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Abstract Designing software architectures and optimising them based on
extra-functional properties (EFPs) require to identify appropriate design de-
cisions and to apply them on valid architectural elements. Software design-
ers have to check whether the resulting architecture fulfils the requirements
and how it positively improves (possibly conflicting) EFPs. In practice, they
apply well-known solutions such as design patterns manually. This is time-
consuming, error-prone and possibly sub-optimal. Well-established approaches
automate the search of the design space for an optimal solution. They are
based Model Driven Engineering techniques that formalized design decisions
as model transformations and architectural elements as components. Using
multi-objective optimizations techniques, they explore the design space by
randomly selecting a set of components and applying to them variation oper-
ators that include a fixed set of predefined design decisions.

In this work, we claim that the design space exploration requires to rea-
son on both architectural components as well as model transformations. More
specifically, we focus on possible instantiations of model transformations ma-
terialized as the application of model transformation alternatives on a set
of architectural components. This approach was prototyped in RAMSES, a
model transformation and code generation framework. Experimental results
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show the capability of our approach (i) to combine evolutionary algorithms
and model transformation techniques to explore efficiently a set of architec-
tural alternatives with conflicting EFPs, (ii) to instantiate, and select trans-
formation instances that generate architectures satisfying stringent structural
constraints, (iii) to explore design spaces by chaining more than one trans-
formation. In particular, we evaluated our approach on EFPs, architectures,
and design alternatives inspired from the railway industry by chaining model
transformations dedicated to implement safety design patterns and software
components allocation on a multi-processor hardware platform.

Keywords Component-based software engineering · Model transformations
composition · Design space exploration · Rule-based transformation lan-
guages · AADL models · Extra-Functional Properties · Multiple Objectives
Evolutionary Algorithms · NSGA-II · SAT solvers · Linear Programming

1 Introduction

In the domain of real-time embedded systems, models are used for early val-
idation of extra functional properties (EFPs) such as its timing performance,
reliability, power consumption, etc. These models are often built as component-
based architectures that provide views on the system. In this context, model
transformations play a very important role: a model transformation is a soft-
ware artefact that specifies a set of actions to generate a target model from a
source model. Being executable, these model transformations become reusable
solutions to well-defined problems, just like design patterns. Moreover, model
transformation alternatives may bring different valid solutions to a given prob-
lem and become degrees of freedom in the software architecture design. Since
EFPs often conflict with each other (i.e. improving one EFP requires to de-
grade other EFPs), architectural design usually requires to consider a multi-
objective optimization problem with a very large number of potential solutions.
As a consequence, producing these solutions with model transformations would
require to write many model transformation alternatives, which is impractical.
Instead, we have to automate the production of architectural alternatives, and
we propose to do so by composition of a small set of transformation alterna-
tives. Indeed, model transformations composition is an interesting technique
in our context since it consists in producing new model transformations from
a set of existing transformations.

In this paper, we tackle the problem resulting from remarks mentioned
above: how to compose model transformation alternatives to explore a design
space made up of architectural solutions with conflicting EFPs? From our point
of view, the application of model transformations to a given set of architec-
ture elements provides the most appropriate expression of degrees of freedom
when it comes to design space exploration: (i) the expressivity of model trans-
formation languages help to precisely specify design alternatives, and (ii) the
reification of design alternatives with model transformation languages helps to
constrain their application in order to reduce the design space by eliminating
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incorrect architecture alternatives. This contrasts with existing approaches in
which degrees of freedom are extracted from an input architecture solely, and
translated into the data structure of an optimization technique: in these ap-
proaches, design alternatives are usually under-specified as they depend on the
optimization technique and not on a precisely defined model transformation.
However, design space exploration based on model transformation alternatives
raises difficult issues. Firstly, it is necessary to identify the model transforma-
tion alternatives that can be applied to a given set of architecture elements.
Then, we have to select which alternative should be applied to each set of
architecture elements, while making sure the resulting composite transforma-
tions produce correct architectures. A second problem consists to evaluate the
impact of composite model transformations on EFPs. This impact is often
difficult to estimate before executing the transformation and analysing the
resulting architecture. Thirdly, it is important to note that the design space
grows rapidly with the number of transformation alternatives and architecture
elements. Fourthly, for reuse and maintenance reasons, model transformations
are often structured as chains. However, optimising EFPs over a chain of model
transformations induces difficult issues. Indeed, the optimisation problem ap-
plied to a given link depends on a variable set of architecture elements resulting
from the optimisation of the previous link.

To tackle these problems, we propose an approach that automates the com-
position of model transformation alternatives using Evolutionary Algorithms
(EA): such optimisation algorithms enable to explore efficiently large design
spaces. This approach was prototyped in RAMSES, and experimental results
provided in this paper show the capability of this approach (i) to find near-
optimal solutions in a reasonable amount of time, (ii) to limit the combinatorial
explosion by excluding a priori transformation compositions producing incor-
rect architectures, (iii) to explore design spaces by chaining more than one
transformation. In addition, architectures evaluation is performed on models
produced by these transformations, separating clearly architecture evaluation
from its optimisation. This paves the way for reusing architecture evaluation
techniques developed separately from the architecture exploration engine.

The remaining of this paper is organised as follows: section 2 gives a precise
definition of the problems we address in this paper. In section 3, we present
a motivating example that illustrates these problems. An overview of the ap-
proach we propose to tackle these problems is given in section 4. Sections 5
and 6 explain our technical contributions in order to combine efficiently EAs
and model transformations. In section 7, we present how these contributions
were prototyped in RAMSES, the component framework we also used to val-
idate our approach. The corresponding results are provided in section 8. Fi-
nally, related works are discussed in section 9 and we give our conclusions in
section 10.



4 Smail Rahmoun et al.

2 Objectives and Problem Statement

Several research works [2] propose automated approaches guided by model
transformations to explore the design space for optimized solutions. Among
these approaches, some of them address the issue of multi-objectives optimiza-
tion of component architectures with conflicting extra functional properties
(EFPs) [1,16]. In these approaches, components selection, components config-
uration or model transformations are considered as heuristic operators used to
explore the design space. From our point of view, such approaches suffer from
several drawbacks. We claim that the application of model transformations to
a given set of components provides the most appropriate degree of freedom
when it comes to design space exploration. To the best of our knowledge, ar-
chitecture optimization problems have always been studied independently of
model transformation techniques. As opposed to existing works, we believe
that studying architecture optimizations together with model transformations
brings valuable advantages as well as new challenges. In the next subsection,
we describe the objectives of our approach with regards to the limitations of
existing approaches.

2.1 Optimisation approach on model transformations : objectives

Improving the exploration of the design space. In an approach such
as PerOpteryx [16], model transformations are used as heuristic operators to
explore the design space. For instance, PerOpteryx produces new architec-
tural solutions by applying a set of model transformations to the previous
architectural solutions, each iteration trying to improve EFPs. However, the
previous solutions may not match the model transformation preconditions or
may produce incorrect solutions. The validation of preconditions is checked
dynamically, and the correctness of the produced architecture is made a pos-
teriori, i.e. after the application of a transformation. Hence, the exploration
becomes even more time-consuming. Firstly, it takes time to evaluate and re-
ject solutions that are a priori invalid. Secondly, the design space is enlarged
by a significant number of invalid solutions.

Designing a generic exploration engine based on model transfor-
mations. In existing approaches, model transformations are embedded in the
exploration engine as heuristic operators for instance. Any new or adapted
model transformation designed in a model transformation language has to be
implemented in the exploration engine as a specific operator. This translation
can be tedious and error-prone. In our approach, we aim at reusing the archi-
tecture exploration engine for different model transformations. An architecture
exploration engine based on model transformations should take as inputs a set
of model transformation alternatives, and a source model. From these inputs,
the exploration engine must produce model transformations that generate the
best architectures, without modification of the engine source code.
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Separation between exploration engine and evaluation tools. In
existing approaches, architecture evaluation methods are also embedded in
the exploration engine. In our approach, we aim at reusing or separately de-
veloping the evaluation methods and the exploration engine. This results from
a clear separation between (i) the architecture exploration engine, based on
model transformation alternatives, and (ii) the architecture evaluation, based
on models produced by these transformations. Of course, evaluation techniques
and transformations are coupled: the evaluation is based on analysis of models
produced by the transformations. However, they can be developed separately
and existing evaluation tools, when existing, can be reused.

Optimisation of chained model transformations. Optimizing a chain
of model transformations is a difficult problem. It cannot be reduced to chain-
ing the optimisation method on individual model transformations. Firstly, an
optimization step produces an a priori unknown number of architectural com-
ponents for the next optimization step. Secondly, the impact of a design de-
cision taken in each step can only be analysed on solutions that contain all
these decisions (i.e. evaluation of EFPs on intermediate models is not possi-
ble). In our approach, we aim at optimising a chain of model transformations
by iterating the exploration methods over the different links of the chain and
evaluating only the final architectural model.

To the best of our knowledge, these objectives are not fulfilled in existing
architecture optimization methods. The main reason is that architecture op-
timizations are usually studied in isolation of model transformations. In next
subsection, we present the challenges that have to be faced when designing
architecture optimization techniques based on model transformations.

