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current systems and used by a large variety of users. As a consequence, they have motivated many studies
in Human-Computer Interaction (HCI). Facing the large variety of menus, it is difficult to have a clear
understanding of the design possibilities and to ascertain their similarities and differences. In this article,
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we propose a taxonomy of menu properties that structures existing work on visual menus. As properties
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criteria and by reviewing existing analytical and empirical methods for quality evaluation. This taxonomy
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1. INTRODUCTION

Menus are widely used for exploring and selecting commands in interactive applica-
tions. They first appeared in 1968 with the AMBIT/G system (implemented at MIT’s
Lincoln Labs) and were popularized by the Xerox Star in 1981 and the Macintosh in
1984 [Myers 1998]. Today, menus are widespread in current applications and are used
by a large variety of users. As a consequence, menus have motivated many studies in
Human-Computer Interaction (HCI): more than 60 new menu techniques were defined
during the last 2 decades. Despite the number of studies on menus, designing effective
menus remains a major challenge in HCI.

Menu design can be considered as an optimization problem [Lee and Macgregor
1985; Bailly and Oulasvirta 2014]. An “optimal menu” is the particular menu design
that best meets all usability goals (e.g., speed) while respecting relevant constraints
(e.g., screen space). As an optimization problem, we identify three challenges: the need
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to (C1) characterize the design space by defining decision variables; (C2) develop
predictive models of user performance to evaluate the quality of a given menu
design for a given set of constraints, and (C3) implement optimization methods
that systematically explore the design space.

In this article, we focus on the first challenge of characterizing the design space of
menus, as the two other challenges depend on this first step. Despite the apparent
simplicity of menus, it is still difficult to have a clear understanding of the design pos-
sibilities, as well as to ascertain the similarities and the differences of existing menu
techniques. Indeed, menu design is much more than just ordering commands in a hi-
erarchy but involves numerous dimensions such as item characteristics, visual cues,
menu layout, temporal considerations, menu shortcuts, and so on. Moreover, menu de-
sign must also tackle subtle interactions between menu features and the context of use.

To characterize the design space of menus, we propose a survey of visual menu tech-
niques. A key point of this work is to focus both on menus and on their properties. It is es-
sential to consider these two levels of granularity to precisely compare menus as a menu
can verify several properties and a given property can be shared by several menus.

The core contribution of this article is a taxonomy of menu properties, which have
an impact on menu performance. The taxonomy is useful for both the analysis, the
design, and the selection of menu techniques. More precisely, we analyze the field
of menus at a fine level of granularity to provide a synthesis of research on menus
during these last decades and to highlight open research questions. We also provide
foundations for future research on modeling and menu optimization by identifying a
set of properties and their impact on performance. This can also help menu designers
during the design process by informing them about relevant design decisions. Finally,
this survey can help application designers to discover and choose the most relevant
menus for a given application. An interactive tool (www.gillesbailly.fr/menua/) lists
most of these techniques with additional information resources.

This article is organized as follows: We first provide definitions related to menus
and discuss menu usages to fix the terminology and delineate the scope of our study.
We then focus on menu performance by refining it through a list of quality criteria
and by reviewing existing analytical and empirical methods for quality evaluation.
We then present our taxonomy of menu properties. The taxonomy is organized along
three dimensions: Menu System, Menu, and Item. Each menu property is illustrated
by menu techniques of the literature. In light of menu properties, we finally discuss
under-researched areas and open research questions.

2. MENU TECHNIQUES

Although expressions such as “menu,” “menu system,” or “menu technique” are widely
used, there is no consensual definition of these terms in the literature. Indeed, sev-
eral definitions have been proposed [Lee and Raymond 1993; Norman 1991; Jackoby
and Ellis 1992; Barfield 1993; Marcus et al. 1994; Helander et al. 1997; Shneiderman
1992; Foley et al. 1990; ISO 1991]. For instance, a menu is defined as “a set of se-
lectable options” in ISO [1998]. Some authors define menus by opposition to command
lines (CLI) because they do not force users to memorize complex command sequences
[Barfield 1993; Lee et al. 1993; Marcus et al. 1994; Shneiderman 1992]. We quote two
complementary definitions from the literature on menu techniques:

Menu selection is a mechanism for users to indicate their choices. The characteristics
of menu selection are that a) the interaction is, in part, guided by the computer;
b) the user does not have to recall commands from memory, and c) user response
input is generally straight forward.

Psychology of Menu Selection [Norman 1991]
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Menus are a set of options, displayed on the screen, where the selection and execution
of one (or more) of the options results in a change in the state of the interface

Handbook of Human Computer Interaction [Helander et al. 1997]

However, these two definitions remain somewhat general for defining menus precisely.
As stated by Helander et al. [1997], defining the notion of a menu accurately is chal-
lenging. We propose four key characteristics:

1. Menus allow the user to select commands from a bounded set of items [ISO 1991,
Foley 1990].

2. Menus provide a structure for presenting items visually. Items are generally orga-
nized in hierarchical groups or categories, which may be delimited by separators.
Items can be organized alphabetically, numerically, semantically or in accordance
with their frequency of use. Items are laid out according to a geometrical structure
(linear, circular, etc.) [Jackoby and Ellis 1992; Dachselt 2007] that helps users to
find the desired commands.

3. Menus are transient [Jackobsen et al. 2007]. In transient visualizations, information
is temporarily displayed and is easily dismissed. Menus do not require permanent
screen space because they appear on demand and are closed immediately after the
selection of an item.

4. Menus are quasimodal [Raskin 2000]. Quasimodes are modes “that are kept in place
only through some constant action on the part of the user” [Raskin 2000]. When the
user activates a menu, the application enters into a specific mode until the end of
the selection process.

In order to delineate the scope of our study, we will take the aforementioned four key
characteristics for defining menus. Therefore, we will not consider certain interactors
sometimes considered as menus, such as comboboxes and option menus, because they
do not strictly adhere to our definition. These interactors are in fact hybrid objects
that combine two components: an “anchor interactor,” which is permanently visible
and a menu attached to this anchor. Moreover, a menubar is not a menu but an object
that serves to open menus. While palettes are sometimes considered menus because
they allow the selection of commands, we will not take them into account because they
are not transient. Finally, in this article, we focus on command menus, thus excluding
information search menus such as web catalogues and decision trees as in recommender
systems. However, we believe that many aspects of this work might be applied to these
interactors.

In addition to the term menu, we define the following terms:

—The menu structure is the graph of commands, which is generally a tree [Norman
1991].

—A menu system is a set of linked menus, such as hierarchical menus.
—The current menu is the menu with which the user is currently interacting.
—A submenu is a menu that can be accessed from an item of the current menu of a

hierarchical menu system.
—The super-menu (or parent menu) is the menu that contains the item, which opens

the current menu.
—A menu panel is the graphical user interface (GUI) widget that visually presents

commands on the screen.
—A menu technique denotes an interaction technique [Appert 2004], which, com-

bined with an menu panel, allows navigating in the menu structure and selecting
commands in the graphs.
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Having defined this terminology, we now discuss three factors affecting the use of a
menu technique: user characteristics, menu behavior, and the context of use.

2.1. User Characteristics

How users interact with a menu depends on their perceptual, motor and cognitive
abilities. In particular, it depends on their knowledge and the goals on which they focus
on. Let for instance consider two extremes cases: On the one hand, an inexperienced
user will have to navigate in a menu system and perform several ups and downs in
the menu hierarchy before reaching the desired command. On the other hand, an
experienced user will use keyboard shortcuts (hotkeys) to directly access frequent
commands. To analytically study such usages, several models have been proposed to
describe user knowledge and user goals when interacting with a graphical interface,
as for instance Card [1983] and Rasmussen [1983]. Taking into account former work in
this domain [Norman 1991; Waterworth and Chignell 1991; Grossman and Fitzmaurice
2009], we propose two orthogonal axes for the specific case of menus. The first axis
focuses on user knowledge, and the second axis on the precision of the user’s goal.

2.1.1. User’s Profile. Three levels of user’s profile can be defined considering their
knowledge of the menu system [Shneiderman 1992]:

• Neophyte users do not know how to use an interaction technique and need to under-
stand how it works. A technique must be easy to learn; otherwise, users may reject
it, even if it is efficient after sufficient training.

• Inexperienced users know how the technique works, but they do not know the orga-
nization of the menu system. They are often occasional users who only use a limited
number of commands (typically the most frequent ones).

• Experienced users are familiar with the interaction technique and the organization
of the menu system. They typically are professionals that need rapid response time
and brief, undistracting feedback. Even if they do not know the location of a new
command in the hierarchy, thanks to experience, they are able to find it quickly.

2.1.2. Target Orientation. Target orientation is related to the cognitive state of users
[Waterworth et al. 1991] who may or may not have a definite target in mind. In the
context of menu selection, one can further distinguish between functionality and com-
mand search [Norman 1991].

• Absence of a definite target: this case occurs when users browse a menu system. For
instance, when they discover and scan the menu hierarchy of a new application.

• Functionality search: users must find a functionality that satisfies their needs, but
they do not know if this functionality exists nor its name.

• Command search: the target is clearly defined in the user’s mind, who knows its
name but ignores its location in the menu hierarchy.

2.1.3. Menu Usages. The user’s profile and the target orientation of the user lead to
different usages of the menus. Such usages correspond to different paths in the menu
hierarchy to achieve goals [Howes 1994; Catledge and Pitkow 1995]. We distinguish
three types of paths:

• A roundabout path is characterized by intensive exploration and navigation in the
hierarchy with several ups and downs before the desired command is found. It
generally occurs when users do not know the location of the desired functionality or
command.

• A straight path is a path without detour: the user does not visit accidental wrong
submenus. It generally occurs when users know the location of the desired command
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Fig. 1. Command execution process in a menu system.

or when they do not know this location but the menu titles allow them to find the
desired command.

• A direct path occurs when users select a command without going through submenus.
This is the case for keyboard or stroke shortcuts,1 as they provide a direct access to
commands.

2.2. Menu Behavior

Facing the different user characteristics and thus the different usages of a menu, we
now describe the behavior of a menu technique. Its features (appearance, layout, etc.)
will be discussed in the taxonomy of Section 4.

The behavior of a menu technique can be described by a flow chart (Figure 1). The
first transition, named activation, consists of opening the menu from an object of
interest such as a menu bar or another interactor. Once the menu is opened, the user
localizes the desired item visually then selects it by moving the mouse or by pressing
arrow keys. The selection is generally highlighted. Finally, the user activates this item
and executes the corresponding command, by clicking the mouse or pressing the space
key. For the case of a cascaded menu (i.e., when the item has an attached submenu),
the user continues to navigate in the menu system and the automaton comes back to
the “Menu Opened” state. All these steps are involved when using the novice mode of
the menu. They are bypassed in expert mode as shown in Figure 1 (bottom). We now
detail both modes.

Novice mode. The novice mode is based on “recognition” [Lee and Raymond 1993]:
Users can explore the menu and recognize the desired command. The interaction is
generally performed with the mouse or the arrow and space keys of the keyboard. Some
graphical toolkits also provide mnemonics (e.g., on Windows): The users just have to
type the underlined letter of one item to activate it when the menu is opened (Figure 2).

