ADVANCES IN MATHEMATICS OF COMMUNICATIONS d0i:10.3934/amc.2016.10.53
VoLuME 10, No. 1, 2016, 53-61

YET ANOTHER VARIATION ON MINIMAL LINEAR CODES

GERARD COHEN

Télécom ParisTech, UMR 5141, CNRS
46 rue Barrault, 75634 Paris Cedex 13, France

SIHEM MESNAGER

University of Paris XIII and Paris VIII, Télécom ParisTech
LAGA, UMR 7539, CNRS, Sorbonne Paris Cité, France

HUGUES RANDRIAM

Télécom ParisTech, UMR 5141, CNRS
46 rue Barrault, 75634 Paris Cedex 13, France

(Communicated by Raquel Pinto)

ABSTRACT. Minimal linear codes are linear codes such that the support of
every codeword does not contain the support of another linearly independent
codeword. Such codes have applications in cryptography, e.g. to secret shar-
ing. We pursue here their study and construct improved asymptotically good
families of minimal linear codes. We also consider quasi-minimal, ¢t-minimal,
and t-quasi-minimal linear codes, which are new variations on this notion.

1. INTRODUCTION

A minimal codeword ¢ of a linear code C' is a codeword such that its support
(set of non-zero coordinates) does not contain the support of another linearly inde-
pendent codeword. Minimal codewords are useful for defining access structures in
secret sharing schemes using linear codes ([14, 15]). Determining the set of minimal
codewords is hard for general linear codes, although this has been studied for some
classes of specific linear codes. This led to work on how to find codes where all
codewords are minimal, in order to facilitate the choice of access structures. The
problem of finding a code satisfying this condition, called a minimal linear code has
first been envisioned in [11] and later studied in [6, 20, 21].

In [6], the motivation for finding minimal linear codes is no longer secret sharing
but in a new proposal for secure two-party computation, where it is required that
minimal linear codes be used to ensure privacy.

Minimal codes are close to the notions of intersecting and separating codes [7, 8,
16], hashing and parent-identifying codes [1, 10]. Such codes have been suggested
for applications to oblivious transfer [5], secret sharing [2, 3, 11, 20] broadcast
encryption or digital fingerprinting [19].

We mainly consider here the less studied and more involved non-binary case,
where the notion of minimal codes is more restrictive than that of separating codes.
This extension is meaningful, since secret-sharing and secure two-party computa-
tions both require a large alphabet.
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We continue in Section 2 the study of [9] on bounds and criteria for minimal
linear codes and exhibit families of minimal codes with better rates (asymptotically
non-zero). In Section 3, we relax the notion of minimal codes and introduce quasi-
minimal linear codes. Quasi-minimal linear codes are codes where two non-zero
codewords have the same support if and only if they are linearly dependent. This
slight relaxation enables to exhibit families with improved non-zero asymptotic
rates.

Finally, we consider yet another generalization to -minimal and t-quasi-minimal
codes, where we impose that these conditions of non-inclusion or non-equality of
the supports should be guaranteed by at least ¢ of the coordinates.

2. MINIMAL CODES: BOUNDS AND CONSTRUCTIONS

2.1. NOTATION AND PRELIMINARIES. We denote by |F| the cardinality of a set
F. Let ¢ = p", where p is a prime number and h € Nx. An [n,k,d, dpmaz], code
is a vector subspace of Fy of dimension k£ . The last two parameters refer to
the minimal (resp. maximal) Hamming distance between two codewords of C, or,
equivalently, the minimal (resp. maximal) Hamming weight of a codeword of C;
they will be omitted when irrelevant. Normalized parameters will be denoted by
R=Ek/n,§ =d/n,dmaz = dmaz/n-

The support of a codeword ¢ € C is supp(c) = {i € {1,...,n}|c; # 0}. The
Hamming weight of a codeword ¢ € C denoted by wt(c) is the cardinality of its
support : wit(c) = |supp(c)|. A codeword ¢ covers a codeword ¢ if supp(c’) C
supp(c).

