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ABSTRACT

Stochastic Gradient Markov Chain Monte Carlo (SG-MCMC) meth-
ods have become popular in modern data analysis problems due to
their computational efficiency. Even though they have proved useful
for many statistical models, the application of SG-MCMC to non-
negative matrix factorization (NMF) models has not yet been exten-
sively explored. In this study, we develop two parallel SG-MCMC
algorithms for a broad range of NMF models. We exploit the condi-
tional independence structure of the NMF models and utilize a strat-
ified sub-sampling approach for enabling parallelization. We illus-
trate the proposed algorithms on an image restoration task and report
encouraging results.

Index Terms— Stochastic Gradient MCMC, Non-Negative Ma-
trix Factorization, Tweedie Distribution, Beta Divergence, Richardson-
Romberg Extrapolation.

1. INTRODUCTION

Non-negative matrix factorization (NMF) models [1] have been
widely used in data analysis and have been shown to be useful in
various domains, such as recommender systems, audio processing,
finance, computer vision, and bioinformatics [2–4]. The aim of an
NMF model is to decompose an observed data matrix V ∈ RI×J+

in the form: V ≈ WH, where W ∈ RI×K+ and H ∈ RK×J+

are the factor matrices, known typically as the dictionary and the
weight matrices respectively, to be estimated by minimizing a cost
function. The typical cost functions used in NMF can be listed as
the Euclidean distance, the Kullback-Leibler divergence [1], and the
Itakura-Saito divergence [5].

More general noise models and regularization methods can be
developed. A popular approach for this task is to use a proba-
bilistic model having the following hierarchical generative struc-
ture: p(W) =

∏
ik p(wik), p(H) =

∏
kj p(hkj), p(V|WH) =∏

ij p(vij |W,H), where vij , wik, and hkj denote the elements of
V, W, and H, respectively. Within this probabilistic context, we
are interested in the posterior distribution of the latent factors W
and H. By using the Bayes’ theorem, the posterior distribution has
a density given by

p(W,H|V) ∝ p(V|W,H)p(W)p(H), (1)

where ∝ denotes proportionality up to a multiplicative constant.
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The majority of the current literature on NMF focuses on ob-
taining point estimates such as the Maximum a-posteriori (MAP)
estimate, defined as follows:

(W,H)? = arg max
W,H

log p(W,H|V) . (2)

The point estimates are obtained via optimization methods applied
to the posterior density Eq. 1. The optimization procedures used to
solve Eq. 2 have various theoretical guarantees which hold under
appropriate conditions on the prior and likelihood functions [1, 5–
8]. On the other hand, we might be interested in other quantities
based on the posterior distribution, such as the moments or the nor-
malizing constants. These quantities are useful in various applica-
tions such as model selection [9] (i.e. estimating the ‘rank’ K of the
model) or estimating the Bayesian predictive densities that would
be useful for active learning. Markov Chain Monte Carlo (MCMC)
algorithms, which aim to generate samples from the posterior distri-
bution of interest, are one of the most popular approaches for esti-
mating these quantities. However, these methods have received less
attention, mainly due to their computational complexity and rather
slow convergence of the standard methods, e.g. the Gibbs sampler.

In the recent years, alternative approaches based on stochastic
optimization have been proposed for scaling up MCMC algorithms.
These so-called Stochastic Gradient MCMC (SG-MCMC) methods
require to ‘see’ only a small subset of the data per iteration similarly
to the stochastic optimization algorithms and they are well adapted
to modern parallel and distributed architectures. Even though these
methods have proved useful for many statistical models, their appli-
cations on NMF models have not yet been extensively explored. In a
more general matrix factorization context, a distributed SG-MCMC
algorithm for the matrix factorization framework has been proposed
by Ahn et al. [10], where the authors focused on a particular proba-
bilistic model, called the Bayesian probabilistic matrix factorization
(BPMF) [11].