Expert mode. The menu does not appear on the screen in this mode, which is based
on “recall,” hence forcing users to make some effort to learn how to activate commands
[Lee and Raymond 1993]. Its purpose is to provide faster interactions that let users
focus on their task, as the menu content is not displayed. Depending on the type of
menu, items are either activated by keyboard shortcuts (also called hotkeys) or gestures

1Hierarchical Marking menus [Kurtenbach et al. 1993] require users to draw an inflected path (one inflexion
for each menu level). This path is not a direct path from a graphical point of view, but it can be interpreted
as a whole and integrated as a unique “chunck”/action by users [Buxton 1995; Zhao et al. 2004]. However,
this assertion is harder to defend for some variants such as Multi-Stroke menus [Zhao et al. 2004] where
users must perform a series of simple marks.
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Fig. 2. Mnemonics and keyboard shortcuts in linear menus.

Fig. 3. Novice mode (left) and expert mode (right) of Marking menus [Kurtenbach et al. 1991] c© ACM.

Fig. 4. Modes of a menu according to users’ profile and their goals.

(stroke shortcuts). A label reminding the shortcut is often displayed close to the item
name, as shown in Figure 2.

Stroke shortcuts were introduced in Marking menus (Figure 3) [Kurtenbach et al.
1991]. Marking menus have a circular layout. They are only displayed (novice mode) if
the user waits for a fraction of a second (about 100–300ms) once the menu is activated.
An important feature of this technique is that gestures are similar in novice and
expert modes. This property contrasts with keyboard shortcuts that require users to
use a different modality in expert mode (see Section 4.5.1)

Intermediate mode. Hierarchical circular menus can allow an intermediate mode
called “combined” or “mark confirmation” mode [Kurtenbach 1993]. This case happens
when users start in expert mode and finish in novice mode because they do not recall
the gesture corresponding to a desired command. Some linear menus allow a similar
property: users first press the CTRL key to display a visual help, then select the proper
hotkey (ExposeHK [Malacria et al. 2013]).

As shown in Figure 4, the three modes of a menu (novice, intermediate, expert)
enable us to support the different usages defined by the user’s profile and the precision
of her/his goal (Section 2.1). Indeed, the novice mode allows a roundabout interaction
path: the novice and intermediate modes support a straight path, while the expert
mode provides a direct path.

2.3. Context of Use

When choosing a menu, the designers should consider the context of use and in par-
ticular the types of tasks of the application as well as the set of devices where the
applications will run.
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Fig. 5. Command selection process between the menu and the objects of interest. We now detail these
transitions.

2.3.1. Task. Menus are not the main objects of the task—they are instruments in-
tended to help users to accomplish a goal. It is thus important to understand how the
menu is integrated into the context of the primary task. To accomplish such tasks, users
generally select one object of interest, open the menu, select commands, and control
their parameters. The performance of a menu thus depends on this interaction sequence
[Appert et al. 2004; Mackay 2002]. Dillon et al. [1990] claim that “the true cost of com-
mand selection includes both the movement to the menu and the movement back to the
main task.” We thus propose a model with two supplementary transitions (Figure 5):

• Menu selection (object-to-command transition)
• Back to object of interest (command-to-object transition)
• Back to menu (command-to-command transition)
• Value control (command-to-value transition)

Menu selection. Menu selection (also called “object-to-command transition” [Cance
et al. 2006]) corresponds to the distance (or time) for accessing the menu from the object
of interest. This transition generally consists of pointing to an anchor such as a menu
bar to activate the menu. In contrast to menu bars,2 context menus (also called “in-place
menus” [Hinckley et al. 1999]) can directly be manipulated on objects of interest.

Back to object of interest. Users generally need to come back to the location of the
selected object(s) of interest after activating a command [Cance et al. 2006]. For context
menus, this location generally corresponds to the activation point. Two strategies have
been proposed to reduce the average distance between items and the activation point.
The first one consists of using a stack layout (Multi-Stroke menus [Zhao et al. 2004])
that prevents the cursor from moving too far away from the activation point during the
exploration of the menu. As in Slippery menus [Cance et al. 2006], another solution
consists in sliding the menu under the cursor instead of moving the cursor over the
menu so that the cursor remains on the object of interest at the end of the interaction
of the user.

Command–to-command transition. Users often need to apply several commands
to one object or one command to several objects: This implies many “object-to-
command” and “command-to-object” transitions. Reducing these transitions improves

2An exception with the MacOSX menu bar that uses the border of the screen as an impenetrable border (see
Section 4.2.1) in order to quickly access menus.
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Fig. 6. (a) Users can make the submenus persistent with the Floating Pie menus [Rubio and Janecek 2002].
(b) CrossY [Apitz et al. 2004], (c,d) Grid gates and Polar gates [Sulaiman et al. 2008] allow users to compose
several commands by performing a single gesture. (e) Control menus [Pook et al. 2000] allow users to select
a command and control a parameter in the same gesture. Users must go through a threshold distance from
the activation point to start controlling parameters. (f) Flow menus [Guimbretiere et al. 2000] rely on a
similar principle except that leaving the central zone activates the command while re-entering the central
zone starts the operation.

interaction. For instance, palettes let users select a mode or a command that can then
be applied multiple times without having to return to the palette. However, mode per-
sistence [Raskin 2000] tends to be error prone because users may forget to change the
current mode when performing an action a while later. Alternately, submenus can be
made persistent by “detaching” them (Tear-off menus) or keeping them opened after
activation (Floating Pie menus [Rubio and Janecek 2002]). Moreover, some menus
allow users to activate several commands in sequence by performing a single gesture
(Figure 6). They leverage specific menu layouts, which can be linear (CrossY [Apitz
et al. 2004]), according to a grid (Grid Gates [Sulaiman et al. 2008]) or circular (Polar
Gates [Sulaiman et al. 2008]).

Value control. Some commands require specifying parameters (command-to-value
transition). This is typically done by opening a dialog box once the command is selected.
In contrast, some menus allow selecting and controlling a command in a single gesture,
a characteristic called “merging” in Guimbretiere et al. [2000] Parameter control starts
by moving further than a certain threshold from the activation point with Control
menus [Pook et al. 2000]; Figure 6(e), by (re-)entering a specific area with FlowMenus
[Guimbretiere et al. 2000]; Figure 6(f), or by tilting the pen with Tilt menus [Tian et al.
2008].

2.3.2. Devices. This section reviews various devices and modalities that can be used
for interacting with a menu.

Input modalities. Menus are often manipulated by using a relative and indirect 2D
input device such as a mouse or a touchpad (or a keyboard in the case of mnemonics and
hotkeys). Figure 8 shows examples of menu techniques relying on other input modali-
ties such as pressure (Figure 8(a)), multi-finger input (Figure 8(b)), gloves (Figure 8(d)),
or eyes-tracking [Kammerer et al. 2008]. These alternate modalities can serve to in-
crease the number of commands, to improve performance, or to compensate the lack of
input resources. While now quite common, it is worth noticing that touchscreens, lack
some operating states (e.g., hover) because of the absence of mouse buttons [Buxton
1990]. Touchscreens raise several problems when interacting with menus:

• Menu activation. Opening context menus on touchscreens often rely on a delay, which
acts as a common substitute for the right mouse button. Other solutions include
multiple taps [Wu and Balakrishnan 2003], multiple-finger taps (two-finger taps on
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Fig. 7. (a) Occlusion aware menus [Brandl al. 2009]; some items are left empty to avoid occlusion. (b)
Arch Menu and (c) ThumbMenu [Huot et al. 2007] use an offset cursor to improve finger selection accuracy
with small items. (d) Wavelet menus [Francone et al. 2010] place submenus at the center of the menu to fit
small screens without degrading navigation.

Fig. 8. Menus using non-traditional input/output capabilities. (a) Push menus use pressure input [Huot
et al. 2008]. (b) MTM uses multi-finger inputs [Bailly et al. 2008]. (c) Marking menu using a pen with a pico-
projector [Song et al. 2009], c© ACM. (d) HardBorder uses haptic feedback [Essert-Villard and Capobianco
2009]. (e) EarPod uses audio feedback [Zhao et al. 2007]. (f) TV Menus using a gesture-aware remote control
[Bailly et al. 2011]. (g) Two-handed Marking menus are a near-surface menus [Guimbretière and Nguyen
2012].

the iPhone and Macintosh touchpads, five-finger taps [Lepinski et al. 2010]), taps
with the heel of the hand [Bailly et al. 2008], dedicated buttons [Hinckley et al. 2006],
or Microrolls gestures [Roudaut et al. 2009].

• No keyboard shortcuts. Stroke shortcuts can serve as a substitute for hotkeys on
devices that do not have a hardware keyboard [Bailly et al. 2010; Kurtenbach 1993;
Roudaut et al. 2009].

• Occlusion. Linear menus generally appear in the bottom right area of the activation
point, which is often masked by the user’s hand (for right-handers). Occlusion in-
troduces fatigue and inhibitory movements [Hancock and Booth 2004]. The default
position of the menu can be changed statically [Roudaut et al. 2009] or dynamically
[Hancock and Booth 2004] to solve this problem. Alternately, some items can be left
empty [Brand et al. 2009] (Figure 7(a)).

• Insufficient accuracy. Interacting with fingers can produce imprecise item selection
[Parhi et al. 2006]. A trivial solution increases the size of items, but this is at the cost
of wasting screen real estate. A review of various solutions can be found in Roudaut
et al. [2008]. Among these solutions, only the “Offset Cursor” mechanism3 [Potter
1988; Huot et al. 2007] (Figure 7(b–c)) and gesture input [Roudaut et al. 2009] have
been applied to menus.

3Offset Cursor [Potter 1988] displays a cursor above the point where the user touches the screen to avoid
finger occlusion. It is efficient, but slow and loses the directness of interactive screens [Roudaut et al. 2008].
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Output modalities. While audio feedback [Zhao 2008] (Figure 8(e)) and tactile feed-
back [Essert-Villard and Capobianco 2009] (Figure 8(d)) have been proposed as output
modalities for menus, visual feedback largely remains dominant. But the amount of
screen real estate needed for displaying menus can be a major limitation, particularly
for mobile devices. This can make interaction cumbersome and even impossible in cer-
tain cases. The most common solutions use scrollbars or translate menus when they
are close to a border of the screen to prevent them from being truncated. The posi-
tion of each menu item can also been decided by the user by drawing a path such as
in User-drawn context menus [Leithinger et al. 2007]. The lack of screen real es-
tate can constrain the use of certain menu layouts. For instance, hierarchical Marking
menus require too much space for mobile devices4 [Zhao et al. 2004; Bailly et al. 2007].
Solutions such as Wavelet menus [Francone et al. 2010] have been proposed to solve
this problem (Figure 7(d)). We will discuss the challenges related to menu layout in
more depth in Section 4.

To sum up, the contributions of this section were (1) to propose a definition based on
four characteristics extracted from the literature and our experience and (2) to analyze
menu interaction by considering users’ characteristics, menu behavior, and the context
of use.