A code is intersecting if the intersection of the supports of two nonzero codewords
is not empty.

Definition 1 (Minimal codeword). A codeword c is minimal if it only covers Fy - ¢,
i. e. if V' € C, (supp(c’) C supp(c)) = (¢, ) linearly dependent.

Definition 2 (Minimal linear code, [11]). A linear code C is minimal if every
(non-zero) codeword ¢ € C is minimal.

Note that this definition of minimality differs from the one in [14], where the
leftmost non-zero component of a minimal codeword is restricted to be 1. Both
definitions seem to co-exist; the one we adopt here is closer to the set-theoretic
interpretation.

For a complete treatment and general references in coding theory, we refer to the
book of MacWilliams and Sloane [13].

2.2. BounDs. Two non-constructive bounds on the rates of minimal codes are ex-
hibited in [6]. We recall them without proofs.

Theorem 3 (Maximal Bound, [6]). Let C a minimal linear [n, k,d] g-ary code, then
R <log,(2).

. . 1 2
Theorem 4 (Minimal Bound, [6]). For any R, 0 < R = k/n < jlog (=% +7),
there exists an infinite sequence of [n, k] minimal linear codes.

2.3. A SUFFICIENT CONDITION. If the weights of a linear code are close enough
to each other, then each (non-zero) codeword of the code is a minimal vector as
described by the following statement.
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Proposition 5 ([2]). Let C be an [n,k,d,dpaq] code. If 79— > 9=% then C is
minimal.

Remark 6. Note that the stronger sufficient condition % > q%l fails to provide

asymptotically good codes; indeed, by the Plotkin bound ([13], for any code, not
necessarily linear, of length n, size M and distance d, if d > (¢ — 1)n/q, then
M <df(d—(1-qb)).

On the other hand, for § < 1 — ¢~ !, the classical Varshamov-Gilbert bound [12]
guarantees the existence of asymptotic families of codes with non-zero rate R(9, q).

Remark 7. The previous condition is only sufficient, as proved in [9]: start with the
celebrated tetracode T'[4,2,3,3]s. Consider its iterated tensor (Kronecker) powers
(see later for a definition); one gets successively T2[16,4,9,12] and T%4[256, 16,81, >
144]. This code does not satisfy the condition but is nevertheless minimal.

Remark 8. On the other hand, this condition is tight, as shown by the non-minimal
Reed-Solomon RS[q,2,q — 1,4q], code generated when ¢ = p is prime by the two
codewords (0,1,2...,p — 1) and (1,1, ..., 1) of weight p — 1 and p respectively.

2.4. INFINITE CONSTRUCTIONS. The general idea is to concatenate a g-ary “seed”
or inner code (e.g. a simplex) with an infinite family of algebraic-geometric (AG)
codes (the outer codes) [22], in such a way as to obtain a high enough minimum
distance and conclude by Proposition 5.

In practice, we can take the seed to be the simplex code S, .[n = (¢" — 1)/(q¢ —
), k=rd=dpne: =q '], (with 6 > (¢g—1)/q), set r = 2m and concatenate with
AG[N,K = NR,D = NA, Dy = NAjag)q2m. These codes exist lying almost on
the Singleton bound, namely satisfying R+ A =1—(¢™m —-1)"* > (¢—1)/q.

This concatenation results in the family C'[nN, kK, dD], with maximum distance
at most dyaN. If dD/dpaaN = A > (g — 1)/q, this family is minimal by Propo-
sition 5.

It is not hard to check that, for example, choosing ¢ large and « small enough,
m>2,A=(g—1)/g+a,R=1/¢—1/(¢™ — 1) — a > 0, this is the case.

