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ABSTRACT

Blind source separation usually obtains limited perfor-
mance on real and polyphonic music signals. To overcome
these limitations, it is common to rely on prior knowledge
under the form of side information as in Informed Source
Separation or on machine learning paradigms applied on
a training database. In the context of source separation
based on factorization models such as the Non-negative
Matrix Factorization, this supervision can be introduced
by learning specific dictionaries. However, due to the
large diversity of musical signals it is not easy to build
sufficiently compact and precise dictionaries that will well
characterize the large array of audio sources. In this
paper, we argue that it is relevant to construct genre-
specific dictionaries. Indeed, we show on a task of
harmonic/percussive source separation that the dictionaries
built on genre-specific training subsets yield better perfor-
mances than cross-genre dictionaries.

1. INTRODUCTION

Source separation is a field of research that seeks to
separate the components of a recorded audio signal. Such
a separation has many applications in music such as up-
mixing [9] (spatialization of the sources) or automatic
transcription [35] (it is easier to work on single sources).
The separation task is difficult due to the complexity and
the variability of the music mixtures.

The large collection of audio signals can be classified
into various musical genres [34]. Genres are labels cre-
ated and used by humans for categorizing and describing
music. They have no strict definitions and boundaries but
particular genres share characteristics typically related to
instrumentation, rhythmic structure, and pitch content of
the music. This resemblance between two pieces of music
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has been used as an information to improve chord tran-
scription [23, 27] or downbeat detection [13] algorithms.
Genre information can be obtained using annotated labels.
When the genre information is not available, it can be
retrieved using automatic genre classification algorithms
[26, 34]. Such classification have never been used to
guide a source separation problem and this may be due
to the lack of annotated databases. The recent availability
of large evaluation databases for source separation that
integrate genre information motivates the development of
such approaches. Furthermore, Most datasets used for
Blind Audio Source Separation (BASS) research are small
in size and they do not allow for a thorough comparison of
the source separation algorithms. Using a larger database
is crucial to benchmark the different algorithms.

In the context of BASS, Non-negative Matrix Factoriza-
tion (NMF) is a widely used method. The goal of NMF is
to approximate a data matrix V ∈ Rn×m

+ as

V ≈ Ṽ =WH (1)

with W ∈ Rn×k
+ , H ∈ Rk×m

+ and where k is the rank
of factorization [21]. In audio signal processing, the input
data is usually a Time-Frequency representation such as
a Short Time Fourier Transform (STFT) or a constant-
Q transform spectrogram. Blind source separation is a
difficult problem and the plain NMF decomposition does
not provide satisfying results. To obtain a satisfying
decomposition, it is necessary to exploit various features
that make each source distinguishable from one another.
Supervised algorithms in the NMF framework exploit
training data or prior information in order to guide the
decomposition process. For example, information from the
scores or from midi signals can be used to initialize the
learning process [7]. The downside of these approaches is
that they require well organized prior information that is
not always available. Another supervised method consists
in performing prior training on specific databases. A
dictionary matrix Wtrain can be learned from database
in order to separate the target instrument [16, 37]. Such
method requires minimum tuning from the user. However,
within different music pieces of an evaluation database, the
same instrument can sound differently depending on the
recording conditions and post processing treatments.



In this paper, we focus on the task of Harmonic Per-
cussive Source Separation (HPSS). HPSS has numerous
applications as a preprocessing step for other audio tasks.
For example the HPSS algorithm [8] can be used as a
preprocessing step to increase the performance for singing
pitch extraction and voice separation [14]. Similarly, beat
tracking [6] and drum transcription algorithms [29] are
more accurate if the harmonic instruments are not part of
the analyzed signal.

We built our algorithm using the method developed
in [20]: an unconstrained NMF decomposes the audio
signal in a sparse orthogonal part that are well suited for
representing the harmonic component, while the percus-
sive part is represented by a regular nonnegative matrix
factorization decomposition. In [19], we have adapted
the algorithm using a trained drum dictionary to improve
the extraction of the percussive instruments. As the user
databases typically cover a wide variety of genres, instru-
mentation may strongly differ from one piece to another. In
order to better manage the variability and to build effective
dictionaries, we propose here to use genre specific training
data.

The main contribution of this article is that we develop
a genre specific method to build NMF drum dictionaries
that gives consistent and robust results on a HPSS task.
The genre specific dictionaries are able to improve the
separation score compared to a universal dictionary trained
from all available data (i.e. a cross-genre dictionary).

The rest of the paper is organized as follows. Section
2 defines the context of our work, Section 3 presents the
proposed algorithm while Section 4 describes the construc-
tion of specific dictionaries. Finally Section 5 details the
results of the HPSS on 65 audio files and we suggest some
conclusions in Section 6.