3. MENU PERFORMANCE

The main objective of menu designers is to improve the performance of menus given
an application, a platform (i.e., devices), and/or a class of users. However, what perfor-
mance means is not always precisely defined. Moreover, it may be hard to predict or
measure the quality of a specific technique. Conducting user studies is common prac-
tice in HCI to get insights about the performance of an interaction technique. However,
such studies generally involve a limited number of users and a small set of tasks. Thus,
they may not take into account all possible factors. Moreover, there is no established
list of criteria, tasks or benchmark scenarios to guide empirical evaluations and to
precisely define the scope of the results.

The goal of this section is to better understand the different aspects of menu perfor-
mance. This will be useful in the next section to better understand the impact of menu
properties on performance. Toward this goal, we first present the framework of inter-
face expertise proposed by Scarr et al. [2012] that we apply to the context of menus. We
then describe analytical and empirical methods to evaluate the performance of menus.

3.1. Framework of Interface Expertise

The framework of interface expertise [Scarr et al. 2012] (Figure 9) attempts to charac-
terize the development of user performance over time, that is to say, given a context
of use (i.e., application, platform, class of users), how user performance improves from
novice to expert mode. In this article, the novice mode relies on menus (first modality)
and the expert mode on the second modality such as keyboard or gesture shortcuts.

Three stages can be observed regarding performance in novice mode: initial perfor-
mance, extended learnability, and ultimate performance. Initial performance concerns
neophyte users who never used the menu before (Section 2.1). Ideally, these users
should be able to easily and quickly understand how the menu works. Extended learn-
ability refers to how fast users reach their ultimate level of performance. Indeed,

4Hierarchical Marking menus require much screen real estate to display submenus and thus is a poor
candidate for small screens. For instance, a three-level Compound Marking menu requires more horizontal
space than 10 linear one-level menus [Bailly et al. 2007] because (1) circular menus are at least two times
larger than linear menus, (2) circular menus generally appear centered around the activation point, and
(3) they require space on both sides to display submenus.
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Fig. 9. Framework of interface expertise [Scarr et al. 2012], showing the transition from the menu (first
modality) to the second modality (expert mode).

strategies favoring incidental or explicit learning accelerate learning. Finally, ultimate
performance (or performance ceiling) corresponds to a level of performance, which can-
not be exceeded.

This framework also characterizes intermodal expertise development. It highlights
the performance dip when users switch to a new modality, even if it ultimately offers
a higher performance ceiling. This notion is important because it explains why many
users (and even experienced users) do not switch from the first modality (menu) to the
second modality (shortcuts) [Lane et al. 2005]. In practice, users often favor short-term
productivity rather than long-term productivity. If users perceive the expert mode as
difficult to learn, they may reject the technique and thus never attain the performance
ceiling it enables [Scarr et al. 2012].

Based on this framework, Malacria et al. [2013] identified several factors that can
favor the transition from novice to expert mode:

• Awareness of other modalities. Users are often not aware an expert mode exists. For
instance, the study of Grossman et al. [2007] suggests that hotkeys are ignored by
some users.

• Perception of performance. Scarr et al. [2011] note that the users’ perception of the
potential gain they may obtain by using a new modality strongly influences their
decision of whether or not to switch. While hotkeys offer a higher-performance ceiling
than menus [Lane et al. 2005; Odell et al. 2004], Tak et al. [2013] found that some
participants did not use hotkeys because they believed using toolbar buttons would
be faster.

• Lack of motivation. Finally, there are many elements of motivation at play in a
user’s decision to switch to the expert mode. Users can be motivated to improve
their performance (intrinsic motivation) or be influenced by social factors (extrinsic
motivation).

In summary, this framework characterizes the development of user performance
with menus by revealing different stages (initial performance, extended learnability,
and ultimate performance) for both the novice and expert modes. We now aim at
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Table I. The Two factors, Usability and Applicability, and Their Corresponding Criteria

While usability is mainly related to menu usage, applicability has a more functional connotation.

better defining menu performance by discussing criteria that can be used for analytical
evaluations.

3.2. Analytical Evaluation

Analytical evaluation methods do not require user testing, which is expensive and
time-consuming. These methods include heuristics, cognitive walkthrough, literature
review, model-based evaluations, and so on [Shneiderman 1992]. In the following text,
we discuss performance criteria and predictive models of performance in the case of
menus.

3.2.1. Factors and Criteria. Our performance criteria are organized as a hierarchical set
(Table I) inspired from the multi-criteria analysis from [McCall 1977; Abowd et al.
1992] and several other studies [Card et al. 1990; Bernsen 1996; Chuah et al. 1996;
Beaudouin-Lafon 2000; Dachselt 2007; Shneiderman et al. 1992; Bastien et al. 1993;
Nielsen 1993]. At the first level of the hierarchy, usability and applicability are two
factors referring to the practical acceptance of a menu technique by users.

Usability is related to menu usage. It refers to the adequacy of the menu technique
from the perspective of the cognitive, motor and sensory abilities of the user. Several
definitions have been proposed to characterize usability [Welie et al. 1999]. We adopt the
definition given by Shneiderman [1992], which is based on the five following criteria:
Speed, Accuracy, Learnability, Memorization (retention over time), and Satisfaction.
We will consider speed and accuracy together because they are strongly related (for
instance, faster execution generally produces more errors). This is also the case for
learning and memorization, which both depend on usage frequency. The satisfaction
criterion is particular because it is a subjective measure that is directly linked to the
comfort and the acceptability of use. This criterion is also related to the previous ones:
for example, a user can like a menu because it is fast.

Applicability. Applicability has a more functional connotation and can be seen as
an adaptation of Nielsen’s utility factor [Nielsen 1993] for menus. Unlike the previous
factor, applicability focuses on the adequacy of the menu technique with respect to the
application, the devices and the users. For instance, menus that only allow accessing
a limited number of items are not adapted for applications having a large number
of commands. Similarly, techniques using a large amount of screen real estate are
not well suited for smartphones. Finally, menus requiring precise movements are not
adapted for elder users [Worden et al. 1997] or users with motor impairment. These
three examples illustrate the three criteria we propose for applicability: application
adequacy, device adequacy, and user adequacy.

ACM Computing Surveys, Vol. 49, No. 4, Article 60, Publication date: December 2016.



Visual Menu Techniques 60:13

While the usability and applicability criteria are related, they do not correspond to
the same point of view. For instance, linear menus are not well suited for a smart
device running application because the user would have hard times pointing to the
right item while running. However, this does not mean that the usability of linear
menus is mediocre in general but just that they are not well suited for this kind of
application on this kind of device. Applicability thus serves to take into account this
dependency on the context.

Example. Let us assume that designers want to integrate a Marking menu in their
applications. They are aware that usability can affect software popularity, but they do
not have the time and money to conduct empirical user studies. Going through the
aforementioned proposed set of criteria will provide them with a better understanding
of the possible advantages and drawbacks of Marking Menus:

• Speed and accuracy. Marking menus are fast because they reduce the average dis-
tance to select items. Additionally, marks can be performed at any size reducing the
need of precision.

• Learning and memorization. Marking menus exploit spatial memory and can high-
light semantic relationships between commands. For instance, some opposite com-
mands (“Open” and “Close”) can be assigned to opposite gestures. Moreover, Marking
menus provide a fluid transition from novice to expert usage because users perform
the same gestures in novice and expert mode.

• Satisfaction. The circular design of Marking menus is esthetic, and gestural interac-
tion is known to be pleasant.

• Application adequacy. Marking menus can hardly contain more than 8 or 12 com-
mands at each menu level for expert users while several categories of the application
contain more than 12 commands.

• Device adequacy. The application has been developed for the desktop but will be
probably deployed on mobile devices. Unfortunately, Marking menus are too large
(more than two times larger than Linear menus), which is not compatible with mobile
device small screens.

• User adequacy. Marking menus are adapted to users with motor impairment, as they
do not require precise pointing abilities [Harada et al. 2007].

This example shows that trade-offs can be put into evidence by considering criteria
in a systematic way. While Marking menus are efficient for the usability factor, they
are not well suited for small screens or when numerous commands are needed. For
application designers, these criteria can be used to choose between existing menus.
For researchers, it can open novel research directions to overcome existing limita-
tions. For menu designers, it can be used as guidelines for applying a systematic
multi-criteria analysis of the menu during the design process.

3.2.2. Models of Performance. Models of menu performance synthetize phenomena by
quantifying the impact of menu properties on users’ behavior. They provide an effi-
cient way of encapsulating scientific knowledge, and they avoid carrying out extensive
user trials [Cockburn et al. 2007; Bailly et al. 2014]. While several models have been
proposed for interaction techniques (e.g., GOMS [John et al. 1996], CIS [Appert et al.
2004]), few of them focus on menus. We first present existing models of menu perfor-
mance. We then discuss limitations and possible directions.

Mathematical models. Total Search Time (TST) is probably the first model of menu
performance [Lee and MacGregor 1985]. It predicts search/selection time for balanced
hierarchical linear menus (also called symmetric menus), that is, menus with con-
stant menu breadth, for a given menu breadth (b), processing time per option (t), user
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response time (k), computer response time (c), and menu system depth (d). According
to this model, time is summarized as:

TST = (b ∗ t + k + c) d
This model has several limitations. It assumes that all menu items are examined

in a linear fashion, have the same popularity and the same pointing time. Some vari-
ants of this model have been proposed to consider more complex localization strate-
gies (self-terminating, i.e., non-exhaustive search) [Lee and MacGregor 1985; Pap and
Roske-Hofstrand 1986] to take into account the level of experience of the user or the
semantic organization of the menu.

Liu et al. [2002] presented the GS menu model, which is based on the Guided Search
(GS) model [Cave and Wolfe 1990]. The GS model is a model of visual search from of
the perceptual literature that quantitatively describes the role of parallel and serial
processing in visual search. The GS menu model predicts item selection time as a
function of (1) item frequency, (2) item length, and (3) item color. However, in common
menus, the color of items do not vary. Moreover, it does not consider important aspects
such as the level of practice or the location of the items in the menu. .

Cockburn et al. [2007] proposed the Search-Decision-Pointing model (SDP model)
[Cockburn et al. 2007]. The SDP model is a regression model using four variables
and seven parameters to predict total selection time. The four predictors are number of
items, item frequency, spatial, and item position. The model relies on five components:

1) The Search component predicts that the time to localize a command increases lin-
early with the number of commands in the menu, but is independent of the item
location.

2) The Decision component predicts that the time to decide from among commands
depends on the “entropy” of their relative frequencies in previous selections. It is
given by the Hick-Hyman law [Hick 1952; Hyman 1953].

3) The Pointing component is based on Fitts’ law [Fitts 1954] and predicts that com-
mands closer to the top are faster to select. It assumes that the mouse does not
move during the localization of the target. The mouse is thus on the top of the menu
when starting the pointing task.

4) An expertise scalar modulates the components by the number of repetitions with
an item. With practice, performance shifts from being dominated by search (linear)
to decision (logarithmic).

5) Finally, the model includes a scalar “predictability” variable (1: unchanging, 0: con-
stantly changing order) that predicts a detrimental effect of spatial consistency.

The SDP model has also been generalized to long lists (i.e., when a large part of the
list is not visible on the screen) [Cockburn and Gutwin 2009]. The authors showed that
selection time depends on the ability of users to anticipate the location of the target.
When users can anticipate the location of the target, selection time is best modeled by
functions that are logarithmic with respect to the length of the list. When users cannot
anticipate the location of the target, selection time is best modeled by functions that
are linear.