To summarize, we construct infinite families of codes with R = 2m(1/q—1/(¢™ —
1) —a)(qg—1)/(¢*™ — 1) ~ 2m/¢*>™ satisfying 6/6maz > (¢ — 1)/q, thus minimal.
Note that, by the Plotkin bound, they necessarily satisfy ¢ < (¢ — 1)/q, so the fact
that 6,42 < 1 is crucial.

3. QUASI-MINIMAL CODES

We now relax the notion of minimal codes to that of quasi-minimal codes. In
words, minimality prevents a codeword from having its support included in the
support of a linearly independent codeword, whereas quasi-minimality only prevents
two linearly independent codewords from having the same support.

3.1. DEFINITIONS AND PROPERTIES.

Definition 9 (Quasi-minimal codeword). A codeword c is quasi-minimal if V¢’ €
C, (supp(c’) = supp(c)) = (c,c) linearly dependent.

Definition 10 (Quasi-minimal linear code). A linear code C is quasi-minimal if
every (non-zero) codeword ¢ € C is quasi-minimal.

Quasi-minimality is clearly weaker than minimality. For instance, every binary
code is quasi-minimal.
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3.2. A CONSTRUCTION. We now recall a construction from [9] based on the Kro-
necker (tensor) product of codes, which yields infinite families of quasi-minimal
codes with relatively slowly decreasing rates. The proof we provide here is slightly
different and paves the way for a generalisation (see Proposition 26).

Proposition 11. The Kronecker product C; ® Co of a quasi-minimal [ny, ky,d;,
(dmaz)1lq code C1 and of a quasi-minimal [ne, ko, da, (dmag)2]q code Ca is a quasi-
minimal [nq X e, k1 X ka2, d1 X da, dmaz > (dmaz)1 X (dmaz)2]q code.

The parameters are easy to check, so in the following proof we focus on quasi-
minimality. Also we can suppose ¢ > 2, otherwise there is nothing to prove.

Proof. We view codewords of C; ® Cs as matrices with rows in Cy and columns in
Ci. So given two codewords m,m’ € C; ® Cy, we let v, r'* € Cy be their i-th row
and ¢/, ¢ € Cy their j-th column, respectively.

Now suppose supp(m) = supp(m’). Then for each i,j we have supp(r
supp(r't) and supp(c’) = supp(c?). By quasi-minimality, this means r"* =
and ¢/ = ;7 for some A\, pu; € FX.

To conclude it suffices to show all \; with r* # 0 are equal. So suppose rit,r#2 £
0. Since g > 2, Cy is intersecting (see Proposition 19 below), so we can choose
j € supp(rt) N supp(r®?). Looking at the (i1, j) and (is,j) entries, we find \;, =
[ = Ay, as claimed. O

)\i’/’l

3.3. A SUFFICIENT CONDITION. We now state a sufficient condition from [9] for
quasi-minimality, weaker than the one for minimality. This allows us to construct
improved infinite classes of asymptotically good quasi-minimal codes by concatena-
tion. We provide a generalised version of this result and its proof later (see Theorem
27).

Theorem 12. Let C be a linear [n,k,d, dpmaz)q code; if d/dpaz > (¢ —2)/(q — 1),
then C' is quasi-minimal.

Example 13. For g = 3, consider the code G[11, 5, 6, 9]5 obtained by shortening the
extended ternary Golay code([13]). It is quasi-minimal by the previous theorem. Its
(Kronecker) square is G2, a [121, 25, 36, > 81]3 quasi-minimal code by the previous
proposition, although is does not satisfy the sufficient condition of Theorem 12.

Remark 14. Once again, the condition cannot be improved in general, as shown by
the trivial code [2,2,1,2]3, formed by taking all ternary vectors of length 2, which
is obviously not quasi-minimal yet satisfies d/dq = 1/2.

Now, the celebrated non-constructive Varshamov-Gilbert bound implies the ex-
istence of infinite families of semi-constructive quasi-minimal codes with rate R =
1-— hq(g:—%) > 0. This is still far from the upper bound, derived analogously to the
minimal case:

Theorem 15 (Maximal Bound). Let C be a quasi-minimal linear [n,k,d], code,
then R <log,(2).

