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Abstract. We propose a probabilistic model for acoustic source local-
ization with known but arbitrary geometry of the microphone array. The
approach has several features. First, it relies on a simple nearfield acous-
tic model for wave propagation. Second, it does not require the number
of active sources. On the contrary, it produces a heat map representing
the energy of a large set of candidate locations, thus imaging the acous-
tic field. Second, it relies on a heavy-tail α-stable probabilistic model,
whose most important feature is to yield an estimation strategy where
the multichannel signals need to be processed only once in a simple on-
line procedure, called sketching. This sketching produces a fixed-sized
representation of the data that is then analyzed for localization. The
resulting algorithm has a small computational complexity and in this
paper, we demonstrate that it compares favorably with state of the art
for localization in realistic simulations of reverberant environments.

1 Introduction

Source localization has attracted a lot of research interest, notably in acoustics [5]
and wireless communications [15]. It aims at identifying the position or direction
of arrival (DoA) of sources that are captured by an array of sensors. It has
many applications, notably for isolating the target signals. In this paper, we are
focused on the acoustic application.

Popular approaches for localization largely exploit the geometry of the sensor
array. When the positions of the sensors are known, we can indeed predict and
exploit the time difference of arrival (TDOA) to all sensors. In a more realistic
environment with echoes and reverberation, localization becomes a much more
challenging inverse problem composed of two classical parts. First, the knowl-
edge of the geometry of the sensor array along with physics provides us with a
direct model. Then, localization tries to invert this direct path so as to estimate
the most likely location of the sources based on the observations. As in any chal-
lenging inverse problem, the difficulties come from having less observations than
unknowns, and/or from uncertainties in the direct model. Furthermore, localiza-
tion should ideally work regardless of the particular source signals considered,
which brings an additional difficulty.



Many methods for source localization have already been proposed in the
past. Since we usually have a huge number of candidate locations for only a
limited amount of sensors, they all attempt to reduce the number of parameters.
One approach is to fix the number of sources to look for, yielding for instance
high resolution methods [16] such as MUSIC [10], [14] that provide good perfor-
mance when the microphone array is not too massive and obeys some geometry
assumptions. Another approach for exploiting this relative sparsity of active
sources’ locations is to use greedy methods [17] that iteratively detect the most
predominant source and then remove its influence from the observation using
the direct model. Provided the amount of reverberation is not too large and the
direct model is sufficiently good, these methods yield good performance. An-
other direction is grounded on a probabilistic setting [3], [11], [12] where a prior
distribution such as a multivariate Gaussian is assigned to both the unknown
source signals and the mixing model.

Apart from raw performance, one important issue of source localization meth-
ods is their computational complexity. For the purpose of imaging, the steering
response power method (SRP) simply averages the power of beamformed out-
puts targeted at all candidate directions. Although very simple computationally,
it yields a very poor contrast. See however [19] for an improvement involving
hierarchical search. On the same topic of computational complexity, localization
under the Gaussian model [12] involves a demanding Expectation-Maximization
algorithm (EM) that requires going through the data many times and inverting
many covariance matrices. To a lesser extent, the same goes for RELAX and
CLEAN [17].

In this paper, we propose a new imaging technique, conceptually close to SRP
because it only requires going through the recordings once. However, it is also
grounded in a probabilistic setting but the source signals are no longer assumed
Gaussian as in [12] but rather α-stable, which is a heavy-tailed distribution
permitting to describe audio signals with very large dynamics using only a very
small amount of parameters [7], [13]. Departing from the costly EM, estimation in
this model is based on moment-fitting, appearing as one instance of the recently
popularized sketching methodology [4]. We use a near-field acoustic model here
and simulate challenging reverberant environments.