Finally, the SDP model has also been generalized to grid layouts (Square menu)
and circular layouts (Pie menu) [Ahlstrom et al. 2010]. The authors showed that the
pointing component depends on the layout of the menu. Indeed, pointing time linearly
increases with the number of items of circular menus. However, they used Pie menus
with an uncommonly large number of items (more than 36, while Pie or Marking
menus rarely contain more than 8–12 items), and the diameter of the Pie menus was
not constant but increased with the number of items.
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Simulation models. Simulation models are the second class of models. They mainly
focus on the cognitive processes of visual search to explain the total time. We present
three models: EPIC, ACT-R/PM and a computational rational model of menu search.

Executive Process Interactive Control (EPIC) [Kieras and Meyer 2007] consists of
a production-rule cognitive processor and perceptual motor peripherals. Applications
to menu performance encode search strategies as production rules. Their execution
is limited by temporal and capacity limitations posed by the cognitive infrastructure
[Halverson 2008; Hornof and Kieras 1997, 1999]. Four strategies are distinguished: se-
rial search (one menu item processed at a time), parallel search (many items processed
at the same time), random search, and systematic search. The last two are combination
of the others. Data suggested that parallel search with both random and systematic
search well matched observed data. For mouse control, EPIC predicts that there should
be a single aimed mouse movement from the initial position to the target item once
that target item has been located.

ACT-R/PM [Byrne 2001] extends ACT-R [Anderson and Lebiere 1998], which is also a
production rule architecture. ACT-R/PM posits a systematic, top-to-bottom search with
eye fixations on menu items that share features with the target item. Moreover, ACT-R
predicts that the mouse should “trail” the eyes such that once the target item is located,
there is an approximately constant and short distance to the target. This predicts
multiple mouse movements that are correlated with the number of eye movements.

Chen et al. [2015] have recently proposed a model of visual search in linear menus.
It predicts search time and eye movements from assumptions about the user’s task en-
vironment and cognitive limitations. Assumptions are about saccade duration, fixation
duration, and peripheral vision. In contrast with EPIC and ACT-R/PM, this does not
require the modeler to hand-code production rules. The user strategies derive from a
principle of rationality to (1) the structure of interaction, (2) cognitive and perceptual
limits, and (3) the objective to maximize the trade-off between speed and accuracy (e.g.,
utility). The model relies on Q-learning, a model of learning reinforcement.

Toward a unified model of menu performance. Bailly et al. [2014] proposed a model
of menu performance called VSST that unifies the ACT-R and EPIC models. VSST
assumes a serial search component such as ACT-R and a directed search component,
which refines the random search component from EPIC or SDP. Directed search consists
of a direct attempt at moving the eyes on top of the target. At first, such attempts are
random, as users try to guess the location, but with more exposure they become more
accurate. Moreover, this model also proposes a pointing component based on Fitts’
law. It also assumes two starting locations of the cursor: The first at the top of the
menu (such as SDP or EPIC), the other from a constant distance in the vicinity of
the target (such as ACT-R). VSST also captures the change of performance with menu
organization (alphabetic, semantic and random). Finally, this model not only predicts
menu and target selection time but also the gaze distribution (i.e., where users are
looking at).

3.2.3. Discussion. Simulation models (e.g., ACT-R/PM) explain the progression of
search by reference to underlying cognitive processes, such as perception, attention
and memory. Mathematical models (e.g., SDP) expose fewer details about the process
but may be more straightforward to apply than simulation models. These models have
never been empirically compared, and it is not clear which one is the best approach.
However, VSST made an effort to cover phenomena that were not covered by the previ-
ous models. Maybe more important according to the focus of this article, these models
rely on a small number of menu properties: they do not consider the impact of the
semantics or of visual cues such as separators, icons, and the like. Moreover, they
are limited to the novice mode. Considering the expert mode (keyboard and gesture
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shortcuts) as well as the transition between these modes (see Section 3.1) is equally
needed. Finally, these models assume that performance means “Time” and do not con-
sider other performance metrics such as user satisfaction. We argue that the main
reason is that menu properties are not well identified and organized. In other words,
the design space of menu properties is not sufficiently characterized, which is the first
step to elaborate advanced models of menu performance [Bailly et al. 2014]. This is
why we present a taxonomy of menu properties in Section 4.

3.3. Empirical Evaluation

Despite their utility, existing predictive models of menu performance are not mature
enough to avoid the need of empirical evaluations to fully validate a menu technique.
In the following text, we focus on the comparative evaluation of such techniques. How-
ever, it is worth noting that some studies focus on the impact of certain factors on
performance such as menu length or menu structure (see Cockburn and Gutwin [2009]
for more details).

3.3.1. Class of Experiments. Very few field studies have been conducted to compare
menus. One exception is a field study that compared Marking menus and Linear menus
during 29 days using a real application [Kurtenbach et Buxton 1994], but the number
of commands (4) and users (2) were limited. In contrast, many menu techniques have
been compared through controlled environments. Most experiments required around
12 participants for about 1 hour. In the following text, we detail different types of
experiments.

Performance in novice mode. Most linear menus have been evaluated in novice mode
[Ahlström et al. 2005, 2006; Cockburn and Gin 2006; Tsandilas and Schraefel 2007;
Tanvir et al. 2008]: Users already know the location of the target item (which is gener-
ally highlighted), and they must select it as fast and accurately as possible. Users thus
follow a straight path (Section 2.3.3) in order to investigate the performance ceiling
with the novice mode (Section 3.1). In the case of hierarchical menus, parent items
are also highlighted to simulate experienced users searching a command. A trial is
terminated as soon as a participant activates an item (either wrong or correct). The
content of the menu is arbitrary (familiar words). Only a subset of the available items
are tested due to the large total number of items and the conventional 1-hour limita-
tion. This kind of experiment has two major practical advantages. Trials are short and
do not require cognitive efforts as visual cues guide participants to select the target.
The experiment also avoids potential problems related to the familiarity of users with
the menu.

Navigation in novice mode. Few experiments focused on navigation. They simulate
inexperienced users searching a functionality (rather than a command) and thus visit-
ing several submenus before finding the target (roundabout path; Section 2.3.3). This
kind of experiment involves two problems. First, performance highly depends on user
experience, thus introducing a high level of variability between participants.5 Second,
the task is tiring because participants must constantly evaluate the relevance of the
current item according to the target. Two strategies have been proposed to control the
amount of exploration in the hierarchy of items. The first one dynamically displays
the target in the n visited submenu [Appert et al. 2006]: participants then visit n-1
menu distractors before having the opportunity to find the target. The second places N
occurrences of the same item in the menu hierarchy and asks participants to select all

5The quantity of exploration in the menu hierarchy depends on the quality of the organization, the category
titles, as well as user experience and their strategies.
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of them [Bailly et al. 2007]. Some menus were disabled to reduce the total amount of
visited submenus.

Immediate usability. Experimenters generally explain how the technique works be-
fore starting the experiment. In contrast, some experiments investigate initial perfor-
mance. The task then consists of selecting few items without previous explanations
[Francone et al. 2010; Walter et al. 2014]. These experiments generally provide quali-
tative rather than quantitative results.

Performance in expert mode. Several experiments evaluated the performance ceiling
(Section 3.1) of Marking menus in expert mode [Kurtenbach et al. 1993; Balakrisnan
et al. 1998; Zhao and Balakrisnan 2004; Zhao et al. 2006; Kin et al. 2011]. They simulate
expert users’ behavior by only investigating motor control performance (direct path;
Section 2.3.3). Users reproduce a mark that is shown on the screen. This avoids a long
learning phase that would be not compatible with a laboratory study. This class of
experiment is easy to conduct and does not require cognitive efforts for participants.
However, results can be difficult to generalize as many users never switch to the expert
mode or only use it for a very small number of commands [Lane et al. 2005].

Memorization performance. In comparison, a relatively small number of studies fo-
cused on learning and memorization. We distinguish experiments focusing on inten-
tional and implicit learning. Bailly et al. [2008] compared the intentional learning of the
expert mode of several menu techniques. The experiment was divided in two phases.
In the first phase (training phase), the participants could select as many commands
they wanted during 5 minutes, either in novice or expert mode. In the second phase
(testing phase), they were asked to select commands only in expert mode. The depen-
dent variable, recall, was the percentage of items correctly selected in expert mode.
An improvement consists in alternating the training and testing phases several times
[Bau and Mackay 2008; Bailly et al. 2012]. This scheme provides information about the
evolution of learning over time. One possible difficulty of this class of experiment is to
distinguish between motor control error (false execution), recognition error (limitation
of the recognizer/technology) and recall error. To precisely estimating recall error, it is
thus necessary to formerly estimate both motor control and recognition errors.

Experiments focusing on implicit learning let participants choose whether they want
to select commands in novice or expert mode. Users generally start in novice mode.
Then, they continue in expert mode when they are confident enough to save time. If
the experiment is long enough, participants reach their ultimate performance in expert
mode. As participants are not instructed to use the expert mode, it happens that up
to 50% of the participants did not make the effort to learn it [Grossman et al. 2007].
A variation of this design explicitly instructs users about the availability of the expert
mode [Roudaut et al. 2009], but they are free to choose the modality.

3.3.2. Discussion and Guidelines. The previous paragraphs showed that different experi-
mental designs have been proposed to evaluate different aspects of menu performance.
Our goal is not to suggest a universal protocol for menu evaluation (which is probably
impossible due to the inherent complexity of menus and the constraints related to lab-
oratory studies) but to make trade-offs explicit in order to thoroughly understand the
remit of the results. We now summarize the main questions that can help to design a
menu experiment:

1) Who are the target users? We have seen in Section 2 that there are several ways
of using menus and that they are related to user knowledge, user goals, and the
development of user expertise [Cockburn et al. 2014]. Does the experiment focus
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on immediate usability, novice mode, expert mode or the transition from novice to
expert mode?

2) What is the context of use? Most experiments do not measure the “true” cost of
command selection [Dillon et al. 1990] because they do not measure time to access
the menu or to come back to the objects of interest or the cost of errors. In contrast,
some experiments consider the task in which the menu is involved [Appert et al.
2004; McGuffin et al. 2002; Guimbretiere et al. 2005; Cance et al. 2006].

3) Ecological vs. external validity? Field studies provide more ecological validity but
less control. A related aspect is the choice of the frequency of commands. Zip-
fian distribution1 of item frequency has been shown to be realistic [Findlater and
McGrenere 2004] but can introduce an interaction effect with the item position of
gesture assignation.

In this section, we discussed different aspects of menu performance. The objective
was twofold.: First, it motivated the need to characterize the design space of menus
in order to elaborate advanced predictive models of menu performance. Second, it
serves for the better understanding of the role of the menu properties presented in the
following section.

4. MENU PROPERTIES

Menu techniques are complex interaction techniques that can be decomposed in basic
primitives that we call menu properties. A property improves menu techniques accord-
ing to one or more criteria (presented in Section 3.2). In the following Sections, we
present a taxonomy of menu properties. This taxonomy is intended to better under-
stand similarities and differences between menus. Because of the complexity of menu
techniques, this taxonomy is not meant to be a complete review of all existing prop-
erties but aims at providing a comprehensive synthesis of research studies on visual
menu techniques.