3.4. INFINITE CONSTRUCTIONS OF QUASI-MINIMAL CODES. Again, we concatenate
a g-ary inner code (e.g. a simplex) with an infinite family of algebraic-geometric
(AG) codes to get a high enough minimum distance and conclude by Theorem 12.

Continue taking for seed S;.[n = (¢" = 1)/(¢ — 1),k = r,d = dpaz = ¢" g
set 7 = 2m and concatenate with AG[N,K = NR,D = NA],2m, obtaining the
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family C[nN, kK, dD],. Analogously to the minimal case, If dD/dpq N = A >
(g —2)/(q — 1), this family is quasi-minimal by Theorem 12.

Example 16. o Taking ¢ = 4,8,44[85,4,64]4,A > 2/3, R = 4/15, results in an
infinite construction of [n, 16n/1275] quaternary codes.

e For ¢ = 3, we can improve on the simplex code seed: take again C[11,5,6,9]3
as inner code and AG[N,NR, NAlss with R+ A = 191/208. Choose A =
3/4, R = 35/208; then concatenation results in an infinite construction of
quasi-minimal [n, =~ 0.076n] ternary codes.

Note that the last example relies on AG codes over fields of odd degree, which
is quite uncommon. This was made possible only thanks to the very recent results
from [4] concerning the number of points on curves over these fields; the interested
reader will find in [17, 18] another application of these results to a quite different
problem.

4. STRENGTHENING: ¢t-MINIMAL AND {-QUASI-MINIMAL CODES

Minimal and quasi-minimal linear codes are defined by conditions of non-inclusion
or non-equality of the supports of linearly independent codewords. We now strengthen
these notions by requesting that these conditions of non-inclusion or non-equality
be guaranteed by at least ¢ > 1 of the coordinates.

4.1. DEFINITION AND PROPERTIES.

Definition 17. e A codeword c is t-minimal if:
Ve e C,(|supp(c) \ supp(c)| <t) =  €F,-c.
e A codeword c is t-quasi-minimal if:
Ve € O, (|supp(c’) A supp(c)| <t) = ' €F) -c.

Here A denotes symmetric difference AA B = (A\ B)U (B\ A).
Note that for ¢ = 1 this definition reduces to the previous notions of minimality
and quasi-minimality. It also makes sense when c is the zero codeword.

Definition 18. A linear code C is t-minimal (resp. t-quasi-minimal) if every
codeword ¢ € C'is t-minimal (resp. t-quasi-minimal).

Proposition 19. We have the following diagram of implications between properties

of C':

t-minimal == minimal —> intersecting
b}
y I T

t-quasi-minimal —> quasi-minimal
with the last one holding only for q¢ > 2.

Proof. The left square of implications is obvious. Now by contradiction suppose C
is not intersecting, so there are ¢,¢’ € C with disjoint supports. Then supp(c) is
contained in supp(c + ¢’), so C' is not minimal. Moreover if ¢ > 2, choose A € Fg,
A #0,1. Then ¢+ ¢’ and ¢ + Ac’ are linearly independent with the same support,
so C is not quasi-minimal. O
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4.2. UPPER BOUNDS. We let A,;(n,d) be the maximal cardinality of a g-ary code
of length n and minimum distance d, and then a4(n,d) = log, Ay(n,d) and a4(5) =
lim sup, 2e(m:1on)

n n .
Lemma 20. Let C be an [n, k] code over F, and let ¢ € C be t-minimal of Hamming
weight w. Then, projecting C' on the complement of the support of ¢ yields an
[n—w,k—1,t code.

Proof. Indeed, the kernel of this projection has dimension one (being spanned by
c). O

Theorem 21. Let C be an [n,k,d,dmax] code. Suppose C is t-minimal. Then
dimC <1+ aq(n — dmax, t).

