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ABSTRACT

Phase reconstruction of complex components in the time-frequency
domain is a challenging but necessary task for audio source separa-
tion. While traditional approaches do not exploit phase constraints
that originate from signal modeling, some prior information about
the phase can be obtained from sinusoidal modeling. In this pa-
per, we introduce a probabilistic mixture model which allows us to
incorporate such phase priors within a source separation framework.
While the magnitudes are estimated beforehand, the phases are mod-
eled by Von Mises random variables whose location parameters are
the phase priors. We then approximate this non-tractable model by
an anisotropic Gaussian model, in which the phase dependencies
are preserved. This enables us to derive an MMSE estimator of the
sources which optimally combines Wiener filtering and prior phase
estimates. Experimental results highlight the potential of incorpo-
rating phase priors into mixture models for separating overlapping
components in complex audio mixtures.

Index Terms— Phase reconstruction, Von Mises distribution,
anisotropic Gaussian model, phase unwrapping, source separation

1. INTRODUCTION

Source separation consists in extracting underlying components
called sources that add up to form an observable signal called mix-
ture. A variety of audio source separation techniques acts in the
Time-Frequency (TF) domain, exploiting the particular structure
of music signals. For instance, the family of techniques based
on Nonnegative Matrix Factorization (NMF) [1] is often applied
to spectrogram-like representations, such as the modulus of the
Short-Time Fourier Transform (STFT). It has proved to provide a
promising framework for audio source separation [2, 3].

However, when it comes to resynthesizing time signals, obtain-
ing the phase of the corresponding complex-valued STFT is neces-
sary, and is still an open issue [4,5]. In the single-channel source sep-
aration framework, a common practice consists in applying Wiener-
like filtering [3]: the phase of the mixture is given to each extracted
component. Alternatively, a consistency-based approach can be used
for phase recovery [6]. That is, a complex-valued matrix is itera-
tively computed in order to maximize its consistency, i.e. to bring
it as close as possible to the STFT of a time signal. It has however
been pointed out [7] that consistency-based approaches provide poor
results in terms of audio quality. Besides, Wiener filtering fails to
provide good results when sources overlap in the TF domain. There
were some attempts [8–11] to overcome the limitations of those two
approaches by combining them in a unified framework. Consistent
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Wiener filtering [11] has shown to be the most promising candidate
for this task. Alternatively, phase reconstruction from spectrograms
can be performed using phase models based on signal analysis. For
instance, the widely used model of mixtures of sinusoids [12] can
lead to explicit constraints for phase reconstruction that exploit the
relationships between adjacent TF bins [13]. Such an approach has
been exploited in the phase vocoder algorithm [14], speech signal re-
construction [15, 16], audio restoration [13] and integrated into sev-
eral Complex NMF frameworks [17,18] for audio source separation.

However, using such a phase unwrapping prior to estimate the
components without accounting for the mixture phase may lead to
audible artifacts in the reconstructed signals [13]. It is then neces-
sary to design a model which accounts for both the mixture phase
and the phase prior. Such mixture models have been proposed in the
literature [19, 20], but they are generally restricted to mixtures of 2
sources (speech and noise) in a speech enhancement framework. In
this paper, we define a probabilistic mixture model where the phases
are modeled by Von Mises random variables, a circular distribu-
tion that allows us to incorporate some prior information about the
phases. Since in this model the Probability Density Function (PDF)
of the mixture is not tractable, we propose to approximate it by an
anisotropic Gaussian model whose moments are the same ones as in
the Von Mises model. This new model benefits from being phase-
dependent and fully tractable. We further derive an estimator of the
sources which is optimal in a Minimum Mean Square Error (MMSE)
sense. Experiments on realistic music songs show that this approach
delivers results that are similar to those provided by the consistent
Wiener filtering technique in terms of source separation quality, with
a significantly lower computational cost.