4.1. Structure of the Taxonomy

The taxonomy (Table II) organizes properties according to the following three dimen-
sions: Item (Table IV), Menu (Table V), and Menu System (Table VI) for both the novice
and the expert mode. The dimensions follow a hierarchical organization: items are part
of menus, which are part of a menu system. This hierarchical structure makes it pos-
sible to study visual menus at different levels of granularity. For instance, a designer
may wish to improve the efficiency of an existing menu without changing the global
organization of the Menu system or the layout of the Menu because users are already
familiar with it. In contrast, designers creating a new application from the beginning
may want to optimize the entire hierarchy. The Item and the Menu system sections pro-
pose solutions for these two scenarios. In Expert mode, we only retain items because
this mode provides a direct access to items (Section 2.3). We thus present properties fa-
voring the transition from novice (visual menus) to expert usage (hotkeys or gestures).
The analysis of these properties highlights the available alternatives for designers to
improve the performance of menus as well as emphasize less explored dimensions such
as semantics.

4.2. Item

Items are the smallest components leading to the execution of a command. They have
geometrical, graphical and semantic attributes that we now describe.

ACM Computing Surveys, Vol. 49, No. 4, Article 60, Publication date: December 2016.



Visual Menu Techniques 60:19

Table II. The Taxonomy Organizes Menu Properties According to Three Dimensions:
Item, Menu, and Menu System

It distinguishes Novice and Expert mode. As the Expert mode provides a direct
access to commands, it only involves the item dimension. Each dimension is divided
into subdimensions.

Dimension Subdimension
Novice Mode Item Geometry

(first modality) Visual representation
Semantics

Menu Geometry
Temporality
Semantics

Menu System Semantics
Menu depth

Menu breadth

Expert mode Item Modality
(second modality) Semantics

Geometry
Visual representation

Temporality

Fig. 10. (a) Frequency-ordered menus: the more frequently an item is used, the higher its position in
the menu. (b) Folded menus initially present frequent commands, then present the entire list of commands
after a time delay or a click on the folded button. (c) Split menus [Sears and Shneiderman 1994] contain
two parts: a top area containing the most frequent items and a bottom area containing all menu items.
(d) Morphing menus [Cockburn et al. 2007] dynamically increase the size of frequent items.

4.2.1. Item Geometry.
Reducing the distance. According to Fitts’ law [Fitts 1954], reducing the distance of

an item from the top of the menu improves motor control performance. Moreover this
also reduces the time needed for localizing the item, especially for novice users who
tend to perform a “serial inspection of items”6 [Norman 91] from the top of the menu.
Frequency-ordered menus [Lee and Yoon 2004] and Folded menus (Figure 10(a,b))
move the position of the most frequent items automatically to the top of the menu to
reduce this distance. Unfortunately, this does not maintain spatial consistency: the
locations of the items can vary over time, which makes it difficult for users to predict
their location. Split menus [Sears and Shneiderman 1994] avoid this problem by du-
plicating frequent items (Figure 10(c)): their top area only contains the most frequent

6Novice users often perform a serial inspection of items [Norman 1991]. They read items one by one from the
top of the list until they reach the desired item. They can also perform Random inspection and either keep
keeping track of items already inspected (without replacement) or not (without replacement).
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Fig. 11. (a) Semantic menus [Blanch et al. 2004] display all items with the same size in the visual space
(screen). In the motor space related to mouse movements, disabled items are smaller to make their selection
more difficult. (b) Bubbling menus [Tsandillas and Schraefel 2007] dynamically adapt the cursor size to
overlap the closest favorite item (with a blue background) when users perform a drag action. Users can thus
select this favorite item even if the default cursor is not over the item. (c) Force Field menus [Ahlström
2005] attract the cursor in the center of nonhierarchical items to improve accuracy and toward the submenu
when the cursor is over a parent item to make the steering task easier to perform.

items while their bottom area contains all items. This design comes from observations
of menu usage showing that the two or three most frequent items are selected 70% to
90% of the time. It is used in commercial software, such as in the “Font” menu of Mi-
crosoft Office. Lee and Yoon [2004] compared Folder menus as well as Split menus with
traditional linear menus. They showed that Folded menus and Split menus are more
efficient than Linear menus only if frequent items are selected more than, respectively,
90% and 30% of the time. Below 30%, there is no benefit gained by adopting a different
technique than traditional linear menus.

Increasing the size. As stated by Fitts’ law, increasing the size improves motor con-
trol performance. A larger size also improves item localization because this increases
saliency as larger items are likely to attract gaze. Morphing menus [Cockburn et al.
2007] build on this idea by changing the size of the items dynamically depending
on their frequency of use (Figure 10(d)). While changing the geometry of items, this
solution preserves the relative ordering of the items.

Visual vs. motor space geometry. Semantic pointing7 and related techniques [Blanch
et al. 2004; Ahlström 2005; Tsandilas and Schrafel 2007] improve performance by deal-
ing differently in the motor space (mouse movements) and the visual space (graphical
representation on the screen). Semantic menus [Blanch et al. 2004] and Bubbling
menus [Tsandillas et al. 2007] (Figure 11(a,b)) make items easier or more difficult to
select without changing their graphical representation as geometry only changes in
the motor space. In the same spirit, Force Fields menus [Ahlström 2005] improve
accuracy by using force fields that attract the cursor in the center of nonhierarchical
items (i.e., items that do not open submenus (Figure 11(c)).

Another solution consists of making pointing gestures scale-independent: the selec-
tion does not depend on the length of the gesture, which means that the target width
can be seen as infinite. This strategy has been successfully used in Marking menus
[Kurtenbach et al. 1991]. “Impenetrable borders” [Walker and Smelcer 1990] and
the MacIntosh menu bar follow a similar idea for linear menus. They either prevent
the cursor from overshooting the last menu item (first case) or the menu bar (second
case), which lies at the top border of the screen.

4.2.2. Visual Representation.
Conveying information. A major goal of a menu item is to convey information about

the corresponding command, using a textual and/or a visual representation. Menu

7Semantic pointing [Blanch et al. 2004] dynamically changes the control/display ratio of the mouse depending
of the location of the cursor on the screen: The same movement in the motor space (mouse movement) will
move the cursor in a different way depending on the objects under the cursor.
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Fig. 12. (a) Linear menus with colored icons. (b) Transparent menus [Bowes et al. 2003] reduce the
visibility of infrequent commands by increasing transparency. (c) Temporal menus [Lee and Yoon 2004]
display items in two stages: first, only frequent items are displayed, then all items are displayed after a
delay of 170ms. (d) Ephemeral menus [Findlater et al. 2009] work in a similar way but infrequent items
gradually fade in.

items generally include a textual representation on desktop workstations. The choice
of the wording is related to semantics and discussed in Section 4.2.3. In this section, we
focus on the visual representation of the items. For instance, menu items often contain
icons on Microsoft Windows or mobile operating systems. An advantage of using icons
in menu items is that the same icon can also appear in the toolbar, which highlights
the link between these interactors. While icons require less real estate than text, they
may, however, be more difficult to interpret.

Increasing saliency. We already presented Morphing menus [Cockburn et al. 2007]
(Figure 10(d)) that improve directed search by increasing the size of the items. Some
other techniques increase saliency without changing item geometry. Bubbling menus
[Tsandillas and Schraefel 2007] (Figure 11(b)) and Transparent menus [Bowes et al.
2003] (Figure 12(b)), respectively rely on transparency and background colors to im-
pact item saliency. Temporal priority [Lee and Yoon 2004] is another option: Tem-
poral menus [Lee and Yoon 2004] and Ephemeral menus [Findlater et al. 2009]
(Figure 12(c,d)) first display frequent items, then make the other items visible after a
delay. Icons also increase saliency (Figure 12(a)), with the advantage of providing ad-
ditional information [Helander et al. 1997]. Graphical elements such as “separators”
can also be used to attract attention by grouping items visually.

Increasing visual context. Because users need to remain concentrated on their main
task, menus must not obliterate their visual focus. This is why menus are “transient”
[Jackobsen and Hornarek 2007] and displayed “on demand” [Hinckley and Sinclair
1999], contrary to tool palettes and similar interactors. As mentioned earlier, trans-
parency can serve to decrease the saliency of certain items but also to help shar-
ing attention between the menus and the main task of the user [Bowes et al. 2003;
Tapia and Kurtenbach 1995; Harrison and Vicente 1996; Hinckley and Sinclair 1999;
Rubio and Janecek 2002]. However, transparency can make it difficult to read items.
The “Anti-Interference” font [Harrison and Vicente 1996] allows increasing trans-
parency without decreasing text legibility. Alternatively, certain items can be masked
when navigating in the hierarchy of commands [Tapia and Kurtenbach 1995], for in-
stance by displaying only the current menu instead of displaying all parent menus
[Zhao and Balakrishnan 2004].

4.2.3. Semantics. Surprisingly, most studies on menu techniques focus on interaction
but rarely on semantics. Because the names of the categories and the commands they
contains are strongly related, the way they are chosen can strongly impact performance
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Table III. Summary of the Main Properties for the Dimension Item

Dimension Subdimension Properties Menus
Item Geometry Reducing distance Frequency-ordered menus; Folded menus;

Split menus
Increasing size Morphing menus; Marking menus;

Impenetrable borders; Semantic menus;
Bubbling menus;

Visual Conveying information No specific menu
representation Increasing saliency Morphing menus; Bubbling menus;

Transparent menus; Temporal menus;
Ephemeral menus;

Increasing visual context Transparent menus; Anti-Interference
font.

Semantics Choosing relevant name No specific menu
Reducing the length No specific menu

[Helander et al. 1997]. The names (and the length of the names) of the items should
thus be chosen with care by designers.

Choosing relevant names. Choosing command names is challenging because users
often search for functionalities but do not know the exact command names (Section 2).
Command names should thus be comprehensible and reflect the purpose of the corre-
sponding functionalities to facilitate the match between the targeted functionality and
the item.

Reducing items length. Using long names conveys more information but long names
are slower to read and require more screen real estate.

4.3. Menus

Menus organize items in a coherent way. The design of menus raises three main ques-
tions: how to organize items, where to display menus and when to display them? The
two first questions are related to the geometry of the menu while the third one is related
to its temporality (Table III).

4.3.1. Geometry I: Menu Layout.
Linear Layout. Most menus are laid out linearly. Items are organized vertically,

except in menu bars where they are horizontally laid out. The linear layout is space-
efficient because the geometry of items fits well the geometry of text labels (especially
for Western languages) and the geometry of rectangular screens. Moreover, it avoids
unnecessary eye movements during serial inspection as each item is close to the next
one [Ahström et al. 2010; Samp and Decker 2010].

Grid Layout. A grid layout can be used to reduce the mean distance between items
hence pointing time as in Square menus [Ahlstrom et al. 2010] (Figure 13(a)) or
FastTap [Gutwin et al. 2014]. Using a grid layout does not dramatically alter the rec-
tilinear layout of Linear menus [Ahlstrom et al. 2010] but provides more flexibility for
highlighting semantic relationships between items (for instance, related items “Save”
and “Save As” can be located on the same row).