In this study, we develop two parallel SG-MCMC algorithms for
sampling from the full posterior of a broad range of NMF models, in-
cluding models that are not easily tackled by using standard methods
such as the Gibbs sampler. Our methods are carefully designed for
NMF models; they exploit the conditional independence structure
of NMF in order to enable parallelism. Our first algorithm builds
upon the generic framework that was proposed in [10], whereas the
second algorithm is a novel parallel variant of a recently proposed
SG-MCMC algorithm [12] that can achieve faster convergence rates.
Both of the proposed algorithms have favorable scaling properties
and are computationally efficient due to their inherent parallelism.
We illustrate the proposed algorithms on an image restoration task.



2. TWEEDIE NON-NEGATIVE MATRIX FACTORIZATION

In this study, we consider the following probabilistic model in order
to be able to cover a wide range of likelihood functions:

p(W) =
∏
ik

E(wik;λw), p(H) =
∏
kj

E(hkj ;λh)

p(V|W,H) =
∏
ij

T W(vij ;
∑
k

wikhkj , φ, β) (3)

where E and T W denote the exponential and Tweedie distributions,
respectively. The Tweedie distributions belong to the exponential
dispersion models [13] and has shown to be useful for factorization-
based modeling [5,14–17]. The Tweedie distributions have densities
which can be written in the following form:

T W(v;µ, φ, β) =
1

K(x, φ, β)
exp
(
− 1

φ
dβ(v||µ)

)
(4)

where µ is the mean, φ is the dispersion (related to the variance), β
is the power parameter, K(·) is the normalizing constant, and dβ(·)
denotes the β-divergence that is defined as follows:

dβ(v||µ) =
vβ

β(β − 1)
− vµβ−1

β − 1
+
µβ

β
. (5)

The β-divergence generalizes several divergence functions that are
commonly used in practice. As special cases, we obtain the Itakura-
Saito divergence, Kullback-Leibler divergence, and the squared Eu-
clidean distance, for β = 0, 1, 2, respectively. From the probabilistic
perspective, different choices of β yield important distributions such
as gamma (β = 0), Poisson (β = 1), Gaussian (β = 2), compound
Poisson (0 < β < 1) [13, 14], and inverse Gaussian (β = −1) dis-
tributions. Due to a technical condition, no Tweedie model exists for
the interval 1 < β < 2, but for all other values of β, one obtains
the very rich family of Tweedie stable distributions [13]. Thanks
to the flexibility of this class of models, we are able to choose an
observation model by changing a single parameter β.

3. STOCHASTIC GRADIENT MCMC FOR NMF

In Bayesian machine learning, we are often interested in approxi-
mating posterior expectations of a test function f , given as follows:

f̄ =

∫
f(Θ)π(dΘ) ≈ f̂ =

1

T

T∑
t=1

f(Θ(t)) (6)

where Θ ≡ {W,H}, π(Θ) = p(W,H|V) is the posterior distri-
bution, and Θ(t) are samples that are ideally drawn from the target
distribution π. However, sampling directly from π is intractable. In
this section, we will describe two SG-MCMC algorithms that gener-
ate approximate samples from the target distribution π.

3.1. Stochastic Gradient Langevin Dynamics

In the last decade, the Stochastic Gradient Descent (SGD) algo-
rithm [18] has become very popular due to its low computational
requirements and convergence guarantee. In [19], Welling and Teh
proposed a scalable MCMC framework called the Stochastic Gra-
dient Langevin Dynamics (SGLD), that brings the ideas of SGD
and Langevin Monte Carlo [20] together in order to generate sam-
ples from the posterior distribution in a computationally efficient
way. In an algorithmic sense, SGLD is identical to SGD except

that it injects a Gaussian noise at each iteration. For NMF mod-
els, SGLD iteratively applies the following update rules in order to
obtain the samples W(t) and H(t): W(t) = W(t−1) + ∆W(t) and
H(t) = H(t−1) + ∆H(t), where