This paper is organized as follows. Section 2 presents the mix-
ture model based on Von Mises phase priors. It is then approximated
by the anisotropic Gaussian model in Section 3, where an MMSE
estimator of the sources is obtained. Section 4 experimentally vali-
dates the potential of this method for an audio source separation task.
Finally, Section 5 draws some concluding remarks.

2. VON MISES MIXTURE MODEL

Let X ∈ CF×T be the STFT of an audio signal. X is the mixture
of K sources Zk, such that X =

∑
k Zk. The problem of source

separation consists in obtaining an estimator of the sources Zk. As-
suming that a prior estimate of the magnitudes Vk is available (e.g.
after a preliminary NMF [1]), one only needs to estimate their phases
φk = ∠Zk, where ∠(.) denotes the complex argument. Since some
prior information about these phases can be obtained [13], we pro-
pose to incorporate it in a probabilistic model. Given that all TF bins
are treated independently, we consider a bin indexed by (f, t) and
we remove the indexes in what follows for a clarity purpose.
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Fig. 1. Von Mises PDF for a location parameter µ and several values
of the concentration parameter κ.

2.1. Von Mises phase

The most commonly used distribution in circular statistics is the Von
Mises distribution, since it is the maximum entropy distribution for
circular data and a good approximation of the wrapped normal dis-
tribution with a tractable PDF [21]. The wrapped normal distribu-
tion has notably been used in [22] for speech modeling, however its
PDF does not have a simple closed-form expression. The Von Mises
distribution, denoted VM(µ, κ), is parametrized by a location pa-
rameter µ ∈ [0; 2π[ and a concentration parameter κ ∈]0; +∞[. Its
PDF for the angle φ is given by:

p(φ|µ, κ) =
eκ cos(φ−µ)

2πI0(κ)
, (1)

where In is the modified Bessel function of the first kind of order
n [23]. It is illustrated in Fig. 1. In particular, if κ → 0, the Von
Mises distribution becomes equivalent to the uniform distribution.
Contrarily, if κ→ +∞, it becomes equivalent to a Dirac delta func-
tion centered at µ. The proposed mixture model is then:

X =
∑
k

Zk with Zk = Vke
iφk and φk ∼ VM(µk, κk), (2)

where µk is a phase prior that can be obtained e.g. by the phase
unwrapping algorithm [13], and κk is a weight which promotes this
prior. Similar models have been proposed, notably in [19,20]. How-
ever, they were restricted to mixtures of K = 2 sources in a speech
enhancement framework. Nevertheless, those recent papers suggest
that the Von Mises distribution is an appropriate tool for modeling
the STFT phase of audio signals.

2.2. Phase unwrapping prior

The sinusoidal model is an ubiquitous mixture model for represent-
ing audio signals [12]. Let us consider a source indexed by k ∈
J1;KK which is modeled as a sum of sinusoids. Assuming there is at
most one sinusoid per frequency channel, let us denote by νk(f, t)
the normalized frequency in channel f and time frame t. Ωk de-
notes the onset frame indexes for source k. It can be shown [13] that

the phase µk of the k-th source follows the unwrapping equation:
∀f ∈ J0;F − 1K and ∀t /∈ Ωk,

µk(f, t) = µk(f, t− 1) + 2πSνk(f, t), (3)

where S is the hop size (in samples) of the STFT. In most papers
using this phase model, such as [15, 16, 19], the authors assume that
the mixtures are harmonic and stationary. In order to extend the va-
lidity of this technique to non-harmonic and non-stationary signals
(which frequently occur in audio), we proposed in [13] to perform
a local estimation (at each time frame) of instantaneous frequencies,
by means of a Quadratic Interpolated FFT (QIFFT) performed on
the spectra Vk. The frequency range is then decomposed into re-
gions of influence [14] to ensure that the phase in a given channel is
unwrapped with the appropriate frequency.

2.3. Main drawback

Assuming the magnitudes Vk, concentration parameters κk and prior
phases µk are known, the source separation task consists in comput-
ing an estimator of the latent variables Zk. In a probabilistic frame-
work, the most natural estimators are given by the maximum likeli-
hood, maximum a posteriori and posterior expectation estimators.