2. TOWARD GENRE SPECIFIC INFORMATION

2.1 Genre information

Musical genre is one of the most prominent high level mu-
sic descriptors. Electronic Music Distribution has become
more and more popular in recent years and music cata-
logues never stop to increase (the biggest online services
now propose around 30 million tracks). In that context,
associating a genre to a musical piece is crucial to help
users finding what they are looking for. As mentioned in
the introduction, genre information has been used as a cue
to improve some content-based music information retrieval
algorithms. If an explicit definition of musical genres is
not really available [3], musical genre classification can be
performed automatically [24].

Source separation has been used extensively in order to
help the genre classification process [18,30] but, at the best
of our knowledge, the genre information has never been
exploited to guide source separation algorithm.

2.2 Methods for dictionary learning

Audio data is largely redundant as it often contains mul-
tiple correlated versions of the same physical event (note,

drum hits...) [33] hence the idea to exploit this redundancy
to reduce the amount of information necessary for the
representation of a musical signal.

Many rank reduction methods, such as Single Value De-
composition (K-SVD) [1], Vector Quantization (VQ) [10],
Principal Component Analysis (PCA) [15], or Non neg-
ative matrix factorization (NMF) [32] are based on the
principle that our observations can be described by a sparse
subset of atoms taken from a redundant representation.
These methods provide a small subset of relevant templates
that are later used to guide the extraction of a target
instrument.

Building a dictionary using K-SVD has been a suc-
cessful approach in image processing [39]. However this
method does not scale well to process large audio signals
as the computational time is unrealistic. Thus a genre
specific dictionary scenario cannot be considered in this
framework.

VQ has been mainly used for audio compression [10]
and PCA has been used for voice extraction [15]. However
these methods have not been used yet as a pre-processing
step to build a dictionary.

Finally, in the NMF framework, some work has been
done to perform a decomposition with learned dictionaries.
In [12], a dictionary is built using a physical model of the
piano. This method is not adapted to build genre specific
dictionaries as the model cannot easily take into account
the genre information. A second way to build a dictionary
is to directly use the STFT of an instrument signal [37].
This method does not scale well if the training data is
large, thus it is not possible to use it to build genre specific
dictionaries. Finally, another method to build a dictionary
is to compute a NMF decomposition on a large training set
specific to the target source [31]. After the optimization
process of the NMF, theW matrix from this decomposition
is used as a fixed dictionary matrix Wtrain. This method
does not give satisfying results on pitched instruments
(i.e., harmonic instruments) and the dictionary needs to be
adaptated for example using linear filtering on the fixed
templates [16]. Compared to state of the art methods, fixed
dictionaries provide good results for HPSS [19]. However,
the results have a high variance because the dictionaries
are learned on general data that do not take into account
the large variability of drum sounds. A nice property of
the NMF framework is that the rank of the factorization
determines the final size of the dictionary and it can be
chosen small enough to obtain a strong compression of
the original data. The limitations of the current methods
motivated us to build genre specific data using NMF in
order to obtain relevant compact dictionaries.

2.3 Genre information for HPSS

Current state-of-the-art unsupervised methods for HPSS
such as complementary diffusion [28] and constrained
NMF [5] cannot be easily adapted to use genre informa-
tion. We will not discuss these methods in this article.

However supervised methods can be modified to uti-
lize genre information. In [17] the drum source sepa-



ration is done using a Non-Negative Matrix Partial Co-
Factorization (NMPCF). The spectrogram of the signal
and the drum-only data (obtained from prior learning) are
simultaneously decomposed in order to determine com-
mon basis vectors that capture the spectral and temporal
characteristics of the drum sources. The percussive part of
the decomposition is constrained while the harmonic part
is completely unconstrained. As a result, the harmonic part
tends to decompose a lot of information from the signal
and the separation is not satisfactory (i.e., the harmonic
part contains some percussive instruments). A drawback of
this method is that it does not scale when the training data
is large and the computation time is significantly larger
compared to other methods.

By contrast, the approach introduced and detailled
in [19, 20] appears to be a good candidate to test the genre
specific dictionaries: they can be easily integrated to the
algorithm without increasing the computation time.