2.2 Architecture optimisation based on model transformations: problems

When combining optimization and model transformations techniques, the first
problem is to identify the variables (also called degrees of freedom) of the
optimization problem from a set of model transformation alternatives:

Problem 1. How to extract a representation of model transformation alter-
natives, and map this representation into an optimization method?

In addition, architecture optimizations are known to require the explo-
ration of an important number of design alternatives. To reduce this combi-
natorial explosion problem, we must ensure that the optimization framework
only explores correct architectures. In this work, an architecture is considered
to be correct if it respects a set of predefined structural constraints (potentially
expressed using dedicated languages such as OCL [21]). Since architectures are
produced by executing composite model transformations, we have to answer
to the following problem:

Problem 2. How to ensure, possibly before executing it, that a composite
model transformation will produce an architecture respecting a set of predefined
structural constraints?
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In an architecture optimisation problem, the objective is to produce and
select the best architectures with respect to a set of EFPs. When candidate
architectures are produced by composite transformations, solving the optimi-
sation problem boils to select the transformation having the best impact on
EFPs. However, this impact is often difficult to compute a priori, and it is even
more difficult to compute when dealing with composite model transformations
produced automatically.

Problem 3. How to evaluate composite transformations with respect to their
impact of EFPs?

In order to ease their maintenance and improve their reusability, model
transformations are often structured as model transformation chains [10]. How-
ever, most of the time, the intermediate architecture produced by a link of the
chain does not contain all the necessary data to evaluate EFPs. In this case,
architectures exploration cannot be done with isolated model transformations,
but must consider chains of model transformation alternatives.

Problem 4. How to explore a bi-dimensional design space, made up of trans-
formation chains with transformation alternatives for each link of the chain?

In the next section, we present a motivating example which illustrates the
problems identified above.

3 Motivating example

The motivating example we present in this section is based on the definition
of AADL1 models [12], AADL-to-AADL model transformations, and EFPs
analysis techniques.

3.1 AADL models

AADL is a standardized architecture description language that aims at sup-
porting the design, analysis and integration of real-time embedded systems [12].
An AADL system is described as an assembly of software components (e.g.
process, thread, data, subprogram) and hardware components (e.g. processor,
memory, bus, device). Interfaces of components are described with predefined
port types (e.g. data, event, or event data ports), or component accesses (e.g.
data or subprogram accesses for software components, bus or memory ac-
cesses for hardware components). The internal structure of a component is
described by a set of connected subcomponents: connections among interfaces
of subcomponents (or between interfaces of a subcomponent and its enclosing
component) define communication channels between components. Standard-
ized or user-defined properties decorate AADL models to precise the charac-
teristics of the component-based architecture. The next paragraphs detail the
constituents of the hardware and software models we consider.

1 Architecture Analysis and Design Language
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The hardware model consists of a set of processors H ={h1, h2, ..., hNH}
connected through communication buses B ={β1, β2,..., βNβ}. Processors run
tasks scheduled with a preemptive fixed-priority scheduling, and communica-
tions on a bus are scheduled with a non-preemptive, priority based, policy.
Figure 1 (a) gives an illustration of a simple hardware model using the AADL
graphical notation. This model is made up of four processors (h1, h2, h3 and
h4) and a bus (β1) which connects these processors.
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Fig. 1: (a) hardware and (b) software AADL models

The software model consists of a set of process components P ={ρ1,
ρ2,..., ρNρ}, and a set of threads T ={τ1, τ2,..., τNτ}. Each thread τi is acti-
vated periodically with a period ϕτi and is characterized by a fixed priority
πτi . Proc(τi) refers to the process to which the thread τi belongs. In addition,
communication between threads can be established with messages. M ={µ1,
µ2,..., µNµ} is the set of messages exchanged in the software model. In turn,
a message µi is defined by an activation period ϕµi and a fixed priority πµi .
Threads and messages are, respectively, characterized by a vector of worst-
case execution times (WCETs) ωτi ={ωτi,h1

, ωτi,h2
,..., ωτi,hNc} and worst-case

transmission times (WCTTs) ωµi ={ωµi,β1 , ωµi,β2 ,..., ωµi,βNβ}, where ωτi,hNh
and ωµi,βNβ are respectively the WCET of τi on processor hNh and the WCTT
of µi on bus βNβ . Communicating threads are structured in one or more paths
that represent the end-to-end executions of the system.

Definition 1 A directed path Γτi,τj from the thread τi to the thread τj is a
sequence of threads and messages Γτi,τj = [τi, µi, τi+1, µi+1..., µj−1, τj ].

Γ ={Γ1, Γ2,..., ΓNΓ } denotes the set of system paths. Figure 1 (b) gives
an illustration of a simple software model using the AADL graphical nota-
tion. This model is made up of two processes ρ1 and ρ2, each containing
one thread, respectively τ1 and τ2. A message µ1 is exchanged between these
threads through AADL event data ports. This model thus exhibits a single
system path Γ1 = [τ1, µ1, τ2].

In the next subsection, we describe the model transformation alternatives
we consider to improve EFPs of such architectures.
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3.2 AADL-to-AADL model transformations

Model transformations described in this subsection implement classical design
decision in critical embedded systems: the replication of software components,
and their allocation onto hardware components.

3.2.1 Software components replication

We consider two model transformations for software components replication,
namely: Two-Out-Of-Three (2oo3) and Twice-Two-Out-Of-Two (2*2oo2).
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Fig. 2: Application of replication model transformations

When applying the 2oo3 transformation, each process is replicated twice
(the result is of three replicas: the process plus its two replicas), and then all
these processes are operating in parallel. Communications between processes
are also replicated such that each process and each of its replicas communicates
with successor processes and all of their replicas. Figure 2 (b) illustrates the
application of the 2oo3 pattern on two communicating processes: ρ1 and ρ2.
ρ

′

1 (respectively ρ
′

2) and ρ
′′

1 (resp. ρ
′′

2 ) are replicas of process ρ1 (resp. ρ2). As
a result of using 2oo3 pattern, the system is considered as working if at least
two of the three replicas produce the same result. To check this, a voter thread
is added in ρ2, ρ

′

2, and ρ
′′

2 : the voter reads the three input data received and
detects/masks the occurrence of faults.

When applying the 2*2oo2 transformation, each process is replicated
three times (i.e. four replicas). Figure 2 (c) illustrates the application of the
2*2oo2 pattern, where ρ

′′′

1 and ρ
′′′

2 are respectively the third replicas of pro-
cess ρ1 and ρ2. In 2*2oo2, process replicas are organized into two couples
Master=(ρ1,ρ

′

1,ρ2,ρ
′

2) and Slave=(ρ
′′

1 , ρ
′′′

1 ,ρ
′′

2 , ρ
′′′

2 ), and communications among
processes of each couple. In addition, a voter thread is added in processes ρ2,
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ρ
′

2, ρ
′′

2 , and ρ
′′′

2 . When the system is working, the four processes operate in
parallel but one couple only produces data towards actuators (this couple is
called master). The second couple operates but its data are not sent to ac-
tuators (this couple is called slave). If a voter detects a fault, it switches the
role of couples: the master becomes slave and vice/versa. The system is thus
operating normally as long as both processes in the master or in the slave work
normally.

3.2.2 Software components allocation

Software components allocation consists in mapping components of the
software model onto components of the hardware model: each process must
be assigned one processor to execute its threads, and each message between
threads on different processors must be assigned one bus to be transmitted.

!"#$%&'()**+",)*'-.*/.*01

231

241

251

261

731

831

931

841

941

231

241

251

261

731

831

931

841

941

!&&)"%,)*1

:)/+&1;<%*=>)<?%,)*1

!"#$%&'@<)"+==)<'-.*/.*01

Fig. 3: Example of allocations of software components

Figure 3 illustrates a very simple transformation implementing the alloca-
tion of software components on hardware components. On the left part of this
figure, the source AADL model is made up of two process components (ρ1, ρ2)
and two processor components (h1, h2). In this model, software components
are not yet allocated to hardware components. On the right part of the figure,
the target AADL model of the transformation shows the allocation of processes
on processors (using the Actual Processor Binding property of AADL), and
the allocation of messages on buses (using the Actual Connection Binding

property of AADL). Once the allocation of software components on hardware
components is performed, several EFPs can be evaluated as explained in next
subsection.

3.3 EFP analysis

In this subsection, we describe the analysis methods we use in this paper
to evaluate two important EFPs of critical embedded systems: end-to-end
response time and reliability.
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3.3.1 End-to-end response time analysis

For a given path (see definition 1), end-to-end response time represents the
highest amount of time required for an information to transit from the source of
the path, until the destination of the path. End-to-end response time takes into
account both the worst-case response-time (WCRT) of threads and messages
on the path. To compute these WCRTs, we use the response time analysis
presented in [27].

Response time of threads. Worst case response time Rτi,cj of a pe-
riodic thread τi, executed on processor hj , is represented with Rτi,hj and
computed according to (1). Bτi is the blocking time of the thread τi, which
depends on shared resources accessed by the thread and the way in which the
shared resources are protected from multiple accesses. In our study, messages
transmitted among tasks on the same processor represent shared resources
are protected with the Priority Ceiling Protocol (PCP) [23]. To compute the
blocking time with the PCP we refer to equation (2), where ω

′

τi,µk,cj
is the

WCET of a thread τi for accessing (reading/writing) a shared message µk,
executing critical section on cj . The priority ceiling of this message is PC(µk).