∆W(t) =ε
( N

|Ω(t)|
∑

(i,j)∈Ω(t)

∇W log p(vij |W(t−1),H(t−1))

+∇W log p(W(t−1))
)

+ Ψ(t), (7)

∆H(t) =ε
( N

|Ω(t)|
∑

(i,j)∈Ω(t)

∇H log p(vij |W(t−1),H(t−1))

+∇H log p(H(t−1))
)

+ Ξ(t), (8)

for all t ∈ 1, . . . , T , T is the number of iterations. Here, ε is the
step size, N is the number of elements in V, Ω(t) ⊂ [I] × [J ] is
the sub-sample that is drawn at iteration t, the set [I] is defined as
[I] = {1, . . . , I}, ∇ denotes the gradients, and |Ω(t)| denotes the
number of elements in Ω(t). The elements of the noise matrices
Ψ(t) and Ξ(t) are independently Gaussian distributed:

ψ
(t)
ik ∼ N (0, 2ε), ξ

(t)
kj ∼ N (0, 2ε).

The convergence properties of SGLD has been studied in [21, 22].
It has been shown that under certain assumptions and with suffi-
ciently a large number of iterations, the bias |E[f̂ − f ]| and the
mean-squared-error (MSE) E[(f̂ − f)2] of SGLD can be bounded
as O(ε) and O(ε2), respectively [23]. Several extensions of SGLD
have been proposed [12, 23–31].

3.2. Stochastic Gradient Richardson-Romberg Langevin Dy-
namics

Even though SGLD has proved useful in several applications, its
performance is often limited by its bias. In a recent study, [12]
aimed at addressing this issue and proposed a new SG-MCMC al-
gorithm, referred to as Stochastic Gradient Richardson-Romberg
Langevin Dynamics (SGRRLD), whose asymptotic bias and MSE
can be bounded as O(ε2) and O(ε4), respectively.

The SGRRLD algorithm is based on a numerical sequence ac-
celeration method, called the Richardson-Romberg extrapolation,
which simply boils down to running two SGLD chains in parallel
with different step sizes. For the first chain, we use a step size ε and
for the second chain, we use ε/2 as the step size. These two chains
are started from the same initial points and are run accordingly to
Eqs. 7-8, except that the chain with the smaller step size is run twice
more often than the other one. To be more precise, in the first chain
we have the following update equation for W:

∆W(t,1) =ε
( N

|Ω(t,1)|
∑

(i,j)∈Ω(t,1)

∇W log p(vij |W(t−1,1),H(t−1,1))

+∇W log p(W(t−1,1))
)

+ Ψ(t,1), ∀t ∈ [T ] (9)

and in the second chain we have the following update equation:

∆W(t,2) =
ε

2

( N

|Ω(t,2)|
∑

(i,j)∈Ω(t,2)

∇W log p(vij |W(t−1,2),H(t−1,2))

+∇W log p(W(t−1,2))
)

+ Ψ(t,2), ∀t ∈ [2T ].

(10)
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Fig. 1. Illustration of the parts and the blocks. Given the blocks in
a part, the corresponding blocks in W and H become conditionally
independent, as illustrated in different textures.

Then, for estimating the posterior expectation of a test function
f (see Eq. 6), we apply a Richardson-Romberg extrapolation to the
estimates that are obtained from the two chains:

f̂ =
1

T

2T∑
t=1

f(Θ(t,2))− 1

T

T∑
t=1

f(Θ(t,1)), (11)

where Θ(t,1) ≡ {W(t,1),H(t,1)} and Θ(t,2) ≡ {W(t,2),H(t,2)},
respectively. For the Richardson-Roomberg extrapolation to be ef-
fective, the random subsets Ω(t,1) and Ω(t,2) should have identical
distributions, implying that |Ω(t,1)| = |Ω(t′,2)| for all t ∈ [T ], t′ ∈
[2T ]. The update rules of H have a similar form. Besides, to min-
imize the variance of the estimator f̂ defined by Eq. 11, it has been
shown in [12] that the crucial part in this algorithm is that the injected
Gaussian noises should be perfectly correlated. Formally, each ele-
ment of Ψ(t,2) is distributed as ψ(t,2)