However, the computation of such estimators requires the
knowledge of several PDFs, such as the likelihood, prior and poste-
rior distributions. Despite some calculus efforts, we were not able
to write the PDF of the mixture in closed-form. Thus, for obtaining
these estimators, it is necessary to approximate the correspond-
ing quantities with numerical schemes (for instance using Markov
Chain Monte Carlo (MCMC) methods [24]). However, these tech-
niques require several pieces of information on the variables’ PDF
(such as the likelihood), which are not available. Besides, they are
computationally costly.

We thus propose to approximate the model (2) by a Gaussian
model in which the moments of the sources are the same ones as in
the original model (2). This approach enables us to keep the phase
dependencies in a model which is fully tractable.

3. ANISOTROPIC GAUSSIAN MODEL

3.1. Mixture model

We approximate the Von Mises model (2) by a complex Gaussian
model1:

X =
∑
k

Xk with Xk ∼ N (mk, γk, ck), (4)

where mk = E(Xk) ∈ C is the mean of Xk, γk = E(|Xk −
mk|2) ∈ R+ is its variance and ck = E((Xk − mk)2) ∈ C is a
relation term. The covariance matrix is:

Γk =

(
γk ck
c̄k γk

)
, (5)

where .̄ denotes the complex conjugate. The PDF of a complex nor-
mal distributionN (mk, γk, ck) is:

p(Xk|mk, γk, ck) =
1

π
√

det(Γk)
e−

1
2

(Xk−mk)HΓ−1
k

(Xk−mk),

(6)

1Quite interestingly, such an approximation has been used in [25] where
the mixture model was a sum of random variables with phase priors. This
indicates that our approach is quite consistent with the technical issues that
frequently arise in directional statistics modeling.



where v =
(
v v̄

)T and .T (resp. .H ) denotes the transpose (resp.
the conjugate tranpose). The keystone of our approach is that, in
order to keep the phase dependencies, the moments are chosen such
that they are the same ones in both models (2) and (4):

mk = E(Xk) = E(Zk), (7)

γk = E(|Xk −mk|2) = E(|Zk −mk|2), (8)

ck = E((Xk −mk)2) = E((Zk −mk)2). (9)

For a Von Mises random variable φk ∼ VM(µk, κk), the n-th cir-
cular moment is, ∀n ∈ Z:

E(einφk ) =
I|n|(κk)

I0(κk)
einµk . (10)

Let us note

λk =
I1(κk)

I0(κk)
, ρk =

I2(κk)

I0(κk)
− λ2

k, (11)

and X̃k = Vke
iµk the estimated k-th component using the phase

prior µk. Some simple algebra leads to:

mk = λkX̃k, γk =
(
1− λ2

k

)
V 2
k and ck = ρkX̃

2
k . (12)

The additive property of the Gaussian distribution family then im-
plies that X ∼ N (mX , γX , cX) with the following moments:

mX =
∑
k

mk, γX =
∑
k

γk, cX =
∑
k

ck, ΓX =
∑
k

Γk. (13)

3.2. MMSE estimator of the sources

The MMSE estimator of the sources is given by the posterior ex-
pectation of the components E(Xk|X). For Gaussian mixtures, this
expectation is given by (see for instance [26]):

X̂k = mk + ΓkΓ−1
X (X −mX). (14)

The set of estimators defined by (14) is conservative. Indeed, since
ΓX =

∑
k Γk, then

∑
k X̂k =

∑
kmk + (X −mX) = X . Thus,

this model preserves the overall energy of the mixture, which is not
the case for the estimators X̃k.

Such an estimator performs an interpolation between the prior
estimate X̃k and the Wiener filtering estimate GkX , where Gk =
V 2
k∑
l V

2
l

is the traditional Wiener gain. Indeed, if ∀k, κk → 0, then

λk → 0, then X̂k → GkX , which corresponds to the traditional
Wiener filtering. This is coherent with the fact that for a null con-
centration parameter, the Von Mises distribution becomes equiva-
lent to the uniform distribution. Then, the Gaussian model becomes
isotropic, and in consequence, the MMSE estimator of the sources is
given by the well-known Wiener filtering [3].