Radial Layout. A radial layout (Pie menus8 [Callahan et al. 1988]; Figure 13(b))
places items in a circular design at an equal radial distance from the center. This
layout ensures constant access time and improves global performance: Callahan et al.
[1988] showed that radial menus were 15% faster than linear menus for eight items. A

8Preliminary versions of the Pie menus appeared in 1969 [Wiseman et al. 69; Forsey 84].
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Fig. 13. (a) Square menus [Ahlstrom et al. 2010] organize items in a matrix. (b) Pie menus [Callahan
et al. 1988] place items in a circular design at an equal radial distance from the center (radial layout).
(c) Flower menus [Bailly et al. 2008] are a variant of Marking menus, which rely on curved gestures to
increase the number of commands.

radial layout exploits spatial memory by associating commands with cardinal orienta-
tions. Orientations can serve to strengthen semantic relations [Soliz and Paley 2003].
For instance, opposite commands, “Open” and “Close” can be placed in symmetrical
locations. Thanks to procedural memory, such relationships help the learning and the
memorization of commands.

Other layouts. Variants of radial layouts have been proposed such as the polygon
layout [Zhao et al. 2006], half pie layout [Hesselman et al. 2009], concentric layout
[Samp and Decker 2010], interverted concentric layout [Bailly et al. 2007; Francone
et al. 2010], and the flower layout [Bailly et al. 2008]. Instead of only relying on orien-
tation, they also use additional dimensions such as relative position, depth, curvature,
and so on (see Section 4.4.3). For instance, in Flower menus (Figure 13(c)), the orien-
tation is mapped to a semantic group of commands, which are differentiated through
curvature. More generally, combining several dimensions favor visual perception by
“making relatively crude judgments of several things simultaneously” [Miller 1956].
This also increases design possibilities for organizing commands in a meaningful way
by visually highlighting associations between related elements.

4.3.2. Geometry II: Menu Positioning. The relative position of the menu from the acti-
vation point (i.e., the cursor position before opening the menu) impacts performance.
Context menus are displayed on the southeast side of the activation point, which makes
them quick to access. However, in hierarchical menus, users must perform a horizontal
movement to reach a cascaded menu. These menus appear on the right side of their
parent item, hence introducing a steering cost [Accot and Zhai 1997]. Two opposite
strategies have been proposed to reduce this cost. They either consist in moving the
menu close to the cursor position (Motion menus [Kobayashi and Igarashi 2003]; Fig-
ure 14(a)) or moving the cursor close to the menu (Jumping menus [Ahlström et al.
2006]; Figure 14(c)). Both solutions involve potential drawbacks. In the first case, the
submenu overlaps the parent menu, which may alter navigation. In the second case,
users may be disoriented by loosing the complete control of the cursor, which “jumps”
from the parent item to the submenu [Tanvir et al. 2008].

A radial layout ensures constant access time for all items because they are cen-
tered around the cursor. This contrasts with linear menus because items on the
top of the menu are usually faster to select. An alternative places the menu at mid
height relatively to the activation point to decrease the average distance for reaching
items (Walker menus [Walker and Smelcer 1990] and AAMUs [Tanvir et al. 2008];
Figure 14(b)).
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Fig. 14. (a) Motion menus [Kobayashi and Igarashi 2003]: an horizontal cursor movement opens/closes
submenus at the position where the horizontal movement occurs. Vertical movements are only used to
highlight the item under the cursor. (b) AAMUs [Tanvir et al. 2008] display submenus at mid-height and
provides an enlarged activation area to make it easier to reach submenus. This area, which is triangular-
shaped, partially overlaps the parent menu. While the cursor is over this area, the submenu remains open.
(c) Jumping menus [Ahlström et al. 2006] warp the cursor to the submenu when the user clicks on its
parent item so that the cursor “jumps” from the item to its submenu.

Opening a menu close to a screen border can be problematic because part of the menu
may lie outside of the screen. Linear menus solve this problem by shifting the menu on
the left side of the activation point when there is not enough space remaining on its right
side (similarly, the menu may appear on the top instead of the bottom of the activation
point). Circular menus can also be shifted, but this can break the correspondence
between the orientations of the items and the gestures the user must produce for
reaching them. This problem is especially critical for hierarchical Marking menus
[Kurtenbach et al. 1993] because their submenus are displayed in the direction of their
parent item. Hence, a two-level Marking menu requires three times the amount of space
it occupies in the vertical and horizontal directions for displaying its submenus. This
makes it difficult to use them on small screens without altering the interaction. Multi-
Stroke menus [Zhao et al. 2004] offer a solution to this problem. They superimpose
submenus instead of placing them on the sides of the parent menu.

4.3.3. Temporality of Menus. This section addresses the question of when menus should
be opened and closed. Menus are usually opened on demand and closed as soon as
a command is activated to not obliterate the screen. However, as explained in the
following text, some subtle differences may impact performance.

Browsing Menus. Menu preview [Rekimoto et al. 2003; Bailly et al. 2007] consists of
automatically opening a submenu when the cursor lies over its parent item for a short
amount of time. This mechanism facilitates visual search in linear menus because users
can quickly explore a set of submenus, without clicking, simply by moving the mouse
over the menu items. Surprisingly, this mechanism has not received much attention
in the menu literature and it is rarely present in circular menus. Only Wave menus
[Bailly et al. 2007] and Wavelet menus [Francone et al. 2010] (Figure 15(a)) offer the
capability to preview circular submenus.

Selecting items in submenus. As mentioned earlier, accessing submenus (hence sub-
menu items) involve a steering cost in linear menu systems. Current menu implemen-
tations attempt to solve this problem through a temporal delay that prevents a menu
to be closed when the user quickly moves the cursor to an opened submenu. This allows
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Fig. 15. (a) Wavelet menus [Francone et al. 2009] provide an inverted concentric layout: Submenus are
in the center, while parent menus are on the outmost rings. Users perform a circular gesture illustrated in
red (dark grey in black and white) with the thumb to preview the different submenus. (b) Traditional menus
using a delay to allow users to perform a diagonal path to access submenu. (c) EMUs [Cockburn and Gin
2006] keep the submenu opened while the cursor does not enter a new hierarchical item.

accessing submenu items by performing an optimal diagonal movement (Figure 15(b)).
This delay, which is platform and application dependent, may be too short for novice
users and too long for expert users according to [Cockburn and Gin 2006]. In order to
avoid using delays, in EMUs (Figure 15(c)), the last opened submenu remains opened
when the cursor moves to another item, provided that this new item does not open
another submenu [Cockburn and Gin 2006]. The “submenu activation area” hence de-
pends on the density of hierarchical items in the current menu. Another alternate
approach (AAMUs [Tanvir et al. 2008], Figure 14(b)) consists in providing an enlarged
activation area making it easier to reach submenus. This area is triangular-shaped
and partially overlaps the parent menu. The submenu is closed when the cursor leaves
this area.

4.3.4. Semantics. When considering the semantics of a menu (in addition to the se-
mantics of individual items; Section 4.2.3), designers should favor the consistency of
item logic and select a relevant menu title.

Making wording consistent. Designers should ensure that the wording is consistent
within a menu to guide users. For instance, all items should either be verbs or nouns.

Choosing a relevant menu title. Categories should guide users and encourage learning
[Norman 1991; Bastien and Scapin 1993; Lee and Raymond 1993]: The title should
reflect the commands in the corresponding submenu while not overlapping with other
submenus.

4.4. Menu System

In this section, we now consider the impact of the breadth and depth of a menu system
from a practical point of view as some techniques may be inherently more or less suited
for a given application or context (applicability factor of Table I).

4.4.1. Semantics. The semantics of a menu system strongly impacts exploration effi-
ciency [Helander et al. 1997]. However, it is difficult to organize commands in a man-
ner that reflects the users’ perception [Tullis 1985]. To define efficient menu structure,
menu designers should identify logical relationships between commands and organize
them into a meaningful hierarchy.

Identifying logical relationships. One user-elicitation approach consists of asking
some users to make semantic similarity comparisons among all the desired commands.
However, this is time consuming as the number of comparisons exponentially increases

ACM Computing Surveys, Vol. 49, No. 4, Article 60, Publication date: December 2016.



60:26 G. Bailly et al.

Table IV. Summary of the Main Properties for the Dimension Menu

Dimension Subdimension Properties Menus
Menu Geometry Layout Linear menus; Square menus; Pie

menus; Marking menus; Polygon menus;
Flower menus Half-Pie menus; Wave
menus; Wavelet menus

Positioning Motion menus; Jumping menus; Pie
menus; Walker menus; AAMUs

Temporality Browsing menus Wave menus; Wavelet menus
Selecting items in submenus EMUs, AAMUs

Semantics Making wording consistent No specific menu
Choosing relevant menu title No specific menu

with the number of commands. Another approach consists of asking some users to sort
the commands into mutually exclusive groups based on their similarity [Tullis 1985].
Hierarchical clustering methods can then provide the logical relationships between
commands that users perceive. However, these relationships are still not sufficient to
design the menu hierarchy (e.g., how many menu levels should be used).

Building the hierarchy of commands. A menu system is characterized by its breadth
(the number of commands in the largest menu in the menu system) and its depth (the
minimum number of menu levels to traverse ensuring that all items can be accessed).
As these two characteristics impact learning and selection performance, many studies
considered the advantages of broad and deep structures and how they should be bal-
anced to obtain an efficient trade-off [Snowberry et al. 1983; Kiger 1984; Landauer and
Nachbar 1985; Snyder et al. 1985; Norman 1991; Jacko and Slavendy 1996; Larson
and Czerwinski 1998; Zaphiris 2002; Zhao et al. 2006]. While there is no consensus on
whether menu structure should be deep or broad, several studies conclude that mini-
mizing the depth increases performance (see Zhao et al. [2006] or Cockburn and Gutwin
[2009] for a detailed analysis of this trade-off). The main reason is that users may have
difficulties to guess what low-level commands fall under each of the subcategories of a
high-level menu.

We focused so far on cognitive considerations, that is, how the menu structure should
reflect user’s perception. However, some menu techniques are not well suited for a given
menu structure because they impose specific constraints on the depth or breadth of the
menu hierarchy.

4.4.2. Menu Depth.
Increasing the menu depth. While, as explained earlier, the menu depth should be

kept small whenever possible, some menu systems require three or more menu levels.
This can be problematic for hierarchical Marking menus because their accuracy may
be insufficient for more than two levels [Kurtenbach et al. 1993]. Moreover, certain
items of these menus must remain empty to guarantee scale independence,9 with the
consequence that more menu levels must be used [Zhao et al. 2004]. Multi-Stroke
menus [Zhao et al. 2004] solve this problem by relying on temporal rather than spatial
composition of marks, meaning that the user performs a series of simple marks instead
of drawing one complex mark. This strategy not only increases precision, but it avoids
ambiguous zigzag marks.9

9In hierarchical Marking menus, some zigzag marks are ambiguous because of scale independence. For
instance, in a three-level Marking menu, the system cannot distinguish between [South; South; East] and
[South; East; East]. Indeed, these two marks will be decomposed in the same way into two components
(delimited by a unique inflexion), independently of their lengths.
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Fig. 16. (a) Zone menus [Zhao et al. 2006], extend menu breadth to 32 items. The user first taps to specify
the menu origin. This action virtually splits the screen into four spatial areas corresponding to a different
breadth-4 marking menu that the user activates in the usual way. (b) Polygon menus work in a similar
way except that the items are the vertices of a N-sided polygon to contain up to 16 items. (c) Flower menus
[Bailly et al. 2008] extend menu breadth to 56 items by combining orientation and four levels of curvature.