3. STRUCTURED PROJECTIVE NMF (SPNMF)

3.1 Principle of the SPNMF

Using a similar model as in our preliminary work [20], let
V be the magnitude spectrogram of the input data. The
model is then given by

V ≈ Ṽ = VH + VP , (2)

with VP the spectrogram of the percussive part and VH
the spectrogram of the harmonic part. VH is approximated
by the projective NMF decomposition [38] while VP is
decomposed by NMF components which leads to:

V ≈ Ṽ =WHW
T
HV +WPHP . (3)

The data matrix is approximated by an almost orthogonal
sparse part that codes the harmonic instruments VH =
WHW

T
HV and a non constrained NMF part that codes the

percussive instruments VP = WPHP . As a fully unsu-
pervised SPNMF model does not allow for a satisfying
harmonic/percussive source separation [20], we propose
here to use a fixed genre specific drum dictionary WP in
the percussive part of the SPNMF.

3.2 Algorithm optimization

In order to obtain such a decomposition, we can use a
measure of fit D(x|y) between the data matrix V and the
estimated matrix Ṽ . D(x|y) is a scalar cost function and
in this article, we use the Itakura Saito (IS) divergence. A
discussion about the possible use of other divergences can
be found in [19].

The SPNMF model gives the optimization problem:

min
WH ,WP ,HP≥0

D(V |WHW
T
HV +WPHP ) (4)

A solution to this problem can be obtained by iterative
multiplicative update rules following the same strategy
as in [22, 38]. Using formula from Appendix 7, the
optimization process is given in Algorithm 1, where ⊗ is
the Hadamard product and all division are element-wise
operation.

Input: V ∈ Rm×n
+ and Wtrain ∈ Rm×e

+ Output:
WH ∈ Rm×k

+ and HP ∈ Re×n
+ Initialization;

while i ≤ number of iterations do
HP ← HP ⊗

[∇HP
D(V |Ṽ )]−

[∇HP
D(V |Ṽ )]+

WH ←WH ⊗
[∇WH

D(V |Ṽ )]−

[∇WH
D(V |Ṽ )]+

i = i+ 1
end
XP =WtrainHP and XH =WHW

T
HV

Algorithm 1: SPNMF with a fixed trained drum dictio-
nary matrix.

3.3 Signal reconstruction

The percussive signal xp(t) is synthesized using the mag-
nitude percussive spectrogram XP = WPHP . To recon-
struct the phase of the percussive part, we use a Wiener
filter [25] to create a percussive mask as:

MP =
X2

P

X2
H +X2

P

(5)

To retrieve the percussive signal as:

xp(t) = SFTF−1(MP ⊗X). (6)

Where X is the complex spectrogram of the mixture. We
use a similar procedure for the harmonic part.

4. CONSTRUCTION OF THE DICTIONARY

In this section we detail the building process of the drum
dictionary. We present in Section 4.1 tests conducted on
the SiSEC 2010 database [2] in order to find the optimal
size to build the genre specific dictionaries. In Section
4.2 we describe the training and the evaluation database.
Finally, in Section 4.3, we detail the protocol to build the
genre specific dictionaries.

4.1 Optimal size for the dictionary

The NMF model is given by (1). If V is the power
spectrum of a drum signal, The matrix W is a dictionary
or a set of patterns that codes the frequency information of
the drum. The first step to build a NMF drum dictionary is
to select the rank of factorization. In order to avoid over-
fitting, the algorithm is optimized using databases different
from the database used for evaluation, described in Section
4.2.

We run the optimization tests on the public SiSec
database [2]. The database is composed of four poly-
phonic real-world music excerpts and each music signal
contains percussive, harmonic instruments and vocals. The
duration of the recordings is ranging from 14 to 24 s. In
the context of HPSS, following the same protocol as in [5],
we do not consider the vocal part and we build the mixture
signals from the percussive and harmonic instruments only.
The signals are sampled at 44.1 kHz. We compute the
STFT with a 2048 sample long Hann window with a 50%



overlap. Furthermore, the rank of factorization of the
harmonic part of the SPNMF algorithm is set to k = 100,
as in [19].

A fixed drum dictionary is built using the database
ENST-Drums [11]. For this, we concatenate 30 files where
the drummer is playing a drum phrase that result in an
excerpt of around 10 min duration. We then compute an
NMF decomposition with different ranks of factorization
(k = 12, k = 50, k = 100, k = 200, k = 300, k = 500,
k = 1000 and k = 2000) on the drum signal alone to
obtain 8 drum dictionaries.

These dictionaries are then used to perform a HPSS on
the four songs of the SiSEC database using the SPNMF
algorithm (see Algorithm 1). The results are compared by
means of the Signal-to-Distortion Ratio (SDR), the Signal-
to-Interference Ratio (SIR) and the Signal-to-Artifact Ra-
tio (SAR) of each of the separated sources using the BSS
Eval toolbox provided in [36].

k=12 k=50 k=100 k=200 k=300 k=500 k=1000 k=2000
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Figure 1: Influence of k on the S(D/I/A)R on the SiSEC
database.