Rτi,cj = ωτi,cj +
∑

τk s.t. (πτk>πτi )

⌈
Rτi
ϕτk

⌉
∗ ωτk,cj +Bτi,cj (1)

Bτi,cj = max
µk∈M,τj∈T

ω
′
τi,µk,cj

s.t. πτi ≤ PC(µk) and πτi > πτj (2)

Response time of messages. Worst case response time Rµi,βj of message
µi transmitted on bus βj is computed according to an equation similar to
equation (1) except that scheduling of messages is non-preemptive.

End-to-end response time computation. The worst case end-to-end
response time LΓi is computed for each system path Γi. It consists in adding
the WCRTs of all threads and messages, as well as the periods of all the
messages and their receiver thread on the path (see equation (3))[28].

LΓi =
∑
τj∈Γi

Rτj +
∑
µj∈Γi

Rµj + ϕµj + ϕDest(µj) (3)

3.3.2 End-to-end reliability analysis

In order to compute reliability, we consider a simple fault model: only processor
components may introduce fail-silent faults (e.g. processor crashes). In our
hardware models, each processor is characterized by its reliability: a constant
value representing its probability to perform its operations as intended. R(hi)
is the reliability of a processor hi. End-to-end reliability is the probability, for
a given source of messages τs, to have its messages reach a destination τd.
To compute end-to-end reliability, noted R(τs, τd), we need to consider the
reliability of paths (see definition 1) in Γ . In order to compute the reliability
of a path Γj , we have to consider the set of processors Γj traverses. A path
Γj traverses a processor hi if there exist a task τk in Γj such that Proc(τk) is
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allocated to hi. We note PS(Γj) the set of processors traversed by a path Γj .
The reliability of PS(Γj), noted R(Γj), represents the probability that all the
processors in PS(Γj) perform their functions as intended. It is thus computed
as follows:

R(Γi) =
∏

hi∈PS(Γj)
R(hi) (4)

Given the replication transformations introduced in previous subsection,
the target models of these transformations will have several paths with the
same source and destination. In these models, we note SE(Γs,d) the set of
paths having τs as source and τd as destination.

If paths of SE(Γs,d) result from the application of the 2oo3 transforma-

tion, SE2oo3(Γs,d) is made up of three paths: SE2oo3(Γs,d) = {Γ ′

s,d, Γ
′′

s,d, Γ
′′′

s,d}.
Besides, messages from τs reach τd if at least two out of these paths perform
as intended. We thus obtain the following formula:

R
2oo3

(τs, τd) =
∏

Γi∈SE2oo3

R(Γi)

+ R(Γ
′
s,d) ∗ R(Γ

′′
s,d) ∗ (1− R(Γ

′′′
s,d))

+ R(Γ
′′
s,d ∗ R(Γ

′′′
s,d) ∗ (1− R(Γ

′
s,d))

+ R(Γ
′
s,d) ∗ R(Γ

′′′
s,d) ∗ (1− R(Γ

′′
s,d))

(5)

To compute the reliability R2∗2oo2(τs, τd), we proceed in a similar way by
evaluating the reliabilities of two pairs of paths (master and slave).

In next subsection, we discuss the adequacy between (i) the type of archi-
tectures, EFPs, and design alternatives we consider in this paper and (ii) the
problems described in section 2.

3.4 Compliance between the example and the problems

Firstly, this example illustrates that design patterns selection cannot be done
in isolation for model elements: for achieving a correct voting mechanism, ap-
plying the 2oo3 pattern to a process ρ requires to apply the same replication
pattern to all the processes ρ is connected to. This was implicitly the case on
figures 2 (b) and 2 (c), where the replication pattern applied to ρ1 be com-
posed with the same replication pattern applied to ρ2. In addition, replicated
processes should be allocated to different processors (otherwise the replication
pattern is useless). This example thus illustrates problem 1: a composite trans-
formation must produce architectures that enforce the respect of predefined
architectural constraints.

Secondly, the chosen design pattern impacts differently EFPs of interest:
one is better for reliability but incurs more communications, and vice-versa. Of
course, software components allocation also impacts EFPs of interest, which
illustrates problem 2: it is difficult to anticipate, a priori, the impact of a
transformation made up of both the selection of a design pattern and the
allocation of software components on hardware components.
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Thirdly, this example enables to illustrate the combinatorial complexity of
design space exploration (cf. problem 3): for a simple model with six process
components and four processors, there are 26 = 64 choices for safety design
pattern and, depending on the processes safety design pattern, there are at
least (6 ∗ 3)4 = 104976 and at most (6 ∗ 4)4 = 331776 possible allocations.

Fourthly, one easily understands from the description of the safety design
patterns above, that the choice of a design pattern must be performed before
the components allocation. Besides, both reliability and end-to-end data flow
analysis can only be performed once software components have been allocated
to hardware components (illustration of problem 4, explained in section 2).

In the next section, we explain our approach to tackle these problems.

4 Proposed Approach

This section gives an overview of our approach for design space exploration
based on model transformation alternatives. In subsection 4.1, input artefacts
of our approach are described. Then, subsection 4.2 gives an overview on the
process we propose to address research problems identified in section 2.

4.1 Input artefacts

Source
model

EFRs
specification

Transformation
 link 1

Model transformation chain (N links)

Transformation
 link 2

Transformation
 link L

Transformation 
alternatives Transformation 

alternatives

Transformation 
alternatives

Transformation 
alternatives

EFPs
analysis 
plugins

executes executes executes executes

Fig. 4: Input artefacts of the approach

Figure 4 lists the input artefacts of our approach:

1. The source model, produced by the system designers, models the architec-
ture of the system under design.

2. Extra functional requirements (EFRs) specification defines the acceptable
limits for EFPs of the system, as well as objectives in terms of maximization
or minimization of these EFPs. We expect these EFPs to be conflicting, as
this is the case in most design space exploration problems. This artefact is
filled by EFPs experts, or by the system designers.
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3. EFPs analysis plugins are software artefacts capable evaluating EFPs of
a given architecture. These plugins are reused, adapted, or created by the
model transformation framework provider.

4. The model transformations chain, made up of a predefined ordered set of
L transformation links. In this chain, each link references a limited set
of model transformation alternatives. This artefact is provided with the
model transformation framework.

Given these different artefacts, our objective is to find a model transfor-
mation chain that answers at best the trade-off among conflicting EFPs of the
system. To reach this objective, we propose a design space exploration process,
as described in next subsection.

4.2 Design space exploration process

Source
model
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Fig. 5: Approach Overview

Figure 5 gives an overview of the process we propose in this paper: from
the definition of a model transformation chain, having for each link a small
set of transformation alternatives, we first produce an intermediate model that
results from the composition of these alternatives. This first step is highlighted
with bullet 1 on the figure, and repeated for each link of the transformation
chain until the target model is produced. The composition mechanism, used
in this step of the process, is explained in section 5. It answers problems 1 and
2, identified in section 2.

We assume, in this approach, that intermediate models do not contain all
the information required to analyze EFPs of the architecture: intermediate
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models are enriched in each link of the transformation chain. Once produced,
the target model is analyzed with respect to EFPs (bullet 2 in figure 5), and
the analysis results are used to evaluate composite transformations. This part
of the process answers problem 3, identified in section 2.

The process we propose is iterative: each iteration produces, executes, and
evaluates a (sub)chain of composite transformations. In addition, because of
the combinatorial complexity of the design space exploration, it is not possible
to enumerate, execute, and evaluate all the composite transformations. As
a consequence, we rely on evolutionary algorithms (EAs) to implement this
iterative exploration (see bullet 3 in figure 5). The data structure used to
compose model transformation with EAs is explained in section 6. In addition,
we can see in figure 5 that the proposed process is made up of embedded loops,
each loop being dedicated to explore composite transformations of a given
link in the transformation chain. When an inner loop has converged, other
transformation candidates may be evaluated for the outer loop, thus producing
a new intermediate model for the inner loop. The convergence criteria for each
loop relies on convergence criteria of EAs and is parameterized by an end-user
of our approach. This part of the process answers problem 4, identified in
section 2.

When the top-level loop has converged, the exploration process stops and
returns the best models that were found (see bullet 4 in figure 5).

4.3 Model Transformation Composition with EAs: challenges

The most challenging steps, in this process, are those identified with bullets
1 and 3 in figure 5: in order to explore the design space efficiently, we need
to produce only correct architectures (see definition 2 below). As a conse-
quence, our composition mechanism must produce only valid transformation
(see definition 3 below).

Definition 2 A correct architecture is a component-based architecture that
respects a set of structural constraints and conforms to requirements defined
by software designers.

Definition 3 A valid transformation is a transformation that, once exe-
cuted, produces a correct architecture (see definition 2).