ik ∼ N (0, ε), whereas each ele-
ment of Ψ(t,1) is obtained as follows: ψ(t,1)

ik = ψ
(2t−1,2)
ik +ψ

(2t,2)
ik ,

instead of being independently drawn.
An important property of SGRRLD is that the two SGLD chains

can be run in an completely parallel fashion by using the same seed
in the pseudo random number generators.

4. PARALLEL SG-MCMC ALGORITHMS FOR NMF

In the SGLD updates given in Eqs. 7-8, the sub-sample Ω(t) can
be drawn with or without replacement [21]. However, since we are
dealing with NMF models, instead of sub-sampling the data arbitrar-
ily, one might come up with more clever sub-sampling schemas that
could reduce the computational burden drastically by enabling par-
allelism. In this section, using the conditional independence struc-
ture of NMF models, we will develop two parallel SG-MCMC algo-
rithms for NMF, namely P-SGLD and P-SGRRLD, where ‘P’ stands
for ‘parallel’.

Inspired by [6–8], we utilize a stratified sub-sampling schema
where the observed data is carefully partitioned into mutually dis-
joint blocks and the latent factors are also partitioned accordingly.
An illustration of this approach is depicted in Fig. 1. In this particu-
lar example, the observed matrix V is partitioned into 3× 3 disjoint
blocks and the latent factors W and H are partitioned accordingly
into 3 × 1 and 1 × 3 blocks. At each iteration, P-SGLD and P-
SGRRLD sub-sample 3 blocks from V, called the parts, in such a
way that the blocks in a part will not ‘touch’ each other in any dimen-
sion of V, as illustrated in Fig. 1. This sub-sampling schema enables
parallelism, since given a part, the SGLD updates can be applied to
different blocks of the latent factors in parallel. In the general case,
the observed matrix V will be partitioned into B ×B = B2 blocks
and these blocks can be formed in a data-dependent manner, instead
of using simple grids.

Let us formally define a block and a part. First, we need to
define a partition of a set S. Let {0, 1}S be the power set of S and
let B ≥ 1. I = (Ib)b∈[B] ⊂ {0, 1}S is a partition of S if it is a

family of non-empty disjoint subsets of S, whose union is equal to
S. Denote by PB(S) the set of all the partitions of S of size B.

Definition 1 Let B ≥ 1. A part Π of size B is a subset of
{0, 1}[I]×[J] of the form Π = (Ib × Jb)b∈[B] where (Ib)b∈[B]

and (Jb)b∈[B] are partitions of [I] and [J ] respectively. For all
b ∈ [B], the subset Ib × Jb of [I] × [J ] is said to be a block
associated with the part Π.

Suppose we observe a part Π(t) = (I(t)
b × J

(t)
b )b∈[B] at itera-

tion t. Then the SGLD updates for W can be written as follows:

∆W(t)=ε
( N

|Π(t)|

B∑
b=1

∑
(i,j)∈I(t)

b
×J (t)

b

∇W log p(vij |W(t−1),H(t−1))

+∇W log p(W(t−1))
)

+ Ψ(t) (12)

Since by definition the familly of sets (I(t)
b × J

(t)
b )b∈[B] are mu-

tually disjoint, we can decompose Eq. 12 into B interchangeable
updates (i.e., they can be applied in any order), that are given as
follows: W

(t)
b = W

(t−1)
b + ∆W

(t)
b , where

∆W
(t)
b =ε(t)

( N

|Π(t)|
∑

(i,j)∈I(t)
b
×J (t)

b

∇Wb log p(vij |W(t−1)
b ,H

(t−1)
b )