The results in Figure 1 show that the optimal value
for the SDR and SIR is reached for k = 100, then the
SDR decreases for k > 200. For k > 500 the harmonic
signal provided by the algorithm contains most of the
original signal therefore the SAR is very high but the
decomposition quality is poor. For the rest of the article,
the size of the drum dictionaries will be k = 100.

4.2 Training and evaluation database

The evaluation tests are conducted on the Medley-dB
database [4] composed of polyphonic real-world music
excerpts. It consists in 122 music signals and 85 of them
contain percussive instruments, harmonic instruments and
vocals. The signals that do not contain a percussive part
are excluded from evaluation. The genres are distributed
as follows: Classical (8 songs), Singer/Songwriter (17
songs), Pop (10 songs), Rock (20 songs), Jazz (11 songs),
Electronic/Fusion (13 songs) and World/Folk (6 songs). It
is important to note that, because the notion of genre is
quite subjective (see Section 2), the Medley-dB database
uses general genre labels that cannot be considered to be
precise. There are many instances where a song could
have fallen in multiple genres, and the choices were made
so that each genre would be as acoustically homogeneous
as possible. Moreover, as we are only working with the

Genre Artist Song
Classical JoelHelander Definition

MatthewEntwistle AnEveningWithOliver
MusicDelta Beethoven

Electronic/Fusion EthanHein 1930sSynthAndUprightBass
TablaBreakbeatScience Animoog
TablaBreakbeatScience Scorpio

Jazz CroqueMadame Oil
MusicDelta BebopJazz
MusicDelta ModalJazz

Pop DreamersOfTheGhetto HeavyLove
NightPanther Fire
StrandOfOaks Spacestation

Rock BigTroubles Phantom
Meaxic TakeAStep
PurlingHiss Lolita

Singer/Songwriter AimeeNorwich Child
ClaraBerryAndWooldog Boys
InvisibleFamiliars DisturbingWildlife

World/Folk AimeeNorwich Flying
KarimDouaidy Hopscotch
MusicDelta ChineseYaoZu

Non specific JoelHelander Definition
TablaBreakbeatScience Animoog
MusicDelta BebopJazz
DreamersOfTheGhetto HeavyLove
BigTroubles Phantom
AimeeNorwich Flying
MusicDelta ChineseYaoZu

Table 1: Song selected for the training database.

instrumental part of the song (the vocals are omitted), the
Pop label (for example) is similar to the Singer/Songwriter.
We separate the database into training and evaluation files,
as detailed in the next section.

4.3 Genre specific dictionaries

Seven genre-specific drum dictionaries are built using 3
songs of each genre. In addition, a cross-genre drum
dictionary is built using half of one song of each genre.
Finally, a dictionary is built using the 10 min excerpt
of pure drum signals from the ENST-Drums database
described in Section 4.1. The Medley-dB files selected for
training are given in Table 1 and excluded from evaluation.

With the results from Section 4.1 the dictionaries are
built as follows: for every genre specific subset of the
training database, we perform a NMF on the drum signals
with k = 100. The resulting W matrices of the NMF are
then used in the SPNMF algorithm as the WP matrix (see
Algorithm 1).

5. RESULTS

In this section, we present the results of the SPNMF with
the genre specific dictionaries on the evaluation database
from Medley-dB.

5.1 Comparison of the dictionaries

We perform a HPSS on the audio files using the SPNMF
algorithm with the 9 dictionaries built in Section 4.3. The
results on each song are then sorted by genres and the
average results are displayed using box-plots. Each box-
plot is made up of a central line indicating the median of



the data, upper and lower box edges indicating the 1st and
3rd quartiles while the whiskers indicate the minimum and
maximum values.

Figures 2, 3 and 4 show the SDR, SAR and SIR results
for all the dictionaries on the Pop subset, giving an overall
idea of the performance of the dictionaries inside a specific
sub-database. The Pop dictionary leads to the highest SDR
and SIR and the non specific dictionaries are not perform-
ing as well. On this sub-database, the genre specific data
gives relevant information to the algorithm. As stated in
Section 4.2, some genres are similar to others, explaining
why the Rock and the Singer dictionaries are also providing
good results. An interesting result is that compared to the
non specific dictionaries, the Pop dictionary has a lower
variance. Genre information allows for a higher robustness
to the variety of the songs within the same genre. Samples
of the audio results can be found on the website 1 .