As far as structural constraints are concerned, we aim at validating them a
priori, i.e. before executing the transformation. As far as EFPs are concerned,
we aim at validating them a posteriori, i.e. after executing the transforma-
tion. To reach the objective of a priori validation, we need to address the
following two challenges:

1. From a set of alternative transformations, how to produce composite trans-
formations that are a priori valid? To address this challenge, we propose
to combine rule-based model transformation techniques and boolean satis-
fiability techniques. This contribution is explained in section 5.
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2. How to make sure the application of EAs also produces composite trans-
formations that are a priori valid? To address this challenge, we structure
genomes of a population in order to make sure the application of genetic
operators always produce new composite transformations that are a priori
valid. This contribution is explained in section 6.

To the best of our knowledge, this work presents the first model-based archi-
tecture optimization framework, enforcing a priori that explored architecture
respect predefined structural constraints. It is also the first attempt to com-
bine model transformation techniques, including model transformation chains,
and multi-objective optimization techniques.

In the next section, we present our technical solution to produce a priori
valid composite transformations from a set of transformation alternatives.

5 Production of A Priori Valid Composite Transformations

In order to produce composite transformations from a set of transformation
alternatives, we propose an approach based on rule-based model transforma-
tions, and SAT solving techniques. In this approach, SAT is used in order to en-
sure we only produce composite transformations that are a priori valid. Note
that this approach is generic: it is defined independently of a specific architec-
ture optimization problem. We explain this contribution in the remainder of
this section, starting from the definition of rule-based model transformations:

Definition 4 A rule-based model transformation is a model transfor-
mation made up of transformation rules. A transformation rule specifies the
mapping from classes of elements from the source model (e.g. meta-classes of
the source meta-model of the transformation), to classes of elements from the
target model (e.g. meta-classes of the target meta-model of the transformation).

Given this definition, rule-based model transformations instantiation pro-
duces, for each transformation rule, a set of transformation rule instanti-
ations (TRIs):

Definition 5 A transformation rule instantiation TRIi is the applica-
tion of a transformation rule on an ordered set of elements from the source
model. It can be represented as a tuple < R,Ei, Ai >, where:

1. R represents the applied transformation rule;
2. Ei is ith tuple of elements in the source model;
3. Ai is the set of actions that R executes when it is applied to Ei.

In order to produce composite transformation, we should select a valid set
of TRIs. Confluence of these TRIs is a first property to consider, as explained
in next subsection.
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5.1 Confluent Transformation Rules Instantiations

TRIs cannot be selected randomly to produce composite transformations. In-
deed, the execution semantics of rule-based model transformation languages [13],
requires transformation rules to be executable in any order without modifying
the result of the transformation. This characteristic is called confluence. We
thus need to identify confluent transformation rule instantiations (see defini-
tion 6).

Definition 6 Confluent transformation rule instantiations are rule in-
stantiations that can be applied in parallel or in any order to yield to the same
result.

To build a composite transformation by selection of TRIs, we should select
confluent TRIs only. In the remainder of this paper, we use the notation TRIi⊕
TRIj to express that rule instantiations TRIi and TRJj are not confluent.
In other words, they are exclusive. In our approach, we propose to encode the
detection of non-confluence with two types of situation:

1. non-confluence exists when more than one rule can be applied to the same
tuple of elements in the source model. Formally, this means :

∃(R,R′) s.t. R 6= R′and TRIi =< R,Ei, Ai >

and TRIj =< R′, Ej , Aj > and Ei = Ej
(6)

2. non-confluence exists when a rule is applied to set of tuples but the action
this rule performs should be applied for a subset of these tuples. We propose
to identify such situations by annotating a rule with a description of its
unicity scope: given a tuple of elements in a TRI, the unicity scope (US) of
this TRI identifies elements of the tuple for which the rule can be applied
only once. More formally, non-confluence exists when:

∃(Ei, Ej) s.t.Ei 6= Ej and TRIi =< R,Ei, Ai >

and TRIj =< R,Ej , Aj > and US(TRIi) = US(TRIj)
(7)

When producing a composite transformation by selecting TRIs, the result-
ing set of TRIs must be confluent. Given the definition of confluent trans-
formation rule instantiations, and the definition of validity constraints on the
selection of TRIs, we formalize the selection of TRIs as follows.

5.2 Formalization of TRIs selection

We define S, a Set of P Non-confluent Transformation Rule Instanti-
ations S = {TRIi}i=1..P such that:

∀i, j ∈ [1, P ], i 6= j, TRIi ∈ S and TRIj ∈ S ⇒ TRIi ⊕ TRIj (8)
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Considering this definition, for each set of non-confluent transformation
rule instantiations S = {TRIi}i=1..P , the selection of TRIs may be decom-
posed into the following formulas:
1) AtLeastOne, dedicated to ensure that at least one of the non-confluent
TRIs is selected:

AtLeastOne(S) =
P∨
i=1

Sel(TRIi) (9)

2) AtMostOne, dedicated to ensure that at most one of the non-confluent
TRIs is selected:

AtMostOne(S) =

i=P,j=P∧
i=1,j=1,i 6=j

¬(Sel(TRIi) ∧ Sel(TRIj)) (10)

Combining equations (9) and (10), we obtain SelectOne, dedicated to select
exactly one TRI from S:

SelectOne(S) = AtLeastOne(S) ∧AtMostOne(S) (11)

The selection of a set of TRIs satisfying equation (11) is guaranteed to be
confluent. In addition to the confluence property, there might exist dependen-
cies among TRIs: selecting a TRI may require to exclude or select another TRI.
Besides, we should ensure that the composite transformation, resulting from
the selection of TRIs, produces an architecture that respect structural con-
straints. We enforce the respect of these constraints by (i) formalizing them
as validity constraints on the selection of TRIs, and (ii) using SAT solving
techniques to find confluent TRIs enforcing these constraints. Thus, we trans-
late structural constraints expressed on component-based architectures into
validity constraints on the composition of transformation alternatives.

5.3 Formalization of Validity Constraints on TRIs Selection

We propose to formalize constraints on the selection of TRIs with a set of
boolean formulas. We consider T = {TRIi}i=1..N a set of transformation rule
instantiations, and the function Sel defined hereafter:

Sel : T → B = {True, False}
TRI → b, where b is True if TRI should be included, and False

if TRI should be excluded from T .

Based on these definitions, we propose to express validity constraints on
the selection of TRIs as a conjunction of constraint on the Sel function:

V alidityConstraints =

N∧
i=1

(Sel(TRIi)⇒ BoolExpr(Ti)) (12)

where Ti is a subset of T −{TRIi}, and BoolExpr is a boolean expression
over TRIs in Ti, using (i) the Sel function, (ii) simple boolean operators
and, or, and not (∧, ∨, and ¬).
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For instance, consider T a set of three TRIs, validity constraints may be
expressed as a conjunction of the following boolean expressions:
Sel(TRI1)⇒ (Sel(TRI2) ∧ ¬Sel(TRI3))

∨(¬Sel(TRI2) ∧ Sel(TRI3))
Sel(TRI2)⇒ true
Sel(TRI3)⇒ true.
In this example, selecting TRI1 implies to select either TRI2 or TRI3 (but
not both). Selecting TRI2 or TRI3 has no further implications.

Finally, for all the sets of non-confluent rule instantiations Sii∈[0..Q], the
selection of a valid set of TRIs boils to evaluate the satisfiability of the boolean
formula:

Q∧
i=1

(SelectOne(Si)) ∧ V alidityConstraints (13)

A valid composite transformation is thus defined by a a function Sel that
satisfies equation (13). SAT techniques can thus be used to produce com-
posite transformations by selection of a set of TRIs. In addition, such com-
posite transformations are a priori valid since structural constraints on the
component-based architecture have been translated into validity constraints
on the selection of TRIs. However, the number of potential solutions grows
rapidly with the number of non-confluent TRIs: considering M sets of non-
confluent TRIs (as defined in equation (8)), each of them having N TRIs, the
number of composite model transformations is at most MN . For this reason,
in most cases, enumerating and evaluating each composite transformation is
not feasible. In order to automate the exploration of the design space gener-
ated by model transformation alternatives, we propose to rely on Evolutionary
Algorithms (EAs). In the next section, we explain how we propose to structure
composite transformation in order to use EAs.

6 Evolutionary Algorithms with Chains of Model Transformations

Inspired from genetics, EAs are based on the following principles: from an
initial population of genomes, select the best genomes regarding a set of ob-
jective functions (e.g. EFPs in our case), and produce a new population using
a selection operation and genetic operators (i.e. mutation, crossover). In EAs,
each genome is made up of a fixed size ordered set of genes. Traditionally, these
genomes are represented by a binary encoding (ordered sequence of fixed size,
of 0 and 1), but other encodings are also possible. In our approach, we pro-
pose an encoding that aims at producing new composite transformations by
applying genetic operators on composite transformations. More importantly,
composite transformations resulting from the application of genetic operators
must be a priori valid. To the best of our knowledge, this is the first work
ensuring the a priori validation of structural constraint while applying EAs
for architecture optimization. Beside, it provides a generic exploration engine:
the algorithm operates on data structures defined independently of a specific
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architecture optimization problem. In this section, we explain our encoding of
composite model transformations as genomes, and their usage in EAs.