2 Mixture model and α-stable theory

2.1 Notation and convolutive model

Let x ∈ CF×T×K be the Short-Term Fourier Transforms (STFT) of the obser-
vations, where F is the number of frequency bins, T the number of time frames
and K the number of microphones. x (f, t) ∈ CK gathers its entries for Time-
Frequency (TF) bin (f, t). Now, we assume this recording is the superposition
of signals originating from L potential locations, corresponding to a grid in the
3D-space. Let s ∈ CF×T×L denote the STFT of the L corresponding sources,
with entries sl (f, t) ∈ C. Our objective becomes to estimate the power of the
sources at all these L locations. Of course, we expect most of them to be inactive.



Then, the acoustic model defines the mixture as a superposition of filtered
versions of the sources. In the frequency domain, this convolution may be ap-
proximated as a simple multiplication with steering vectors Al (f) ∈ CK :

∀ (f, t) , x (f, t) =

L∑
l=1

Al (f) sl (f, t) . (1)

A particular direct model then consists in a specific choice for the steering vec-
tors. In this study, we adopt the near field region assumption, thus taking the
steering vectors Al (f) as:

∀l, f Al (f) =
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where ·> stands for transposition, c0 is the speed of sound in the air, rkl the
distance between the kthmicrophone and the lth source and ωf is the angular
frequency at frequency band f . Note that if applicable, actual measurements
may be used instead of the model (2) to provide numerical values for Al (f) at
every candidate location l.

2.2 Independent isotropic α-stable model for the sources

We assume that all the L sources are independent α-stable harmonizable pro-
cesses as defined in [7]. In practice, it means that all sl (f, t) are independent
and distributed w.r.t. a complex symmetric α-stable (SαSc) distribution:

sl (f, t) ∼ SαSc (Υl) , (3)

where α ∈ (0, 2] is called the characteristic exponent, controlling the tail of the
distribution: the closer it is to 0, the heavier the tails. The nonnegative scale
parameters Υl ∈ R+ are the central quantity of interest in our study. Gathering

them together in the L×1 vector Υ = [Υ1, . . . , ΥL]
>

, we call it the discrete spatial
measure. Our objective is to estimate this measure, since it gives the scale of the
signal present at each location.

A remarkable fact of the model (3) is that the entries of sl are modeled as
having the same distribution for all f and t. This is made possible thanks to the
heavy-tailed nature of the SαSc distribution. In contrast, the classical Gaussian
model [8] requires variances to depend on (f, t) to fit well the data.

2.3 The Levy exponent and the spatial measure

Since the distributions (3) and the acoustic model (1) do not depend on time,
neither does the distribution of x (f, t). For a given f , let ϕf be the characteristic
function (chf.) of x (f, t) and let If be the Levy exponent, i.e. the logarithm of
its opposite:



∀θ ∈ CK , ϕf (θ) , E [exp (i< 〈θ,x (f, t)〉)] and If (θ) = − logϕf (θ) , (4)

with 〈., .〉 the inner product on CK . In this study, the argument θ ∈ CK of the
chf. is called a sketching frequency. Combining the SαSc model for the sources
and the propagation model (1), it can be shown that we have:

∀θ,∈ CK , If (θ) =

L∑
l=1

|〈θ,al (f)〉|α Υl, (5)

where al (f) = Al (f) / ‖Al (f)‖2 ∈ CK are the normalized steering vectors.
Now, the approach undertaken in this study is to pick a set of L sketching

frequencies and exploit relation (5). Even if we could pick any complex vec-
tor for θ, informal experiments shows that taking the normalized steering vec-
tors θ = al (f) gives good performance. This yields L relations of the form (5),
that can be expressed in compressed form as If = ΨfΥ , where:

If , [If (a1 (f)) , . . . , If (aL (f))]
>

and∀l, l′ [Ψf ]ll′ = |〈al (f) ,al′ (f)〉|α . (6)

Finally by gathering all If and Ψf into I ∈ RFL and Ψ ∈ RFL×L+ , respectively,
we get:

I = ΨΥ , (7)

which is our main tool for estimating Υ . Indeed, I is estimated from the data
and Ψ is given by combining our acoustic model for al (f) and (6).