As a consequence, an asymptotic family of t-minimal codes with k ~ Rn, dpax ~
Omax?, and t ~ 1n, can exist only if R < ag(7/(1 — dmax))-

Proof. Apply Lemma 20. O

On the other hand for t-quasi-minimality we have:

Theorem 22. Let C be an [n, k] code. Suppose C is t-quasi-minimal. Then k <
log, Az(n,t).

As a consequence, an asymptotic family of t-quasi-minimal codes with k ~ Rn
and t ~ Tn can exist only if R <log,(2)az(T).

Proof. By quasi-minimality, codewords of C are determined by their supports. And
then by t-quasi-minimality, the characteristic functions of these supports form a
binary code of minimum distance at least ¢. 0

4.3. (ASYMPTOTIC) LOWER BOUNDS.

Lemma 23. For any realy > 1 and 0 < 7 < yj_;il we have
L]
> <”) (q— 1)y = gD los W) HHa(me(l)
1

i=0
as n — 0o, where Hy(x) = zlog,(q¢ — 1) — xlog, x — (1 — x)log, (1 — x) is the g-ary
entropy function.
Proof. This is a very standard computation. Its main steps are:

e The sum has same order of magnitude as its maximal term.

e The ratio between consecutive terms is 7 X % > 1 for i < |mn] and
n — oo, thanks to our condition 0 < 7 < ngil.
e Hence the maximal term is for ¢ = |7n], and the given estimation follows
from Stirling’s formula. O
Theorem 24. Suppose T < qqzl and

R<1- %((1 — ) log,(¢* — g+ 1) + Hy(7)).

Then there exists an asymptotic family of [n, k] codes that are t-minimal, with k ~
Rn and t ~ mn.
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Proof. First we count the number N of “bad pairs”, which means ordered pairs of
words (a, b) with (|supp(b)\supp(a)| < t). So a pair is bad iff there are i < ¢ positions
where (a;,b;) = (0,# 0), while in the remaining n — ¢ positions (a;,b;) # (0,7 0).

Hence usmg Lemma 23 we find

N = Z ( ) g 1)i(q? — g+ 1) = (=) ok, (=t 1)+ Hy (D) +o(1))

Among these there are O(q™) pairs with (a, b) linearly dependent, which is negligible
(indeed, the term i = 0 in the sum already gives N > (¢*> — ¢+ 1)" > (3¢)").
On the other hand, the number of [n, k] codes is the Gaussian binomial coefficient

[ﬂ . A pair of linearly independent words is contained in {Z : ;} such codes. Now

-1
we have {Z} : [Z_ ﬂ = ¢2*(—R+o(1)) ~ N by our hypothesis on R, or said

otherwise, {Z] > N- [Z : g} . From this we conclude that there is at least one [n, k|

code that contains no bad pair, which means it is ¢-minimal, as claimed (and in
fact, as n goes to infinity, any random code will do the job with probability 1). O

Theorem 25. Suppose 7 < 2‘;;2 and

R<1- %((1 —7)log,(¢°/2 = g+ 1) + Hy(7) + log,(2)).

Then there exists an asymptotic family of [n, k] codes that are t-quasi-minimal, with
k~ Rn andt ~ tn.

Proof. As above we count the number IV of “bad pairs”, which means ordered pairs
of words (a,b) with (|supp(b) A supp(a)| < t). So a pair is bad iff there are i < ¢
positions where (a;,b;) = (0,% 0) or (# 0,0), while in the remaining n — ¢ positions
(a;,bi) # (0,7 0), (# 0,0). We find