6.1 Genomes encoding

Traditionally, the initial population of an EA is created by elaborating ran-
domly a set of genomes. A simple way to do this is to assign a random value
of each gene of each genome. In our work, a genome is a composite transfor-
mation, made up of TRIs. However, these TRIs cannot be selected randomly
as explained in section 5: selected TRIs must satisfy constraints defined in
equation (13). Selecting randomly TRIs that satisfy such constraints may be
time consuming, and may even not converge. In case it converges, another
issue is the difficulty to apply genetic operators while preserving the satisfac-
tion of these constraints. To overcome these issues, we propose an encoding
of genomes into a priori valid transformation for both the initialization step
and the application of genetic operators. We explain this encoding in the next
paragraphs, and the application of genetic operator in following subsections.

Our solution is to group TRIs involved in the same validity constraints
into partitions, and to extract, from each partition, a pool of interchange-
able atomic transformation instantiations (see definition 7). Then, we create
a composite transformation by selecting randomly one atomic transformation
instantiation from each pool.

Definition 7 An atomic transformation instantiation is a transforma-
tion made up of a set of transformation rule instantiations that cannot be
decomposed into smaller transformations.

Our objective is to group TRIs involved in the same validity constraints
into partitions. To do so, we first reorganize equation (13) under a conjunctive
normal form. We call B the set of boolean expressions in the conjunction, and
build a partition of B: we group such expressions into smallest non-empty
subsets of B in such a way that every TRI is used in expressions of one and
only one of the subsets. These subsets are called the parts of the partition, and
we note βq the boolean formula corresponding to the qth part of the partition.

Let consider the following boolean expression: [Sel(TRI3)] ∧ [Sel(TRI1)∨
Sel(TRI2)]∧[Sel(TRI1)∨Sel(TRI4)]. Its partition leads to parts: {Sel(TRI3)}
and {(Sel(TRI1) ∨ Sel(TRI2)), (Sel(TRI1) ∨ Sel(TRI4))} represented by
boolean expressions: β1 = Sel(TRI3) and β2 = (Sel(TRI1) ∨ Sel(TRI2))
∧ (Sel(TRI1) ∨ Sel(TRI4)).

A pool of atomic transformation instantiations is finally produced automat-
ically by instantiating, for each equation βq, all the combinations of boolean
values for Sel(TRIi) that satisfy βq. The solution we propose to achieve that
is to use the SAT solving techniques. Applying this technique for each equa-
tion βq, we produce a set of solutions satisfying the boolean formula defined
in equation 13.
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For instance, applying SAT to β1 leads to one atomic transformation in-
stantiation (ATI): ATI11 = {TRI3}, and applying SAT to β2 leads to a pool
of several atomic transformation instantiations: ATI21 = {TRI1}, ATI22 =
{TRI2, TRI4}, ATI23 = {TRI1, TRI2, TRI4}. We then structure a composite
transformation (CT) by choosing, for each equation βq, one atomic transfor-
mation instantiation in the corresponding (qth) pool: CT1 = {ATI11, ATI21},
CT2 = {ATI11, ATI22}, etc.

Based on this new formulation of equation (13), we define a genome (or
composite transformation) as an ordered set of atomic transformation instanti-
ation: CT = {ATIij}i=1..n,j∈N, where i is an identifier of a pool of interchange-
able atomic transformation instantiations and j is the identifier of one element
in this pool. Using this representation, we can produce an initial population
by selecting randomly an atomic transformation instantiation from each pool.
The resulting composite transformation are, a priori, valid.

6.2 Genetic operators applications

Using the representation defined in previous subsection (6.1), we can eas-
ily encode composite transformations for EAs by (i) representing composite
transformations as genomes, where each genome is composed of an ordered
sequence of genes: atomic transformation instantiation; (ii) selecting trans-
formation alternatives according to their EFPs evaluation; and (iii) mixing
their genes (crossover) and/or creating new genomes (mutation) while pro-
ducing valid transformations. In the next paragraphs, we present the genetic
operators we used on composite transformations.
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Fig. 6: Crossover and Mutation Operators

6.2.1 Crossover

The crossover consists in producing new genomes (called off-springs) by mixing
the genes of two existing genomes (called parents). Two off-spring solutions
are created, by exchanging parts of the parent genomes: a cut point in the
parent genomes is randomly determined, and all the genes beyond that point
are swapped between the two parents. Using our representation of composite
transformations as an ordered set of atomic transformation instantiations, ap-
plying the crossover operator becomes easy: wherever we apply the cut in a
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composite transformation, we always have a solution that satisfies the validity
constraints. Figure 6 illustrates the application of the crossover operator on
two genomes CT1 and CT2.

6.2.2 Mutation

After performing the crossover operator, the obtained genomes are mutated.
The mutation operator selects a gene (randomly), and changes its values. In
figure 6, the mutation operator acts on a single genome CT1 to obtain a mu-
tated genome CT ′1 by replacing an atomic transformation instantiation by
another one from the same pool. As a consequence, the resulting composite
transformation is a priori valid.

6.3 Identifying Pareto-optimal solutions using NSGA-II

To finalize our approach, we combine all the steps defined above, and inte-
grate them in an evolutionary algorithm. In this paper, we propose to use
NSGA-II: an improved version of NSGA [24] (Non-dominated Sorting Genetic
Algorithm). NSGA-II operates as follow:

1) First, create a random population Pt composed of N (specified by end-
users of our method) CT . Execute and evaluate each CT regarding EFPs by
evaluating the corresponding target model.

2) Then, sort Pt based on a non-domination criterion, using evaluated EFPs.
3) Create an off-spring population Qt of size N using selection tournaments,

crossovers and mutations. We apply each CT of Qt to the source model and
evaluate the EFPs of the target models.

4) Create a new population Rt of size 2*N by gathering elements from Pt
and Qt (Rt = Pt ∪Qt).

5) Sort Rt with a fast non-dominated sorting procedure [8], to identify non-
dominated fronts {Fi}i=1..N (F1 being the best and FN the worst front).

6) Generate the new parent population Pt+1 of size N. The solutions belong-
ing to the best non-dominated front, (i.e. F1) represent the best solutions in
Rt and must be emphasized more than any other solution. If the size of F1 is
smaller than N, all solutions of F1 are inserted in Pt+1. Then, the remaining
population of Pt+1 is chosen from subsequent non-dominated fronts in order
of their ranking: the solutions of F2 are chosen next. In some cases, not all the
solutions from a front Fi can be inserted in population Pt+1: the number of
empty slots of Pt+1 is smaller than the number of solutions in Fi. In order to
choose which ones are selected, these solutions are sorted according to their
crowding distance [8], and the solutions having the highest crowding distance
are used to fill the empty slots of Pt+1.

7) The created population Pt+1 is then used to create a new population
Qt+1. We apply this process to the next generation until a stopping criterion
is met.
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We presented an automatic approach to select and compose model trans-
formation alternatives using NSGA − II. We present in the next subsection
the application of our approach on chains of model transformations.

6.4 Exploration of chained model transformations

When the model transformation we consider is structured as a chain of model
transformation alternatives, we propose to apply the principles of EAs to each
link of the chain, aiming at producing a non-dominated population of size N
given by the end-user of our approach. Considering L links, as illustrated on
figure 5, the exploration process should produce L−1 sets of intermediate mod-
els, and 1 set of N target models. Target models are produced by the Lth link
by applying the EA on the population made up of composite transformations
applied on the (L− 1)th intermediate model.

We first produce this (L− 1)th intermediate model by selecting randomly
a valid composite transformation for each of the previous links (links 1 to
L − 1). We then explore composite transformations for the Lth link, using
EA iterations, as illustrated in figure 5. Note that each link l has its own
convergence criteria for an EA such as the maximum number of models that
may be produced without modifying the set of non-dominated solutions or the
maximum number of models produced in iteration l.

We thus iterate on the Lth link of the transformation chain until a conver-
gence criterion of the EA is reached for this link. Then, the process continues
with link L−1: from the (L−2)th intermediate model, new models are created
(i) first randomly until popL−1 models have been obtained for the next link
(the Lth) (ii) and then using EAs operators until the convergence criterion has
been reached for the (L − 1)th link. Note that, for evaluating created popu-
lations for a given link, the target model needs to be produced and its EFPs
evaluated.

The process continues iteratively until the convergence criterion of link 1
has been reached and a set of non-dominated target models has been obtained.
Of course, the amount of evaluated architectures and thus the time needed for
convergence highly depends on parameters given by end-users. These param-
eters are set by end-users of our approach to either increase or decrease the
number of composite transformations produced for each link of the transfor-
mation chain.

In the next sections, we describe model transformation alternatives we
implemented when prototyping our approach in the RAMSES framework [5].

7 RAMSES: Prototyping the Approach with ATL Transformations

The method we propose in this paper has been implemented and experimented
in RAMSES, a component-framework for critical embedded systems [5]. RAM-
SES helps to design software applications for embedded systems by implement-
ing AADL-to-AADL model transformations written in ATL. In this section,
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we first present ATL model transformations implementing the replication pat-
terns described in section 3. Then, we explain how these transformations are
formalized as alternatives with validity constraints on their composition.

7.1 ATL Model Transformations

ATL is a hybrid transformation language (i.e. a transformation language with
both rules and imperative statements) which execution relies mainly on a
pattern matching semantics [15]: in ATL, a transformation consists of a set
of declarative matched rules, each specifying a source pattern and a target
pattern. The source pattern is made up of (i) a set of objects identifiers, typed
with metaclasses from the source metamodel and (ii) an optional OCL [21]
constraint acting as a guard of the rule. The target pattern is a set of objects of
the target metamodel and a set of bindings that assign values to the attributes
and references of the target objects.

