase is to minimize the cost functions provided by a designer in
the initial requirements. In terms of communications, the communication protocols
are part of an architecture model and the deployment details are provided as part of
the platform library. In the application model, UML Composite diagrams are used to
described the connections between parts of the UML Class diagram. These parts com-
municate with each other via signals and ports. At mapping level, in order to perform
DSE and later the system implementation, a design automation library provides inter-
processor communication routines that are associated to the signals and ports of the
UML Composite diagram for an application.
In the above works of [Dömer et al. 2008; Keinert et al. 2009; Kangas et al. 2006],
layering the design and DSE in separate phases may lead to sub-optimal designs as
opposed to the single-step evaluation of the Ψ-chart. At each refinement step (layer),
locally optimal solutions, once explored, may be integrated into the overall design. This
may result into a globally non-optimal solution.

8. CONCLUSION
Traditional design approaches for embedded systems (i.e., the Y-chart) start from spec-
ifications of the system’s application and resources. In this paper, we presented a novel
approach called the Ψ-chart that adds a third input to the design flow: dedicated mod-
els to capture communication protocols and patterns, independently of the system’s
functionality (application) and resources (platform), before mapping. We also pre-
sented the implementation of this approach in TTool/DIPLODOCUS, a UML/SysML
framework for the early design and rapid prototyping of data-dominated embedded
systems. Overall, our solution results in better design quality, portability and less de-
sign time, due to a reduction in the number of iterations that aim at improving models
when DSE evaluates that a mapping configuration does not satisfy the desired require-
ments.
As part of our future work, we are improving the implementation of the Ψ-chart in
TTool/DIPLODOCUS in terms of: (i) modeling (i.e., automate the mapping of CPs and
capture communication protocols beyond the ISO/OSI datalink layer) and (ii) code gen-
eration (i.e., target platforms other than those dedicated to signal-processing).
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