3 Parameter estimation

3.1 Sketching for the Levy exponent

As noted above in (4), the Levy exponent is defined as the logarithm of the
negative chf. A naive idea would be to simply replace ϕf (θ) in (4) by its empirical
counterpart averaged over the different time frames. However, this may lead to
numerical instability in case of negative empirical chf. To address this issue,
a new unbiased estimator for the chf. specific to symmetric α-stable random
vectors is proposed here:

∀θ ∈ CK , ϕ̂f (θ) =
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As can be seen, this estimate is guaranteed to be nonnegative. Hence, no nu-
merical instability is to be expected when considering the empirical Levy expo-
nent Îf ∈ RL+, defined as:



∀f, Îf = [− ln (ϕ̂f (a1 (f))) , . . . ,− ln (ϕ̂f (aL (f)))]
>
. (9)

Gathering them as Î =
[
Î
>
1 , . . . , Î

>
F

]>
∈ RFL+ , we obtain a relation similar

to (7):

Î ≈ ΨΥ . (10)

Interestingly enough, relation (10) provides us with a linear model where all
factors except the desired spatial measure Υ are either empirically estimated
from the data (Î) or provided by the acoustic model (Ψ). The fundamental
fact here is that the observed data is only used once for estimating the Levy
exponent in (8), through a very simple procedure, producing the LF × 1 fixed-

sized vector Î. This is reminiscent of the sketching strategy recently described,
e.g. in [4].

3.2 A proposed NMF algorithm to determine Υ

The estimation method for Υ is undertaken by a classical minimization of the
divergence between the two terms of (10):

Υ̂ ← arg min
Υ≥0

dβ

(
Î|ΨΥ

)
+ λ‖Υ ‖1, (11)

where dβ depicts a data-fit cost function such as the β-divergence [1], and λ‖Υ ‖1
is an `1-regularization penalty term to enforce sparsity of Υ . Following classi-
cal multiplicative updates strategy, we can straightforwardly estimate Υ . The
algorithm box below summarizes the whole process, which is of total complex-
ity O

(
FTL2

)
.

Algorithm 1 Estimation of the spatial measure Υ
1. Input

– Number L of possible locations, distances rlk with the microphones.
– Characteristic exponent α
– β-divergence to use, number of iterations, regularization parameter λ.

2. Compute steering vectors Al(f) as in (2).

3. Sketching: ∀f, Îf ←(9)
(the mixture x may only be streamed and not stored)

4. Analysis
– Gather all Ψf and Îf to form Ψ and Î (6)

– Estimation of Υ : iterate Υ̂ ← Υ̂ ·
Ψ>

(
(ΨΥ̂ )β−2·Î

)
Ψ>

(
(ΨΥ̂ )β−1

)
+λ

.



4 Evaluation

We now compare the proposed approach with several baseline methods for wide-
band source localization. We consider J = 5 speech signals lasting 10s and taken
for the CMU1 dataset. They are sampled at 16 kHz and placed randomly in a
simulated room of dimensions 5 × 4 × 3 meters, featuring up to K = 50 omni-
directional microphones at random positions. The room impulse responses are
obtained with the RIR2 generator toolbox [2] by simulated a 0.4s reverberation
time. Because of computational cost, the sources’ positions are restrained to lie
in a flat 2D surface that is 1.5m high. All source localization methods oper-
ate with a grid of 10cm step-size, located on the source plane, but which does
not contain the exact sources’ locations. This results in L = 2091 candidate
locations. To optimize computational cost, the frequency range considered was
reduced from 1 kHz to 3 kHz, since it proved sufficient for speech signals. The
different techniques compared are the following ones:

DSM The Discrete Spatial Measure (proposed). We take α = 1, corre-
sponding to the Cauchy distribution [9], λ = 1 for sparsity regular-
ization and we pick the Itakura-Saito divergence β = 0 as the NMF
cost function.