N = Z( ) 29 —2)"(¢* —2q¢+2)""
t—1

=23 (e v -arr

= ¢g"((1-7) log, (4% /2—q+1)+H,(7)+log, (2)+0(1))
and we conclude likewise. O
4.4. A CONSTRUCTION. We now extend Proposition 11 to higher (quasi) minimal-
ity.
Proposition 26. Let Cy be t1-minimal (resp. ti-quasi-minimal) and Cy be to-
minimal (resp. ta-quasi-minimal). Then Cy @ Cy is tita-minimal (resp. tite-quasi-
minimal).
Proof. We view codewords of C; ® Cs as matrices with rows in Cy and columns in
C1. So given two codewords m,m’ € C; ® Cy, we let r*,7"* € Cs be their i-th row
and ¢/, c¢” € Cy their j-th column, respectively.

First we deal with minimality. Suppose

|supp(m”) \ supp(m)| < t1ts.
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Set
I'={i [supp(r") \ supp(r')| > ta},
J = {j; Isupp(c”?) \ supp(c’)| = t1}.
Then necessarily we have |I| < t; and |J| < ta.

Now since Cs is to-minimal, for each i ¢ I, there is A\; € Fy such that 't = N\t
This implies that for each j, we have supp(c”) \ supp(¢’) C I, so |supp(c”) \
supp(c?)| < |I| < t1, which means J = (). By symmetry we also get I = ().

To conclude it suffices to show all A; with 7 # 0 are equal. So suppose r, 72 = (.
By Proposition 19, Cy is intersecting, so we can choose j € supp(r®t) N supp(ri?).
Then, since J = () and C; is ¢;-minimal, there is p; € F, such that ¢V = p;c/.
Looking at the (i1,7) and (i2,7) entries, this gives \;, = p; = A,,, as claimed.

Now we deal with quasi-minimality. For ¢ = 2 the result is already known, since
t-quasi-minimality just means minimum distance at least t. So we can suppose
q > 2. We then proceed exactly as above, with symmetric difference A replacing
ordinary set difference \, and with the \; in F) instead of F,. In the last step we
will need C5 to be intersecting, which is true for ¢ > 2 by Proposition 19 again. [

4.5. A SUFFICIENT CONDITION. We prove here an extension of Theorem 12 to ¢-
quasi-minimality.

Theorem 27. Let C be a linear [n, k,d, dpmaz]q code. If (g —1)d > (¢ — 2)dmae +
q(t —1)/2, then C is t-quasi-minimal.

Proof. Let C be a linear [n, k,d], code and let ¢,¢’ be two linearly independent
codewords of C such that |supp(c’) A supp(c)| < t. Let « be a primitive element of
F4. Then, w.l.o.g., after a suitable permutation of coordinates, one can write c and
¢ by blocks, in the following way (where 7 and 6 denote blocks of nonzero elements
with total length |n| + |0] < ¢):

¢ = Boll- - [[Bg—2lmllof|0]],
¢ = a’Bol|... [l By—2|[0]|0]]0.

) q—2
Let A; be the size of the (possibly empty) block ;. Then wt(a?c) = > A; + |n|
i=0

q—2 )
and wt(c’) = > A; + |0]. We also have, for j =0,...,¢—2, S; = d(d/c,d) =
i=0
Y>> Ai+|n| + 10| > d. If we sum all these inequalities and set S := )" .S}, we get
i#]
q—2
(q-1)d<S=(q-2)Y Ai+(g—1)(Inl+10])
i=0
= (¢ = 2)(wi(c) + wi(c")/2 + q(In| +161)/2
< (q - 2)dnzax + Q(t - 1)/27
a contradiction. Thus, ¢ and ¢ cannot exist and C' is t-quasi-minimal. O

Final Questions. - Is it true that the best achievable rate of (t) (quasi)- minimal
codes is a decreasing function of q? A weaker statement holds: if q divides ¢, then
a q'- ary (t) (quasi)- minimal code yields a q-ary (t) (quasi)-minimal code with the
same rate.

- We have studied quite a few extensions of the original notion of minimality; it
is definitely an interesting future research topic to find applications for those.
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