+∇Wb log p(W
(t−1)
b )

)
+ Ψ

(t)
b (13)

for all b = 1, . . . , B. Here, W
(t)
b and H

(t)
b are the latent factor

blocks at iteration t, that are determined by the current data block
I(t)
b ×J

(t)
b and are formally defined as follows: W

(t)
b ≡ {w

(t)
ik |i ∈

I(t)
b , k ∈ [K]} and H

(t)
b ≡ {h

(t)
kj |j ∈ J

(t)
b , k ∈ [K]}. The noise

matrix Ψ
(t)
b is of the same size as Wb and its entries are inde-

pendently Gaussian distributed with mean 0 and variance 2ε. The
parallelism comes from the fact that these update equations can be
applied in parallel. By following a similar approach, we obtain B
interchangeable update rules for H. A more detailed explanation of
P-SGLD can be found in the technical report by Şimşekli et al. [32].

Finally, we apply the stratified sub-sampling approach (Eq. 13)
to the two SGLD chains in SGRRLD (Eqs. 9-10) and obtain our new
algorithm P-SGRRLD. Note that the two chains in SGRRLD can al-
ready be run in parallel whereas in P-SGRRLD we further increase
this parallelism and run the update equations of each chain in paral-
lel, as in P-SGLD. We also note that P-SGRRLD requires a careful
implementation since the Gaussian noises should be correlated.
Handling non-negativity: In an optimization framework, the latent
factors can be kept in a constraint set by using projections that ap-
ply the minimum force to keep the variables in the constraint set.
However, since we are in an MCMC framework, it is not clear that
appending a projection step to the P-SGLD and P-SGRRLD updates
would still result in a proper MCMC method. Instead, similar to
[25, 33], we make use of a simple mirroring trick, where we replace
the negative entries of W(t) and H(t) with their absolute values. In-
tuitively, we let wik and hkj take values in the whole R, however
we parametrize the prior and the observation models with the abso-
lute values, |wik| and |hkj |. Since w(t)

ik and −w(t)
ik (similarly, h(t)

kj

and −h(t)
kj ) will be equiprobable in this setting, we can replace the

negative elements of W(t) and H(t) with their absolute values.



5. EXPERIMENTS

In this section, we evaluate the proposed algorithms on an image
restoration task. In our experiments we use the AT&T Database of
Faces [34]. This dataset contains face images from 40 distinct sub-
jects, where there are 10 images for each subject. In total there are
400 images in the dataset, where the size of each image is 92 ×
112 pixels, with 256 gray levels per pixel. The database can be
downloaded from http://www.cl.cam.ac.uk/research/
dtg/attarchive/facedatabase.html.

We conduct all the experiments on a standard desktop computer
with 3.50GHz Intel Xeon CPU with 8 cores, 32 GB of memory.
We have implemented both algorithms on the CPU in C, where we
have used the GNU Scientific Library and BLAS for the matrix
operations (https://www.gnu.org/software/gsl) and
OpenMP (http://openmp.org) for parallel computations. The
source codes for P-SGLD and P-SGRRLD can be obtained from
http://perso.telecom-paristech.fr/˜simsekli/
nmf_sgmcmc/.

In our experiments, we vectorize all the images in the dataset
and concatenate these vectors in order to represent the dataset as
a matrix. Finally, we obtain an observed matrix V of dimensions
I = 92 × 112 and J = 400. In each experiment, we randomly
erase some entries of the data matrix V, which will be reconstructed
later on. We evaluate and compare the performance of P-SGLD and
P-SGRRLD by measuring the root-normalized-mean-squared error
(RNMSE) [35] between the true and the reconstructed data, given as
follows:

RNMSE(V||V̂) =

√∑
ij(vij − v̂ij)2∑

ij v
2
ij

, (14)

where V̂ denotes the restored matrix that is obtained via P-SGLD or
P-SGRRLD, defined as follows:

v̂ij =

{
vij , if vij is observed,
1
T

∑T
t=1

∑
k w

(t)
ik h

(t)
kj , if vij is missing.