Listing 1: ATL rule for 2*2oo2: processes replication

1 rule m Process 2 2oo2
2 {
3 from
4 c : AADLI!ComponentInstance ( c . category = #proce s s )
5 to
6 proc1 22oo2 : AADLBA! ProcessSubcomponent ( . . . ) ,
7 proc2 22oo2 : AADLBA! ProcessSubcomponent ( . . . ) ,
8 proc3 22oo2 : AADLBA! ProcessSubcomponent ( . . . ) ,
9 proc4 22oo2 : AADLBA! ProcessSubcomponent ( . . . )

10 }

Listings 1 and 2 provide snippets of the ATL code used to implement
the 2*2oo2 model transformation alternative for components replication. This
transformation alternative was already explained in section 3.2, and is de-
picted in figure 2. In listing 1, ATL rule m Process 2 2oo2 transforms every
AADL process component into four process components identified with the fol-
lowing target object identifiers: proc1 22oo2, proc2 22oo2, proc3 22oo2, and
proc4 22oo2. For the sake of concision, this listing does not develop the cre-
ation of these processes. Given the execution semantics of ATL, this rule will
match any AADL component instance of the process category, thus producing
for each process ρi of our software model, a trasfromation rule instantiation
TRIi =< m Process 2 2oo2, {ρi}, {create(procSub1), ...} >.

In listing 2, ATL rule m PortConnection 2 2oo2 transforms connections
among process components in the source model, into connections among their
replicas in the target model. As one can see in figure 2, a connection between
process components in the source is transformed into 8 connections in the
target model. This is represented in rule m PortConnection 2 2oo2 with the
creation of cnx1 1 22oo2, cnx1 2 22oo2, etc. For the sake of concision, the
creation of only one of the eight connections is fully developped in this listing.
This rule will match, in the source model of the transformation, any connec-
tion cnxc between two process components, thus producing a transformation
rule instantiation:



24 Smail Rahmoun et al.

TRIc =< m PortConnection 2 2oo2, {cnxc}, {create(cnx1 1 22oo2), ...} >.
In m PortConnection 2 2oo2, one may note the usage of resolveTemp, an
ATL mechanism that enables to retreive elements created in m Process 2 2oo2.
The use of this mechanism induces a dependency between the application of
rules m Process 2 2oo2 and m PortConnection 2 2oo2. This dependency is
captured in the transformation rules catalog, as explained in the next section.

Listing 2: ATL rule for 2*2oo2: connections replication

1 rule m PortConnection 2 2oo2
2 {
3 from
4 cnx : AADLI! Connect ionReference ( cnx . i sProces sPort sConnect ion ( ) )
5 using
6 {
7 cSrc : AADLI!ComponentInstance = cnx . getSrcCptInstance ( ) ;
8 cDst : AADLI!ComponentInstance = cnx . getDstCptInstance ( ) ;
9 }

10 to
11 −− f ea ture f 1 : PROC 1 src −> PROC 1 dst −−
12 cnx1 1 22oo2 : AADLBA! PortConnection (
13 name <− cnx . getName()+ ’1 1 ’ ,
14 source <− sourceCE1 1 ,
15 de s t i n a t i on <− dest inat ionCE1 1
16 ) ,
17 sourceCE1 1 : AADLBA!ConnectedElement (
18 connectionEnd <− cnx . source ,
19 context <− thisModule . resolveTemp ( cSrc , ’ proc1 22oo2 ’ )
20 ) ,
21 dest inat ionCE1 1 : AADLBA!ConnectedElement (
22 connectionEnd <− cnx . d e s t i n a t i on ,
23 context <− thisModule . resolveTemp ( cDst , ’ proc1 22oo2 ’ )
24 ) ,
25 −− f ea ture f 1 : PROC 1 src −> PROC 2 dst −−
26 cnx1 2 22oo2 : AADLBA! PortConnection
27 . . .
28 −− 6 other connections ommitted for the sake of concis ion
29 }

7.2 Transformation Alternatives Specification

RAMSES developers rely on an internal language in order to specify model
transformation alternatives and validity constraints on their compositions in a
Transformation Rules Catalog (TRC). Listing 3 provides a subset of the TRC
we used to describe transformation alternatives for components replication:
2oo3 and 2*2oo2. This TRC is made up of two main parts:

1. a description of model transformation alternatives, from line 1 to line 10,
lists the set of ATL modules and rules being part of each alternative.
The 2*2oo2 alternative is made up of transformation rules described in
the previous section. The 2oo3 alternative is made up of very similar
transformation rules: m Process 2oo3 and m PortConnection 2oo3. Rule
m Process 2oo3 (respectively m PortConnection 2oo3) has the very same
input pattern as m Process 2 2oo2 (resp. m PortConnection 2 2oo2) but
generates three replicas (resp. 9 connections among replicas).
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2. a specification of validity constraints, from line 12 to line 30. The first
one, from line 14 to line 21, specifies that when m PortConnection 2 2oo2

is applied on a connection (identified as cnx in the constraint), it is nec-
essary to apply rule m Process 2 2oo2 on both ends of the connection
(retreived executing a OCL helpers called getDestinationProcess and
getSourceProcess on cnx). The second constraint, from line 22 to line 27,
specifies that when applying m Process 2 2oo2 on a process component
processInstance, m PortConnection 2 2oo2 should be applied on all the
connections having processInstance as a source (retreived by applying
the OCL helper getSourceConnectionReference on processInstance).
Gathering these two constraints lead to ensure that the 2*2oo2 alterna-
tive is applied to sets of interconnected process components. Very similar
constraints are expressed for the application of the 2oo3 alternative in the
remaining of the TRC.

1 Modules
2 {
3 2 2oo2 . a t l : m Process 2 2oo2 , m PortConnection 2 2oo2 ;
4 2oo3 . a t l : m Process 2oo3 , m PortConnection 2oo3 ;
5 }
6
7 Alternatives {
8 r e p l i c a t i o n 2 2 o o 2 { modules : 2 2oo2 . a t l } ,
9 r e p l i c a t i o n 2 o o 3 { modules : 2oo3 . a t l }

10 }
11
12 Constraints {
13 // 2∗2oo2
14 Apply( r e p l i c a t i o n 2 2 o o 2 . m PortConnection 2 2oo2 , {cnx })
15 [
16 requires ( r e p l i c a t i o n 2 2 o o 2 . m Process 2 2oo2 ,
17 { getSourceProces s ( cnx )}
18 ) and requires ( r e p l i c a t i o n 2 2 o o 2 . m Process 2 2oo2 ,
19 { ge tDes t ina t i onProce s s ( cnx )}
20 )
21 ] ;
22 Apply( r e p l i c a t i o n 2 2 o o 2 . m Process 2 2oo2 , { proc e s s In s t anc e })
23 [
24 requires ( r e p l i c a t i o n 2 2 o o 2 . m PortConnection 2 2oo2 ,
25 { getSourceConnect ionReference ( p ro c e s s In s t anc e )}
26 )
27 ] ;
28 // s im i l a r c on s t r a i n t s f o r 2oo3
29 . . .
30 }

Listing 3: TRC for the AADL refinement alternatives

7.3 Extraction of Atomic Transformation Instantiations

From an input model, a TRC, and a set of ATL modules, the extraction of
atomic transformation instantiations (ATIs) follows the following process:
1. the pattern matching of ATL rules is executed on the input model, and
produces TRIs;
2. from these TRIs, concistency contraints expressed in the TRC are instan-
tiated to produce validity constraints over the selection of TRIs (as described
in section 5);



26 Smail Rahmoun et al.

3. TRIs are partitionned using a conjunctive normal form of the validity con-
straints (as described in section 6);
4. using SAT techniques, sets of ATIs are produced for each partition of TRIs.
The genetic algorithm presented in section 6 can then be implemented using
ATIs as values in the genome encoding.

In this section, we have presented model transformation alternatives ded-
icated to the replication transformation. Similar artefacts were developed for
the allocation of software components on hardware components. Software com-
ponents replication and allocation transformations were then chained during
the validation of our approach, which is presented in next section.

8 Approach Validation

In this section, we report the validation of the proposed approach as follows: in
subsection 8.1, we enumerate and comment the research questions we answer.
We then describe the experiments setup in subsection 8.2. In subsection 8.3, we
present the experimental results and our conclusions with respect to research
questions. Finally, subsection 8.4 discusses the threats to validity of these
conclusions.

Note that the experiments presented in this section can be reproduced by
using the VirtualBox virtual machine, available online2.

8.1 Research questions

In order to evaluate the quality of the proposed approach, we need to answer
to the following research questions (RQs):

RQ1: how efficient is it to proceed to structural constraints validation a
priori instead of a posteriori? This research question aims at evaluating if, when
using EAs to explore a design space made up of architectural candidates, it is
more efficient to proceed to the validation of structural constraints a priori
rather than a posteriori.

RQ2: what is the distance between results obtained with our approach
and theoretical local optima? This research question aims at evaluating the
intrinsic quality of architectural solutions found with our approach.