Figure 2: Percussive (left bar)/Harmonic (right bar) SDR
results on the Pop sub-database using the SPNMF with

the 9 dictionaries.

Figure 3: Percussive (left bar)/Harmonic (right bar) SIR
results on the Pop sub-database using the SPNMF with

the 9 dictionaries.

On Table 2, we display the mean separation score for all
the genre specific dictionaries compared to the non specific
dictionary. The dictionary built on the ENST-drums is
giving results very similar to the universal dictionary built
on the Medley-dB database. For the sake of concision
we only display the results using the universal dictionary
from Medley-dB. On the database Singer/Songwriter, Pop,
Rock, Jazz and World/Folk, the genre specific dictionaries

1 https://goo.gl/4X2jk5

Figure 4: Percussive (left bar)/Harmonic (right bar) SAR
results on the Pop sub-database using the SPNMF with

the 9 dictionaries.

outperform the universal dictionary on the harmonic and
percussive separation.

5.2 Discussion

The cross-genre dictionary as well as the ENST-drum
dictionary are outperformed by the genre specific dic-
tionaries. The information from the music of the same
genre is not altered by the NMF compression and provides
drum templates closer to the target drum. The databases
Classical and Electronic/Fusion are composed of songs
where the drum is only playing for a few moments. Sim-
ilarly on some songs of the Electronic/Fusion database,
the electronic drum reproduces the same pattern during
the whole song making the drum part very redundant.
As a result, in both cases the drum dictionary does not
contain a sufficient amount of information to outperform
the universal dictionary. Because of these two factors, the
genre specific dictionaries are not performing correctly.

It can be noticed that overall the harmonic separation is
giving much better results than the percussive extraction.
The fixed dictionaries are creating artefact as the percus-
sive templates do not correspond exactly to the target drum
signal. A possible way to alleviate this problem would
be to adapt the dictionaries but this would require the use
of hyper parameters and that is not the philosophy of this
work [20].

6. CONCLUSION

Using genre specific information in order to build more
relevant drum dictionaries is a powerful approach to im-
prove the HPSS. The dictionaries still have an imprint of
the genre after the NMF decomposition and the additional
information is properly used by the SPNMF to improve
the source separation quality. This is a first step in order to
produce dictionaries capable of separating a wide variety
of audio signal.

Future work will be dedicated into building a blind
method to select the genre specific dictionary in order to
perform the same technique on database where the genre
information is not available.



Genre Classical Electronic/Fusion Jazz Pop Rock Singer/Songwriter World/Folk
Percussive separation
Genre specific (dB)

SDR -1.6 -0.6 0.4 2.5 -0.2 0.6 0.4
SIR 8.2 15.2 9.6 12.3 19.8 11.5 6.1
SAR 5.9 0.3 2.1 3.4 0.3 4.5 16.3

Non specific (dB)
SDR -0.0 -0.3 -0.7 2.0 -2.2 -0.0 -3.6
SIR 11.3 17.0 9.6 12.6 18.3 13.0 2.8
SAR 8.1 0.4 0.9 2.7 2.3 1.8 12.1

Harmonic Separation
Genre specific (dB)

SDR 7.5 1.6 13.0 5.1 2.1 7.2 4.9
SIR 10.6 1.8 13.3 5.0 2.2 11.5 13.5
SAR 18.2 23.5 28.5 24.5 36.0 28.5 22.7

Non specific (dB)
SDR 6.0 1.3 12.7 4.8 1.9 7.5 4.6
SIR 7.1 1.4 12.8 4.9 2.9 7.5 13.3
SAR 27.2 27.7 29.9 26.2 34.3 31.9 21.6

Table 2: Average SDR, SIR and SAR results on the Medley-dB database.

7. APPENDIX: SPNMF WITH THE IS
DIVERGENCE

The Itakura Saito divergence gives us the problem,

min
WH ,WP ,HP≥0

V

Ṽ
− log(V

Ṽ
)− 1.

The gradient wrt WH gives

[∇WH
D(V |Ṽ )]−i,j = (ZV TWH)i,j + (V ZTWH)i,j ,

with Zi,j = ( V
WHWT

HV+WPHP
)i,j . The positive part of the

gradient is

[∇WH
D(V |Ṽ )]+i,j = (φV TWH)i,j + (V φTWH)i,j ,

with
φi,j = (

I

WHWT
HV +WPHP

)i,j .

and I ∈ Rf×t;∀i, j Ii,j = 1.
Similarly, the gradient wrt HP gives

[∇HP
D(V |Ṽ )]− =WT

P V

and

[∇HP
D(V |Ṽ )]+ = 2WT

P WHW
T
HV +WT

P WPHP .
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