Logical groups (also called Within groups) provides another way to structure menu
items. Contrary to hierarchical menus, they operate at a given menu level and do not
increase the depth of the menu system [Lee and Raymond 1993; Bailly et al. 2008].
Logical groups are common in linear menus where they are delimited by a separator
that appears as a thin horizontal line. Marking menus do not provide this feature—
maybe because of their limited number of items—except in Flower menus [Bailly
et al. 2008] where related items are grouped into branches (Figure 16(c)). Logical
groups make visual search more efficient because the users can know whether they are
searching in the right group simply by scanning few items of it.

4.4.3. Menu Breadth.
Increasing the breadth of circular menus. Marking menus can hardly contain more

than eight items in expert mode (12 at the price of degraded performance) [Kurtenbach
1993]. However, applications often have one or several menus containing 12 or more
items [Zhao et al. 2006; Bailly et al. 2008]. This may impose awkward semantic group-
ings of the menu items, hence leading to a hierarchy that does not reflect the user’s
perception [Zhao et al. 2006]. One solution is to combine Marking menus with linear
parts [Kurtenbach 1997] (Figure 19(a)), but not all items can then be selected in expert
mode. Another strategy is to combine orientation with other input dimensions [Nancel
and Beaudouin-Lafon 2008]. The additional dimensions considered so far are:

• Relative position. Zone menus and Polygon menus use the relative position of
strokes from the activation point of the menu to increase the number of commands.
Zone menus can be seen as a combination of four Marking menus, as explained in
Figure 16(a). Polygon menus involve a more complex structure where marks are not
radial (Figure 16(b)) which may negatively impact the learning performance [Bailly
et al. 2008].

• Curvature. Curvature has been used in addition to orientation in Hybrid menus
[Isokoski et al. 2002] and Flower menus [Bailly et al. 2008] (Figure 16(c)). By intro-
ducing four levels of curvature, Flower menus can provide a theoretical maximum of
56 items.

• Distance. DartBoard menus [Kurtenbach et al. 1993; Nancel and Beaudouin-Lafon
2008] combine orientation and distance (Figure 17(a)). By considering four different
distances, they can contain up to 32 items.

• Pressure. Pressure has been used in Donut menus [Lai et al. 2005; Ren et al. 2008]
and Push menus [Huot et al. 2008] (Figure 17(b)). By exploiting three levels of
pressure, users can activate up to 24 items.
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Fig. 17. DartBoard menus in (a) [Kurtenbach 1993], increase menu breadth by combining orientation and
distance. (b) Donut menus [Lai et al. 2005; Ren et al. 2008] combine orientation and two or three levels of
pressure.

Fig. 18. (a) Scrollable menus. Two scroll buttons enable the access to previous or next items. (b) Fisheye
menus [Bederson 2000]. The size of items dynamically changes relatively to their degree of interest (DOI):
items located in the focus area (with a high DOI) are displayed at a readable size, while the size of the
items lying in the context area is inversely proportional to their distance from the focus zone. (c) FishTree
[Lecolinet and Nguyen 2006] extends the Fisheye menus for hierarchical menus.

Increasing the breadth of Linear menus. While linear menus do not suffer from the
same limitations than circular menus, they may not fit on the screen if they contain
too many items (e.g., more than 30 items on a 1,024×768 screen). A scrollbar can then
be used (Figure 18(a)), but this tends to make the interaction slower and cumbersome
[Bederson 2000]. Fisheye views [Furnas 1986] may then be an effective alternative
such as in the Fisheye menus [Bederson 2000] and Fish Tree [Lecolinet and Nguyen
2006] (Figure 18(b,c)) techniques. Additionally, several menu bars can be used as in
the Hotbox [Kurtenbach et al. 1999] (Figure 19(b)).

4.5. Expert Mode

The expert mode lets users activate commands without displaying the menu. The
visual focus of users is not obliterated so that the users can remain concentrated on
their main task. However, the expert mode normally requires more cognitive efforts at
the beginning as it is based on recall rather than recognition (Section 2.2.1). For the
expert mode, designers should consider:

• Which modality to use (hotkeys/gestures).
• How to assign commands to hotkeys or gestures (mapping/semantic).
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Fig. 19. (a) Marking menus with linear parts [Kurtenbach et al. 1997], (b) Hotbox [Kurtenbach et al.
1999]. Several menu bars are displayed in the central zone. Each of the four zones around invokes a different
marking menu, which can be accessed by pressing the mouse. The Hotbox, which can contain up to 1,200
commands, is used in Maya products.

Table V. Summary of the Properties of the Menu System Dimension

Dimension Subdimension Properties Menus
Menu System Semantics Identifying semantic

relationships between
commands

No specific menus

Building a hierarchy No specific menus
Menu Depth Increasing depth Multi-Stroke menus; Polygon menus

Logical grouping Flower menus
Menu Breadth Increasing breadth Zone menus; Polygon menus; Flower

menus; Hybrid menus; Donut menus;
Push menus; DartBboard menus; Donut
menus; Push menus; Scrollable menus;
Fisheye menus; FishTree menus

• How to make the mapping observable (geometry, visual cues, and temporality of the
cues).

4.5.1. Modality. We distinguish keyboard shortcuts (hotkeys) and stroke shortcuts (ges-
tures). Stroke shortcuts have several advantages in comparison with hotkeys. First,
they often offer good memorization performance because gestures are spatial and iconic
[Appert and Zhai 2009]. Then, they rely on the same input device (e.g., the mouse) than
the novice mode. For instance Marking menus [Kurtenbach and Buxton 1991] are
not affected as much as hotkeys when users switch from the novice to the expert mode
(Figure 9) because users do not change of input device. This allows users to physically
rehearse the way an expert would issue a command (rehearsal principle [Kurtenbach
1993]). Indeed, users perform similar gestures in novice and expert mode, only the
visual appearance of the menu changes. So, they learn the expert mode implicitly,
simply by using the menu repeatedly in novice mode. When the gesture is performed
fast enough, the technique is automatically in expert mode. This is possible because
gestures are encoded into muscle memory (also called motor learning), which is a form
of procedural memory that involves consolidating a specific motor task into memory
through repetition.

4.5.2. Semantics: Mapping between Commands and Shortcuts. Designing an efficient map-
ping between commands and their shortcuts can strongly impact performance. Sur-
prisingly, few studies focused on this aspect. In the case of keyboard shortcuts, a
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Fig. 20. (a) Augmented Letters [Roy et al. 2013]: Users draw a unistroke “S” related to the first letter of
the command “Smile”). The unistroke is augmented with a tail to avoid collision. (b) The series of strokes
are composed to form a Chinese glyph [Zhao and Chignell 2007].

straightforward strategy uses the first letter of the command as a hotkey, such as
Ctrl+C for “Copy” or Ctrl+S for “Save.” However, this is only suitable for a small num-
ber of commands because of the name collision problem (or, more precisely, the collision
of their first letters). Different modifiers (e.g., the Alt or Shift keys) or combination of
modifiers can then be used, but this can lead to complex shortcuts that are cumber-
some to perform and uneasy to memorize (e.g., Alt+Shift+Cmd+V for “Paste and apply
style” on Safari on the Mac). Spatial proximity is sometimes used to solve this problem.
An example is the “Copy,” “Cut,” “Paste” trio of related commands. The first letter is
used as a hotkey for “Copy,” but not for “Cut” and “Paste” that rely on keys (X and V)
that are adjacent to the C letter on a Qwerty keyboard. Metaphors are also used as
an additional mean to memorize the mapping in this case because X can be seen as
an iconic view of a pair of scissors. Using alphabetical proximity is another possibility,
as for instance for the “Undo”/“Redo” (Ctrl-Z/Ctrl-Y) on Windows software. However,
none of these solutions makes it possible to solve the name collision problem simply
and efficiently for a large number of commands. Physically augmenting the keyboard
can alleviate this limitation. For instance, the Métamorphe keyboard [Bailly et al.
2013] allows assigning several commands to the same key.

Similar to the traditional hotkey assignation, a gesture can be related to the first
letter of the command [Li et al. 2012; Roy et al. 2013]. The unistroke letter can be
augmented with a tail to avoid collision (similar to the use of additional modifiers for
hotkeys) [Roy et al. 2013], as shown in Figure 20(a). In Zhao and Chignell [2007],
strokes are composed to graphically represent the corresponding Chinese glyph of the
command (Figure 20(b)). Gestures offer more flexibility than hotkeys because they
provide more design possibilities for assigning commands. For instance, a gesture can
be related to the meaning of the command and mimic the physical or conventional effect
of the gesture in the real word (e.g., “Next” can be assigned to a left-to-right stroke).

We believe that optimizing command-hotkey and command-gesture mappings is
a promising direction for future work. Few studies investigated this problem for
menus although this aspect can strongly impact performance. User-defined gestures
[Wobbrock et al. 2009] define an interesting approach that involves presenting “the ef-
fects of actions to participants and elicits the causes (gestures) meant to invoke them.”
This approach is useful for defining an “intuitive” mapping between gestures and com-
mands. However, this approach tends to be limited to small command sets, can hardly
be used for abstract commands, and may make it difficult to maintain a logical or-
ganization. Finding a good balance between analogue and abstract mappings10 is an
open research question that not only concerns menus but also more generally gestural
interaction.

10When the gesture is related to the meaning of the command (mimic the physical or conventional effects
in the real word), the mapping is called analogue [Zhai et al. 2012]. In contrast, abstract mappings use
arbitrary gestures that do not resemble physical effects. Analogue/abstract mapping is more a spectrum
than a dichotomy [Zhai et al. 2012]. Analogue mappings are generally easier to learn but slower to execute.
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Fig. 21. (a) Command-gesture mapping displayed [Appert et al. 2009]. (b) Leaf menus [Roudaut et al.
2009]. (c) Radial-Stroke shortcuts [Bailly et al 2010].

Fig. 22. Command-hotkey mapping displayed on the keyboard. The TDK Keyboard [Block et al. 2010].
Icons are dynamically displayed on the corresponding hotkey.

We presented different strategies for improving the mapping. However, defining
efficient mappings is not sufficient. If users are not aware of the expert mode and not
motivated for using it, they will not switch from the novice to the expert mode. In
practice, Lane et al. [2005] observed that most users, and even highly experimented
users, rarely employ the expert mode. This is related to the “paradox of the active
user” [Carrol and Rosson 1987], which results from a trade-off between efficiency on
long-term and productivity on short-term. Users tend to avoid disrupting their current
task by learning a new shortcut. More precisely, this behavior is an example of a wider
human phenomenon called satisficing [Simon 1987], where people are satisfied to use
suboptimal strategies due to limited cognitive resources: Users have difficulties to
estimate whether learning the expert mode will be a worthwhile investment. In this
context, a first step is to make the expert mode observable by the users to encourage
them to switch to the expert mode.