RQ3: how much resource (memory and computation time) does our ap-
proach require to explore numerous architectural candidates? This research
question aims at evaluating the complexity of our approach, in terms of com-
putation time and memory space.

8.2 Experiments setup

To answer these questions, we provide results obtained on 4 models with in-
creasing complexity. The characteristics of these models are listed in table 1,

2 http://perso.telecom-paristech.fr/~borde/publications/2017/sosym/Ubuntu.zip

http://perso.telecom-paristech.fr/~borde/publications/2017/sosym/Ubuntu.zip
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allowing to estimate the complexity of the design space. For instance, model
1 is made up of 3 paths, which leads to 23 = 8 composite transformations
for the replication. For the allocation, the worst situation occurs when the
2*2oo2 replication is applied to each process in the input model: with model 1
this leads to an allocation problem with 9 ∗ 4 = 36 processes on 5 processors.
Considering allocation constraints, a rapid estimation of the complexity leads
to 12960 (creating systematically 3 replicas in the first transformation link) to
34520 possibilities (creating systematically 4 replicas in the first transforma-
tion link). With model 4, the number of potential architectures is between 2 to
20 millions. Note that model 3 is a significant subset of an industrial use-case
from the railway domain, dealing with doors control in an automatic train.

Table 1: Input models for experimentations

model identifier Number of processes Number of paths Number of processors
model 1 9 3 5
model 2 8 4 8
model 3 9 4 10
model 4 15 6 10

In addition, we configured our method, based on NSGA-II as follows: the
size of the population was set to 100, the maximum number of iteration was
set to 10 000 (10 for the first transformation, 1000 for the second one), and the
maximum number of iterations without finding new non-dominated solutions
was set to 5.

8.3 Experimental results

In this section, we use a classical vocabulary to present well-designed exper-
iments: the term independent variable correspond to a factor we control
during the experiment in order to observe its effect on so called dependent
variables, which are measured as an outcome of the experiments.

8.3.1 RQ1: A priori vs. a posteriori validation

Evaluation method. To answer RQ1, we compared the convergence time
required by our approach with the convergence time required by an approach
based on EAs but relying on a posteriori validation of structural constraints. In
this experiment, the independent variable is the activation (or deactivation)
of the a priori validation of structural constraints. When a piori validation is
activated, structural constraints are not validated a posteriori. When a piori
validation is deactivated, structural constraints are validated a posteriori. The
dependent variable is the convergence time of the method we propose in
this paper (either with a priori or a posteriori validation).
Results. Out of a thousand candidate architecture generated by the approach
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based on a posteriori validation, none of them was correct with respect to
structural constraints. On the other hand, the approach based on a priori val-
idation was able to converge by evaluating more than one thousand correct
architectures in about 2 to 12 hours of computation (respectively for the sim-
plest and most complicate models we considered). This shows the importance
of validating composite transformations a priori rather than a posteriori.

8.3.2 RQ2: distance to local optima

Evaluation method. To answer RQ2, we compare the distance between so-
lutions obtained with our approach and theoretical local optima. However, the
absolute distance is not very meaningful: we formalise this distance in terms of
percentage of the maximum distance between a best theoretical local optimum,
and a worst theoretical local optimum. To find the best theoretical optimum,
we consider a subset of the design space to explore, and implement a Mixed
Integer Linear Program (MILP) formulation of the optimization problem. The
worst theoretical optimum is found by reversing the MILP optimization prob-
lem: the best local optimum is found by maximizing an objective function,
while the worst is found by minimizing the objective function. The MILP-
based solution required several adjustments that were made manually. First,
we had to linearize the function that computes reliability. To do so, we con-
sider restrictive hypothesis: (i) all the processors in the model of the hardware
platform have the same reliability Rel, and (ii) if a set of inter-connected pro-
cesses ρ = ρi is replicated into ρ

′
= ρ

′

i, ρ
′′

= ρ
′′

i , etc. then all the processes

of ρ
′

must be allocated on the same processor, all the processes of ρ
′′

must
be allocated on the same processor, etc. Under these restrictive hypothesis,
each design pattern is associated a constant reliability value in the MILP for-
mulation. As a consequence, the MILP considers only a subset of the possible
architectures. In addition, this method is not applicable if processors of dif-
ferent reliability are used: this situation was avoided in our experiments in
order to be able to obtain comparative results. Second, the MILP formula-
tion required to linearize the multi-objective problem defined in section 3 into
a single objective function. We defined this objective function as a weighted
sum of the following objectives: reduce response-time and increase reliability.
In this experiment, the independent variable is the number of alternative
ATIs, which influences to the combinatorial complexity of the design space
to explore. We control this variable thanks to the four models presented in
section 8.2. The dependent variable is relative distance between the best
solution obtained with our method and a local optimum obtained with the
MILP formulation.
Results. Comparing results obtained with MILP and our approach, we came
to the following conclusions: imposing the allocation constraints of the MILP
formulation in our approach, solutions found with the MILP formulation dom-
inate those found by our approach. Measuring the relative distance between
solutions we found and solutions found by MILP, we observed for the two first
models that the distance was very low (less than 3%) while it increased for
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models 3 (24,5%) and model 4 (34%). This is typically due to the fact that
the percentage of the explored design space becomes smaller and smaller as
the complexity increases. Without imposing the allocation constraints of the
MILP formulation in our approach, we observed that our method found so-
lutions that are not dominated by solutions found in MILP. These solutions
were typically better in terms of reliability than solutions found by the MILP.
Compared to a random exploration, our approach converged after evaluating
1200 (considering model 1 ) to 2020 (considering model 4 ) output models. Ran-
dom exploration did not converge and stopped after evaluating 5000 to 10 000
output models. No solution found with the random method dominated solu-
tions found in our approach. On the other hand, some solutions found with
our method dominated solutions found with the random method.

As a conclusion, our experimentations show that our method find solutions
(i) relatively close to local optima, and (ii) not dominated by local optima. In
addition, it finds better solutions much faster than a random exploration.

8.3.3 RQ3: resources consumption

Evaluation method. To evaluate the quantity of resources required by the
execution of our method, we measured the peaks of memory space and compu-
tation power it was using at runtime, as well as the time it needed to converge.
In this experiment, the independent variable is the number of alternative
ATIs, which influences to the combinatorial complexity of the design space to
explore. We control this variable thanks to the four models presented in sec-
tion 8.2. The dependent variables are memory, CPU occupation, and time
required for our method to converge.
Results. Table 2 presents the measured resource consumption, at runtime, for
each of the input models we considered. Experiments were done using a par-
allel execution of EAs iterations on 22 cores computer. These results show an
important increase in terms of resource consumption from model 1 to model 4.
Measuring the time spent in different parts of our implementation, we could
identify that an important part of the computation time (more than 50%)
was spent executing internal transformations produced by higher order trans-
formations (HOTs): a HOT is a model transformation that takes as source
and/or produce as target model transformations [25]. Our framework indeed
executes HOTs to transform transformation alternatives into a single transfor-
mation that implements the selection of ATIs. This solution was initially made
not to modify the ATL runtime, but it appears to be very time consuming in
practive. Consequently, we believe the execution time we measured would be
significantly improved by re-implementing this part of our framework.

Results provided in table 2 show that the convergence time is very high.
Nevertheless, the approach can be set up to provide intermediate results after a
predefined execution time so that architects may understand how the execution
of the method is performing.
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Table 2: Measured resource consumption

model identifier Convergence time Evaluated architectures memory usage
model 1 2h34m 1102 6.4 GB
model 2 4h33m 2020 6.4 GB
model 3 11h29m 1818 14 GB
model 4 12h40m 1465 14 GB

8.4 Threats to validity

In this section, we discuss several threats to validity of the results presented in
this paper. We use a classical vocabulary to present well-designed experiments:

– internal validity refers to the evaluation of potential factors (other than
dependent variables) that may have produced the observed results.

– construct validity aims at validating that the observed results correspond
to expected results according to the theory.

– external validity evaluates the possibility to generalize the observed results.

Internal validity. With respect to our results in response to RQ1, we do
not see any internal threat to validity. To the best of our understanding, the
activation/deactivation of a priori validation is the only factor responsible for
the results we observe. For our answer to RQ2, the configuration of NSGA-II
might be an internal threat to validity. Indeed, the proximity of results ob-
tained with our method and with MILP could be improved by modifying the
parameters of NSGA-II. For our answer to RQ2, the configuration of NSGA-II
might be an internal threat to validity. Indeed, the proximity of results ob-
tained with our method and with MILP could be improved by modifying the
parameters of NSGA-II. Consequently, it is possible that the results obtained
with model 1 are better than results obtained with other models because the
parameterization of NSGA-II we used is more suitable for the optimization
problem entailed by model 1. Note that we used the same parameterization
of NSGA-II for all the models involved in this experiment. We did experi-
ment with other parameterizations but we observed the same results: when
we increase number of alternative ATIs, our method produces results that get
further from local optima. When it comes to our answer to research question
RQ3, the main internal threat to validity comes from the possibility to opti-
mize our framework. As mentioned in section 8.3, more than 50% of the CPU
time was spent in HOTs which were meant to ease the implementation but
eventually introduced unnecessary complexity at runtime. Besides, this com-
plexity rapidly grew with the number of alternative ATIs in our experiments.
In addition to the impact of the complexity of the design space induced by the
number of ATIs, we may also observe here the impact of unnecessary HOTs.