The proposed estimator (14) is thus expected to optimally ex-
ploit both the prior phase information and the mixture phase. Re-
markably, an optimal combination of Wiener filtering and phase un-
wrapping estimates was proposed in [27], though it was restricted to
mixtures of 2 sources in a speech enhancement framework.

3.3. Source separation procedure

The phase prior µk(f, t) can be computed by the phase unwrapping
approach from the phase prior in the previous frame µk(f, t − 1),
as written in (3). However, a better approach seems to unwrap it

Algorithm 1 Phase unwrapping informed source separation.

Inputs: Mixture X ∈ CF×T ,
∀k ∈ J1;KK: concentration parameters κk ∈ RF×T+ , spectro-
grams Vk ∈ RF×T+ , onset frames Ωk and phases φok(f, t).
for t = 1 to T − 1 do

for k = 1 to K do
if t ∈ Ωk then

Onset phases : ∀f , µk(f, t) = φok(f, t).
else
µk(f, t) is unwrapped from ∠X̂k(f, t− 1).

end if
end for
For each source k and channel f :
Compute the prior estimate X̃k(f, t) = Vk(f, t)eiµk(f,t).
Compute λk(f, t) and ρk(f, t) from (11).
Compute mk(f, t), γk(f, t) and ck(f, t) from (12).
Compute mX(f, t), γX(f, t) and cX(f, t) from (13).
Compute Γk(f, t) from (5) and ΓX(f, t) from (13).
Compute the estimator X̂k(f, t) from (14).

end for
Outputs: ∀k ∈ J1;KK, X̂k ∈ CF×T .

from the MMSE-estimated phase ∠X̂k(f, t − 1), in order to avoid
propagating the prior error.

We thus propose a procedure that is sequential over time frames:
it consists in computing the phase prior and then the MMSE estima-
tor in a given time frame before proceeding to the next frame. It is
summarized in Algorithm 1.

4. EXPERIMENTAL EVALUATION

In this section, we propose to experimentally assess the potential of
the procedure described in Algorithm 1. We consider 100 music
songs from the Demixing Secrets Database (DSD100), a remastered
version of the database used for the SiSEC 2015 campaign [28]. The
database is split into two sets of 50 songs: a learning database and
a test database. Each song is made up of K = 4 sources: bass,
drums, vocals and other (which may contain various instru-
ments such as guitar, piano...).

The signals are sampled at Fs = 44100 Hz and the STFT is
computed with a 92 ms long (4096 samples) Hann window, 75 %
overlap and no zero-padding. Two scenarios are considered: an
Oracle scenario, in which the magnitude spectrograms Vk are as-
sumed to be known (i.e. equal to the ground truth), and a more
realistic scenario, in which the spectrograms are estimated from the
Oracle values by means of an NMF with Kullback-Leibler diver-
gence [2], which uses 50 iterations of multiplicative update rules
and a rank of factorization of 10. Note that this is not a fully blind
scenario, since the NMFs are performed on the isolated spectro-
grams, but this will inform us about the performance of the meth-
ods when the spectrograms are no longer equal to the ground truth.
The sets of onset frames Ωk are detected with the MATLAB Tem-
pogram Toolbox [29]. The mixture phase is given to the sources
within onset frames as an input of Algorithm 1: ∀k, f , ∀t ∈ Ωk,
φok(f, t) = ∠X(f, t). We consider a constant concentration param-
eter: ∀(k, f, t), κk(f, t) = κ. The source separation quality is mea-
sured with the Signal to Distortion, Interference and Artifact Ratios
(SDR, SIR and SAR) computed with the BSS EVAL toolbox [30].
Sound excerpts can be found on the companion website for this pa-
per [31] to illustrate the experiments.
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Fig. 2. Influence of the concentration parameter κ on the source
separation quality in Algorithm 1 (solid lines) and comparison with
Wiener filtering (dashed lines) in the Oracle scenario.