(15)

In all the experiments, we set the latent dimensionK = 100, we
partition the sets [I] and [J ] intoB = 8 pieces, and choose a random
part at each iteration. For P-SGLD we launch 8 parallel threads,
whereas for P-SGRRLD we launch 16 parallel threads since we run
two parallel chains in P-SGRRLD. We generate T = 1000 samples
with P-SGLD where we discard the first 500 samples as burn-in and
we set T = 500 for P-SGRRLD where we discard the first half of the
samples, in order to keep the computational needs comparable since
the second chain in P-SGRRLD requires 2T iterations. For P-SGLD,
we tried several values for the parameters, chose the best performing
ones, and we used the same parameters for P-SGRRLD. We evaluate
our algorithms under different missing data percentages where we
repeat each experiment 5 times for each missing data percentage and
report the average results.

In our first experiment, we consider the Poisson-NMF model
[1, 36], where we use the T W(v;µ, φ = 1, β = 1) observation
model. We set ε = 10−5 and λ = 1/5000. Fig. 2 shows the per-
formance of our algorithms on this problem. The results show that
both of our methods yield a significant improvement in the RNMSE.
The methods perform similarly when the percentage of the miss-
ing data is low, whereas the performance gap between P-SGRRLD
and P-SGLD increases along with the increasing missing data per-
centage. The main advantage of our methods is their computational
efficiency: P-SGLD finishes its computations nearly in 85 seconds,
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Fig. 2. The performance of P-SGLD and P-SGRRLD on the im-
age restoration problem under the Poisson-NMF model. The initial
RNMSE is computed by substituting 0 for the missing values.
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Fig. 3. The performance of P-SGLD and P-SGRRLD on the image
restoration problem under the Compound Poisson-NMF model.

whereas this duration is 95 seconds for P-SGRRLD when the per-
centage of the missing values is 10%. We note that even though a
Gibbs sampler (blocked [36] or collapsed [37]) can be developed for
this model, it would not be comparable to our algorithms due to its
expensive computational requirements.

In our second experiment, we evaluate our algorithms on
T W(v;µ, φ = 1, β = 0.5) observation model that corresponds
to a compound Poisson distribution [13, 14], for which deriving a
Gibbs sampler is not straightforward. This distribution is particu-
larly suited to sparse data as it has a non-zero probability mass on
v = 0 and a continuous density on v > 0 [13]. Even though the
probability density function of this distribution cannot be written
in closed-form analytical expression, we can still generate samples
from the posterior distribution by using our methods since we do not
need to evaluate the normalizing constant in Eq. 4.

In this experiment, we set ε = 5×10−4 and λ = 1/5000. Fig. 3
visualizes the performance of our algorithms on this model. We ob-
tain qualitatively similar results and P-SGRRLD is clearly more ad-
vantageous than P-SGLD. On the other hand, the performance dif-
ference between the two methods turns out to be more prominent,
while the predictions of both methods are accurate, gracefully de-
grading from 10% to 60% of missing data.

6. CONCLUSION

In this study, we presented two parallel SG-MCMC algorithms for
a general class of NMF models, namely P-SGLD and P-SGRRLD.
We built P-SGLD upon the framework that was proposed in [10],
whereas P-SGRRLD is a parallel variant of a recently proposed SG-
MCMC algorithm [12] that achieves faster convergence rates. Both
of the proposed algorithms are inherently parallel and present lower
computational complexity compared to conventional MCMC meth-
ods. We illustrated our algorithms on an image restoration task
where we showed that our algorithms yield accurate results in less
than 2 minutes on this particular problem, whereas the conventional
approaches would be infeasible due to high computational needs.
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[16] U. Şimşekli, A. T. Cemgil, and B. Ermiş, “Learning mixed di-
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