Construct validity. To the best of our understanding, the results we ob-
serve in this experiment conform to the theoretical contributions presented in
this paper: a priori validation was expected to have a huge impact on con-
vergence time, and we also expected the complexity to grow rapidly with the
number of alternative ATIs.
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External validity. As far as experimental results are concerned, we ac-
knowledge that the necessity to use a priori validation of composite trans-
formations depends on the ratio of correct vs. incorrect architectures in the
design space produced when ignoring validity constraints. In our experience,
when design alternatives are precisely specified with model transformations,
such constraints rapidly make the ratio of correct vs. incorrect solution rather
small. This was already the case in a previous experiment [22].

As far as the usability of our approach is concerned, we acknowledge that
existing model transformation repositories do not provide model transforma-
tion alternatives. As such, these transformations are not intended to be used in
a design space exploration process. To use model transformations in a design
space exploration process, developers must identify valuable transformation
alternatives. Our approach helps to formalize such alternatives and provides
a composition method to proceed to design space exploration.

We also acknowledge that experimental results provided in this paper rely
on a small set of input models. However, one of them was extracted from
an industrial case-study. The most complex models we considered represent
software architectures of a reasonable complexity in the domain of real-time
embedded systems. In addition, the replication patterns we used are replication
patterns used in industry, and their specification using ATL model transfor-
mations is quite complete. It is thus difficult to generalize the results of this
paper to other models and design alternatives, but the experimental results
we provided already demonstrate the feasibility of our approach on significant
design problems.

9 Related Works

This section, dedicated to position our contribution with respect to existing
works, is organized around three topics: (i) composition of model transforma-
tions, (ii) multi-objective optimisation of component architectures, and (iii)
design space exploration based on model transformations.

9.1 Model Transformations Composition

Composition of model transformations is a difficult problem, intensely studied
in the last decade. Two types of composition techniques were already proposed
for model transformations [26]. First, external composition techniques consist
in chaining model transformations: the target of a model transformations be-
comes the source model of the next transformation of the chain. Second, in-
ternal composition techniques aim at producing a new model transformation
by merging existing model transformations. Higher Order Transformations
(HOTs) is a well established technique to implement internal composition.
We used HOTs to produce composite transformations from existing alterna-
tives, following the principles described in [18]. In this paper, we automate the
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exploration of a design space made up of chains of alternative model trans-
formations. To make this contribution possible, we encode composite trans-
formations into genomes for applying EAs. In addition, we use satisfiability
techniques to make sure the resulting transformations always produce archi-
tecture satisfying predefined structural constraints.

However, the genome encoding of a transformation chain is very difficult
to determine. Indeed, the size of the design space to explore in each link of
the chain depends on the content of the model produced by previous transfor-
mations of this chain. For this reason, we rely on both composition techniques
in our contribution: for each link in a transformation chain, we use internal
composition to merge transformation alternatives into composite transforma-
tion. We use external composition to chain these composite transformations
and produce candidate architectural models.

Elaborating valid transformation chains from a repository of independent
model transformations is a difficult task, even more with exogeneous model
transformations [11,3,10,4,7,6]. For model transformation chains, we consider
simplifying hypothesis: model transformations are endogeneous and chained in
a predefined static order. Yet, our work is to the best of our knowledge the first
proposal to use both external and internal composition techniques to produce
model transformations during design space exploration.

9.2 Multi-Objective Architecture Optimization

Multi-objective architecture optimization is a well established research field [2].
Most research works in this field focused on specific optimization problems,
aiming at improving EFPs of architectural models. These works usually focus
on the efficiency of the optimization technique, and its tuning for a given
optimization problem. Nevertheless, some research works in this field also aim
at bridging the gap between architecture optimization techniques and MDE
or CBSE techniques [1,19,17]. These works aim at providing more generic
solutions, applicable for a wider set of optimization problems.

Aleti et al. [1] developed a framework called ArcheOpterix, using AADL
to describe input architectures. This framework defines interfaces for architec-
ture analysis, optimisation, and constraints validation. ArcheOpterix has been
experimented with several multi-objective optimisation techniques including
evolutionary algorithms, ant colonies, or simulated annealing.

Following the same principles, Martens et al. [19] developed a framework
called PerOpteryx, using the Palladio Component Model to describe input
architectures. This framework proposes to use EAs, combining genetic opera-
tors and so called tactics, in order to optimize architectures exhibiting several
degrees of freedom. In PerOpterix, tactics encode the expertise of designers
with well identified architectural patterns. Tactics in PerOpteryx are simi-
lar to model transformations in our approach. However, as opposed to model
transformations formalized with a dedicated language, tactics are internal op-
erators of PerOpteryx and their applicability is detected dynamically during
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the optimization process. As a consequence, it is difficult to constrain a priori
the composition of tactics.

Li et al.[17] developed a framework called AQOSA, using AADL to describe
input architectures. This framework also integrates modelling technologies,
performance analysis methods, and EAs to improve extra-functional proper-
ties of architectural models. In addition, they provide a comparison of results
obtained with different versions of EAs.

Contrasting with these approaches, RAMSES relies on a rule-based model
transformation language and brings the following benefits: first, explored archi-
tectures are guaranteed to respect predefined structural constraints a priori,
i.e. before the transformation is executed. Second, design alternatives are more
precisely defined using model transformations, and complex design spaces can
be explored by chaining transformations. Contrasting with our work, exist-
ing approaches do not provide solutions when (i) several design steps have to
be explored and (ii) EFPs of candidate architectures can be assessed only if
design decisions have been made for each step. Last but not least, the explo-
ration engine is generic, and can be completly reused to solve different types
of optimization problems. Appart from the model transformation chains, our
framework was already experimented on another case-study using the same
exploration engine [22]. Of course, the genericity of our solution has a price
in terms of efficiency to converge towards good or near-optimal architectures.
However we demonstrated in our experiments that when enforcing structural
constraints a priori we were able to find solutions; but considering these
constraints a posteriori did not work. We thus believe that our framework,
despite of its genericity, should be more efficient than existing approaches
when architectures to explore have to respect stringent structural constraints.
In addition, our experience shows structural constraints do appear rapidly
when precisely defining design alternatives (using model transformations for
instance).

In the next subsection, we study related works aiming at automating design
space exploration by model transformations.

9.3 Design Space Exploration By Model Transformations

To deal with quality attributes of architectures using model transformations,
a first approach was proposed in [20]: given a set of architectural patterns, and
a catalogue of model transformations, a method was proposed to guide archi-
tects towards architectures that comply with EFPs. However, this method is
limited to horizontal model transformations (i.e. model transformations with
the same abstraction level for the source and target model). Insfran et al. [14]
reused the notion of quality-driven model transformations in a semi-automatic
approach to select architectural alternatives. Contrasting with our approach,
this method requires to know a priori the impact of model transformations on
EFPs of produced architectures. With complex architectures and model trans-
formations, this knowledge might be difficult to formalize. Similarly, Loniewski
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et al. [18] proposed a semi-automatic approach, based on HOTs, to compose
model transformations in order to improves EFPs.

Besides, none of these approaches is fully automated. This becomes a strong
limitation when considering huge design spaces. To overcome this limitation,
Drago et al. [9] proposed an extension of the model transformation language
qvt-relations in order to automate design space exploration from the descrip-
tion of model transformation alternatives. However, to the best of our knowl-
edge, the exploration engine proposed in this work does not rely on any well-
identified optimization technique. As a consequence, it is difficult to assess
whether this approach scales for complex design space exploration problems.

10 Conclusion and Future Works

In this paper, we propose an approach combining multi-objective optimiza-
tion techniques and model transformation techniques to explore a design space
made up of architectural candidates. In this approach, design alternatives are
specified using a well-known model transformation language, ATL, thus pro-
viding several advantages with respect to existing methods: the exploration
engine can be reused withtout modifications for different optimization prob-
lems, EFPs analysis methods can be reused to evaluate candidate architec-
tures (i.e. output models), the verification that explored architecture respect
predefined structural constraints is efficiently performed using SAT solving
techniques, and complex design spaces can be explored by chaining model
transformations.

Facing the problems raised by architecture exploration, and in particu-
lar the combinatory explosion of transformation alternatives, we automated
the composition of transformations using an evolutionary algorithm. This re-
quired to structure model transformation alternatives in order to guarantee
that genetic operators (e.g. mutation, crossover) are correctly applied: with
our solution, new transformation alternatives resulting from the application
of genetic operators necessarily produce correct architectures (i.e. satisfying
structural constraints).

Our method was prototyped in RAMSES, an AADL refinement frame-
work that interleaves model transformations and analysis to automate the
production of real-time embedded systems. Our approach was experimented
on several source AADL models, and provided results showing the capacity of
our method to explore efficiently the design space generated by transformation
alternatives.

In our future works, we plan to improve the performances of our architec-
ture exploration engine in order to scale to even more complex case-studies. In
particular, we plan to implement a dedicated ATL runtime in order to reduce
the computation time overhead due to the usage of HOTs.
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