4.5.3. Geometry.
In menus. Command-hotkey mappings are generally located in menus, on the right

side of item labels. This location has also been used for displaying stroke shortcuts
[Appert and Zhai 2009; Kurtenbach 1993; Bailly et al. 2010; Roudaut et al. 2009], as
shown on Figure 21. However, the results of Grossman et al. [2007] suggest that some
users commonly ignore them. This may be due to the fact that the shortcut is not
displayed until the user has already done most of the work for selecting the command
with the mouse. And at this stage, the users have no incentive to learn the hotkeys
[Malacria et al. 2013].

On the input device. Commands-hotkey mappings can also be displayed on the key-
board such as with the LogicKeyboard [2015]; Optimus Keyboard [Optimus 2016];
Microsoft Adaptive Keyboard [MAK 2010] or TDK [Block et al. 2010]) shown on Fig-
ure 22. However, displaying all shortcuts can be difficult due to the limited number of
keys in comparison with the total number of commands.

Finally, some applications display a subset of the available shortcuts (hotkeys
or gestures) as tooltips of toolbar buttons, or show all of them in a cheat sheet.
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However, tooltips only appear after a delay and cheat sheets are generally not well
integrated in the user task and may be somewhat difficult to access [Malacria et al.
2013].

While several studies have investigated the display location of the shortcuts, we are
not aware of approaches investigating visual representations to highlight the short-
cuts or command-shortcut mappings. We could imagine highlighting the shortcuts of
frequent commands. For instance, the size of the keyboard shortcuts inside item could
depend on how often they are used.

4.5.4. Temporality.
Feedforward. This paragraph addresses the question of when command-shortcut

mappings must be displayed. Usually, this mapping appears once the menu is opened,
for instance just before users select a command using the mouse. In contrast, Expose-
Hotkey [Malacria et al. 2013] open all menus when users press a modifier key (e.g.,
Ctrl) to display frequent hotkey mappings. This solution provides feedforward infor-
mation about hotkeys without requiring pointing in menus. A variant of this technique
[Tak et al. 2013] displays these mappings in a window at the center of the screen when
users press a modifier key, but it does not exploit users’ previous knowledge on com-
mand locations. While these two techniques favor hotkey usage [Malacria et al. 2013;
Tak et al. 2013], they assume that users are inclined to press a modifier to get informed
about the expert mode.

Another strategy consists of modifying the behavior of the menu. For instance, Mark-
ing menus [Kurtenbach and Buxton 1991] use a delay before displaying the novice
mode. This delay deteriorates the novice mode but increases the user’s perception of
future performance gain by using the expert mode. Increasing the delay can thus fa-
vor the transition from novice to expert mode. Grossman et al. [2007] exploited this
idea for linear menus by using an infinite delay so that the novice mode is disabled.
Commands are visible in the menu, but users cannot click on them. Instead, they
must enter the corresponding keyboard shortcut. While this cost-based approach has
been proved efficient, the risk is that users may feel frustrated and stop using the
technique.

Feedback. An alternative is to use feedback (instead of feedforward): the mapping
is presenting after (instead of before) the selection of a command. The feedback can
be visual, as in Grossman et al. [2007], where the hotkey or the mapping remains
displayed after the selection of the command. Visual effects and animations can serve
to better attract the attention of users [Grossman et al. 2007]. In Marking menus
an ideal mark is displayed right after the activation of a command to show the users
which mark should be performed in expert mode [Tapia et al. 1995]. Audio feedback
can also be used. For instance, a vocal synthesizer can enunciate the mapping when the
user activates an item. While more efficient than visual feedback, audio feedback can
be annoying or undesirable in certain situations (e.g., in public areas). Haptic feedback
has also been investigated in the Métamorphe keyboard [Bailly et al. 2013]. Once a
command is activated, the corresponding (hot)key raises under the finger of the user
to attract her attention.

The aforementioned strategies increase the awareness of the technique and help
users to learn the mapping. In contrast, some techniques aim at informing about
potential performance gain (Section 3.1) with the expert mode [Malacria et al. 2013].
Indeed, the perception of performance is a critical factor, which influences the decision
of users of whether to switch from novice to expert mode [Scaar et al. 2011]. For
instance, in Skillometers [Malacria et al. 2013], a comparison of the needed time in
novice and expert modes is displayed after each command selection.
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Table VI. Summary of the Properties of the Dimension Item of the Expert Mode

Dimension Subdimension Properties Menus/Studies
Item Modality Hotkey Linear menus

Gesture Marking menus
Semantics Efficient

command-shortcut
mappings

First letter; Métamorphe keyboard;
Augmented Letters; [Zhai and Chignell
2007].

Geometry Display in menus [Kurtenbach 93]; [Appert et al. 09]; Leaf
menu; Radial-Stroke shortcuts

Display on the
keyboard

logicKeyboard; Optimus Keyboard; TDK

Visual representation Highlihghting the
command-shortcut
mapping

No specific menu or study

Temporality Feedforward ExposeHotkey; [Tak et al. 2013]
Delaying the menu
itself

Marking menus; [Grosman et al. 2007]

Feedback [Grosman et al. 2007]; Marking menus;
[Tapia et al. 1995]; [Bailly et al. 2013].

5. INTERACTIVE WEB SITE

We built an interactive Web site (www.gillesbailly.fr/menua/) illustrating more than 60
menus. This Web site provides abstracts, figures illustrating the menu techniques and
information about their authors and the related publications. It also includes tools for
searching and filtering amongst the set of described menu techniques. A timeline view
highlights the growing number of menu techniques proposed during the last few years.
This tool can help designers to quickly get an overview of existing menus.

6. CONCLUSION AND CHALLENGES

While extensive research has been conducted on menus from more than 40 years, we
are far to fully understand the design of menus. At first glance, a menu can be seen
as simple graphical widget that solves a simple problem: the selection of an element
among N offered by a computer. In fact, a menu is a complex interaction technique that
relies on various different properties. In this article, we formulated menu design as an
optimization problem and we addressed a first challenge, by attempting to characterize
the design space of menus. To achieve this, we first presented a definition of menus
and discussed menu usage to better understand what a menu is and the related impli-
cations. We then focused on menu performance through a list of quality criteria and by
reviewing existing analytical and empirical methods for quality evaluation. We then
proposed a taxonomy of menu properties to structure existing work and highlight their
impact on performance. This analysis should help designing novel menu techniques
and informing application designers about possible design choices.

While this work contributes to the advance of menu design, several challenges remain
unanswered:

Identifying. While our taxonomy aims at identifying and describing menu properties,
it does not cover all of them. Identifying all possible menu properties is a difficult if not
impossible task as new interaction techniques, new devices and new modalities will
undoubtedly be introduced in the future. Covering this large and continuously evolving
design space is by itself a challenge.

Understanding. Another challenge is to precisely evaluate the impact of all these
properties on usability and applicability. Menu techniques are generally evaluated
in one specific context, for a specific task, with specific users. More user studies are
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needed to understand the role of each property on interaction quality. For instance,
there is relatively little knowledge about the role of semantics on menu interaction.
Still, it is not clear how menu item wording, or the way hotkeys are chosen, impact on
performance, navigation, learnability, and the like.

Predicting. Predictive models of menu performance are useful to encapsulate sci-
entific knowledge. While many menu techniques have been designed, few predictive
models of menu performance have been proposed. Moreover, they only cover a subset
of the existing menu properties. From our point of view, establishing efficient models
of performance is the next important challenge to address. However, building a predic-
tive model is a complex work, which first necessitates a deep understanding of menu
properties and their respective impact [Bailly and Oulasvirta 2014]. The present study
is one step in this direction.

Optimizing. The size of the design space of menu techniques is so large that pre-
cisely testing and comparing all of them is not realistic. The development of optimiza-
tion methods able to explore some subsets of the design space in a systematic way
is a promising direction to provide optimal designs. However, predictive models are
a requirement for optimization methods. This probably explains why only a couple of
optimization methods have been proposed for menus [Bailly et al. 2014].

Designing. Technology advances continuously provide new opportunities to create
new menu techniques or to improve existing ones. For instance, multi-touch technolo-
gies enlarged the design space by letting users select items using multiple fingers and
two hands. As mentioned earlier, this will lead to the identification of new properties
in the design space.

Implementing. Implementing menus is a challenging task. As a result, most tech-
niques proposed in the literature have not been completely implemented and/or have
not been made publicly available. This also partly explains why few research techniques
have been released in commercial products. One promising direction is the elaboration
of a toolkit making it possible to create menus more easily, and thus to test various
configurations in order to compare techniques.

Evaluating. Finally, a benchmark of tasks, criteria and techniques is needed to al-
low comparing menu techniques precisely. Evaluation setups tend to vary a lot from
one study to another. This requires a better understanding of menu usage in order
to derive more realistic tasks. As a step in this direction, we developed a tool [Bailly
and Malacria 2013] that inspects the content of all menu systems on MAC OS X to
inform about the consistency of menus between applications. Furthermore, MozillaL-
abs provides logging data that can help learning how users select commands in Fire-
fox (http://blog.mozilla.org/labs/2010/02/menu-item-study/). The elaboration of bench-
marks is a necessary step to increase the quality of menus and the reliability of user
studies.
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R. Dachselt and A. Hübner. 2007. Virtual environments: Three-dimensional menus: A survey and taxonomy.
IEEE Comput. Graphics 31, 1, 53–65.

ACM Computing Surveys, Vol. 49, No. 4, Article 60, Publication date: December 2016.



Visual Menu Techniques 60:37

R. F. Dillon, J. D. Edey, and J. W. Tombaugh. 1990. Measuring the true cost of command selection: tech-
niques and results. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems:
Empowering People (CHI’90). ACM, New York, NY, 19–26.

C. Essert-Villard and A. Capobianco. 2009. Hardborders: A new haptic approach for selection tasks in
3D menus. In Proceedings of the 16th ACM Symposium on Virtual Reality Software and Technology
(VRST’09), Steven N. Spencer (Ed.). ACM, New York, NY, 243–244.

L. Findlater and J. McGrenere. 2004. A comparison of static, adaptive, and adaptable menus. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (CHI’04). ACM, New York, NY,
89–96.

L. Findlater, K. Moffatt, J. McGrenere, and J. Dawson. 2009. Ephemeral adaptation: The use of gradual onset
to improve menu selection performance. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI’09). ACM, New York, NY, 1655–1664.

P. M. Fitts. 1954. The information capacity of the human mote; system in controlling the amplitude of
movement. J. Exp. Psychol. 1954, 47, 381–391.

J. D. Foley, A. Van Dam, S. K. Feiner, and J. F. Hughes. 1990. Computer Graphics: Principles and Practice,
2nd ed. Addison Wesley Longman.

J. D. Foley, V. L. Wallace, and P. Chan. 1984. The human factors of computer graphics interaction techniques.
IEEE Comput. Graphics Appl. 4, 11 (1984), 13–48.

J. Francone, G. Bailly, E. Lecolinet, N. Mandran, and L. Nigay. 2010. Wavelet menus on handheld devices:
Stacking metaphor for novice mode and eyes-free selection for expert mode. In Proceedings of the Inter-
national Conference on Advanced Visual Interfaces (AVI’10). ACM, New York, NY, 173–180.

T. Grossman, P. Dragicevic, and R. Balakrishnan. 2007. Strategies for accelerating on-line learning of hotkeys.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’07). ACM, New
York, NY, 1591–1600.
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