SRP The Steering Response Power, also called delay-and-sum [18], is the
most classical source localization approach. It is based on the near-
field propagation model (2) and projects the STFT of observations

on the steering vectors: ∀l, SRP = 1
FT

∑
f,t
|A?l (f)x(f,t)|
‖Al(f)‖ . We use the

same frequency range for SRP as for the proposed method.

CLEAN is a greedy algorithm [17]: at one iteration, it successively identifies
the strongest source in the grid with SRP, and removes its contribu-
tion. The algorithm is repeated until all sources are identified.

RELAX is an enhanced variation of CLEAN [6] presented in [17].

Fig. 1. Heat maps of spatial measure, SRP and both greedy algorithms.

1 Carnegie Mellon University dataset : http://www.festvox.org/cmu_faf/
2 https://www.audiolabs-erlangen.de/fau/professor/habets/software/

rir-generator



A Monte Carlo simulation is carried out with arrays of K = 5, 10, 20 and 50
microphones. For each array configuration, we perform 50 trials with random
positions of the sources on the 5 × 4m source plane. One trial for K = 50 is
illustrated in Fig. 1, showing the estimated heat-maps. It first demonstrates
that DSM is more accurate with better contrast than SRP, with only a slight
increase in computational cost3. Indeed, the energy is focused on the ground
truth positions and is close to 0 elsewhere, whereas the SRP map is noisier
because of side lobes. Since CLEAN and RELAX exactly look for J = 5 sources,
they result in the sparsest representations.
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Fig. 2. Correlation with ground truth. Deviation is depicted with black whiskers.

The Monte Carlo experiment is evaluated by correlations between the esti-
mated maps and the ground truth map. The latter is built by setting ones at
ground truth positions, and zeros elsewhere, followed by a Gaussian smooth-
ing with a 10cm length-scale. Correlation means and standard deviations along
the 50 trials are depicted in Fig. 2. First, it shows that DSM outperforms SRP
in all cases. For K ≥ 10 microphones, CLEAN and RELAX have the highest
correlation, notably thanks to the a priori on the source number J . However
their performance decreases rapidly when K decreases. On the contrary, DSM
performance appears more robust to a decrease of K. Lastly, the standard devi-
ation of DSM is smaller than that of CLEAN/RELAX, showing that it also has
a more stable behavior at different configurations.

3 In the specific case where J = 5, the computation time of each method are 5.2 s for
SRP, 54 s for DSM (comprising 24 s for computing Ψ , which only needs to be done
once). CLEAN and RELAX are implemented in GPU, and respectively need 0.45 s
and 55 s. Note that the complexity of these two last methods depends on the a priori
number of sources J and that our implementation for DSM did not exploit its highly
parallelisable capabilities.



5 Conclusion

In this paper, we have introduced an acoustic imaging method for microphone ar-
rays with known but arbitrary geometry. Interestingly, it requires going through
the observed multichannel signals only once in order to compute a fixed amount
of sufficient statistics called sketch from which the model parameters are esti-
mated in a later analysis stage. This strategy has a linear complexity in terms
of signal duration.

A fundamental feature of the probabilistic α-stable model we use is to de-
scribe the source emitting at each spatial location using a single scale parameter.
This is possible because α-stable distributions correctly account for the marginal
distribution of an acoustic signal in the Time-Frequency plane. Gathering all
these location-specific scale parameters, we defined the Discrete Spatial Mea-
sure (DSM) and showed how it can be very easily estimated based on the sketch
with a simple matrix factorization procedure.

In a very challenging simulation of heavily reverberant environments, the
DSM method proved competitive with state-of-the-art methods, particularly
when the number of microphones is comparable with the number of sources.
Open directions include incorporating time-varying scale parameters and exper-
imentally validating robustness to noise.
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