4.1. Influence of the concentration parameter

We first study the impact of the concentration parameter κ on the
separation quality. We test our procedure for various values of κ.
We also compute the Wiener filtering estimates, as a comparison ref-
erence. Results averaged over the 50 songs composing the learning
database are presented in Fig. 2 in the Oracle scenario.

We first observe that, for a certain range of values of κ, our ap-
proach leads to better results than the Wiener filtering technique.
It shows that incorporating prior information about the phase in a
source separation framework may increase the performance of the
separation over a phase-unaware approach. When κ → 0, we note
that our approach becomes equivalent to Wiener filtering. Finally,
the presence of SDR, SIR and SAR peaks suggests the existence of
an optimal concentration parameter κ∗ for this dataset, which cor-
responds to a compromise between excessively promoting the phase
prior and only accounting for the mixture phase. Thus, this is con-
sistent with our interpretation in Section 3.2.

The value κ∗ = 1.6 seems to be a good compromise between
these different indicators. Similar results are obtained in the non-
Oracle scenario (leading to κ∗ = 1), although the improvement over
Wiener filtering is less important.

4.2. Source separation

We now consider the 50 songs that form the test database. We per-
form a source separation task with our procedure in both Oracle
and non-Oracle scenarios. As comparison references, we also com-
pute the Wiener filtering [3] and consistent Wiener filtering [11] es-
timates, and the components estimated using the phase prior only
(X̃k = Vke

iµk ), denoted respectively by Wiener, Cons-W and
Unwrap. The consistent Wiener filtering technique depends on a
weight parameter that promotes the consistency constraint, which is
learned beforehand on the learning database. The results are repre-
sented with box-plots in Fig. 3. Each box-plot is made up of a central
line indicating the median of the data, upper and lower box edges in-
dicating the 1st and 3rd quartiles, whiskers indicating the minimum
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Fig. 3. Source separation performance for various methods on the
DSD100 test dataset. Oracle (top) and estimated (bottom) magni-
tudes spectrograms.

and maximum values, and crosses representing the outliers.
We first observe that using the phase unwrapping prior only

leads to poor results. Indeed, this technique neglects the phase of the
mixture, then the prior error is propagated over time frames, lead-
ing to audible artifacts. In both Oracle and non-Oracle scenarios,
the proposed estimator (denoted by MMSE in Fig. 3) leads to bet-
ter results than Wiener, but slightly worse than Cons-W in terms of
SDR, SIR and SAR. However, we perceptually observe that Cons-W
tends to produce more artifacts in the bass and drums tracks than
the proposed MMSE technique. Finally, it is important to note that
Cons-W is computationally costly: for a 10 seconds excerpt, the
separation is performed in 27 seconds with Cons-W vs 4 seconds
with our estimator. The proposed approach then appears appealing
for an efficient audio source separation task.

5. CONCLUSION

The model introduced in this paper is a promising tool for separat-
ing overlapping components in complex mixtures of audio signals
in the TF domain. Incorporating prior information about the phase
into a mixture model leads to a performance that is similar to Con-
sistent Wiener filtering in terms of source separation quality, while
significantly reducing the computational cost. In this paper, we used
a prior obtained with the phase unwrapping algorithm, though the
framework is very general and any phase prior could be used when
computing the MMSE estimator of the sources.

The anisotropic Gaussian model then appears as an interesting
approach to incorporate phase information in probabilistic mixture
models, since it is fully tractable. While magnitudes values were
assumed to be preliminary estimated in this study, future work will
consist in introducing uncertainty about such a prior. Alternatively,
one could model the magnitudes of the sources by Rayleigh random
variables, whose dispersion parameters could be structured by means
of an NMF model [3]. Such a model would be suitable for jointly es-
timating the magnitudes and phases of the components in a realistic
audio source separation framework.
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