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Abstract. In a finite game the Stochastically Stable States (SSSs) of adaptive
play are contained in the set of minimizers of resistance trees. Also, in poten-
tial games, the SSSs of the log-linear learning algorithm are the minimizers of
the potential function. The SSSs can be characterized using the resistance trees
of a Perturbed Markov Chain (PMC), they are the roots of minimum resistance
tree. Therefore, computing the resistance of trees in PMC is important to ana-
lyze the SSSs of learning algorithms. A learning algorithm defines the Transition
Probability Function (TPF) of the induced PMC on the action space of the game.
Depending on the characteristics of the algorithm the TPF may become com-
posite and intricate. Resistance computation of intricate functions is difficult and
may even be infeasible. Moreover, there are no rules or tools available to simplify
the resistance computations. In this paper, we propose novel rules that simplify
the computation of resistance. We first, give a generalized definition of resistance
that allows us to overcome the limitations of the existing definition. Then, using
this new definition we develop the rules that reduce the resistance computation
of composite TPF into resistance computation of simple functions. We illustrate
their strength by efficiently computing the resistance in log-linear and payoff-
based learning algorithms. They provide an efficient tool for characterizing SSSs
of learning algorithms in finite games.

Key words: potential games, learning algorithms, log-linear learning, perturbed
markov chains, resistance of transitions

1 Introduction

In a finite repeated game if players sometimes make mistakes in choosing an opti-
mal strategy and if all mistakes are possible and are time-independent then a perturbed
Markov process is induced on the action space of the game. As the probability of mis-
takes goes to zero the stationary distribution of the process concentrates on particular
equilibria. These are known as stochastically stable equilibria or Stochastically Stable
States (SSS) of the game [1]. The SSSs correspond to the roots of minimum resistance
trees where the resistance of a transition in a tree can be seen as the cost of deviating
from the optimal strategy [2]. Therefore, the computation of resistance of transitions of
a Perturbed Markov Chain (PMC) is important.
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The learning algorithm used by the player of the game defines the Transition Prob-
ability Function (TPF) of the induced PMC. Depending on the characteristics of the
learning algorithm the TPF can be composite and intricate. The resistance computation
of intricate TPF is difficult and may even be infeasible for some functions. Moreover,
there are no rules and no tools available in the literature to simplify the computation of
resistance. We focus on developing novel rules to simplify the resistance computations
of a general class of TPF.

As the perturbation slowly decreases the limiting stationary distribution of a PMC
exists and is unique [2]. The support of the stationary distribution is the root of the
minimum resistance tree. Exploring these results many learning algorithms for games
are analyzed in the literature. In the following, we discuss a few such algorithms.

Log-linear learning algorithm is used for potential games that models the load bal-
ancing problem of a heterogeneous wireless network [3]. In this algorithm, the log of
TPF is linear functions of the payoffs of the players [3–5]. This algorithm induces a
PMC on the action space of the game. The convergence of this algorithms is analyzed
as follows. First, using the TPF in (5) [5] the expression of resistance of transition is
(6) [5] is obtained. We observe that the derivation of this expression requires a careful
insight into the TPF to reduce it into a simplified form so that the resistance can be
obtained. Otherwise, in case the TPT cannot be reduced into a simple form then the
resistance may not be feasible to compute. Second, the resistance of a feasible path
in a tree is obtained using the structure of potential games. Finally, the SSSs of the
game are characterized by using the minimum resistance tree definition. Binary log-
linear learning algorithm is a reduced information algorithm, in which the log TPF is
linear function of the two most recent payoffs [5]. This algorithm was used to distribu-
tively balance the loads in heterogeneous networks using near-potential games [6]. The
computation resistance of transition is difficult in this case. The convergence of this al-
gorithm to the SSSs of a potential game is analyzed in the similar way as in log-linear
algorithm [5, 6].

A payoff-based learning algorithm is obtained by combining log-linear algorithm
and binary log-linear algorithm [5]. Due to the combination of two algorithms, the
TPF is much involved. Therefore, the computation of resistance of transition is much
involved and difficult. The convergence of this algorithm is also analyzed in a similar
way as in log-linear algorithm. Adaptive play algorithm was applied to acyclic game to
characterize its SSSs using the resistance trees [2]. A class of trial and error learning
algorithms for any finite game are also analyzed using the resistance trees [7,8]. Due to
the different modes of learning in these algorithms the TPF becomes complicated and
the resistance computation is difficult.

In the above literature survey, we see that the computation of resistance are used for
characterizing the SSSs of many learning algorithms in games. Therefore, in this paper,
we develop new rules that ease the computation of resistance of intricate TPF. To do
this, we first give a generalized definition of resistance for any positive function. The
new definition overcomes the limitation of the existing old definition of resistance. For
example, the limit in the old definition of resistance is not always be feasible to evaluate
for some functions, see Section 3. The new definition allows us to define resistance
for any positive function. Thereby, allowing us to propose new rules for computing



Rules for Resistance Computation 3

resistance. The proposed rules reduce the resistance computation of composite TPF into
resistance computation of simple functions. These rules provide a powerful tool that can
be used for analyzing the convergence properties of learning algorithms in finite games.

The rest of the paper is organized as follows. In Section 2, we give an overview of
resistance trees of PMC. In Section 3, we present new rules for resistance computation
and provide their proves. In Section 4, we illustrate the application of the proposed
rules. Conclusions are summarized in Section 5.

2 Overview of Resistance Trees

In this section, we first give a brief overview of resistance trees of a PMC. Then, us-
ing resistance trees we illustrate the convergence of log-linear learning algorithm in
potential games. For more details see [2, 5].

2.1 Resistance trees of PMC

A perturbed Markov process is characterized by a set {P τ} of transition matrices over
a state space X indexed by a parameter τ . Wherein, τ ∈ (0, τh] is a parameter that
controls the perturbation, τh is constant. Probabilities P 0

ab and P τab denote the transition
probabilities from state a to b in the unperturbed and the perturbed Markov chains,
respectively. The definition of resistance of transitions and the definition of a regular
perturbed Markov process are below [2].

Definition 1 (Resistance of transition). A perturbed Markov process {P τ} is a regular
if it satisfies the following conditions [2]:

1. P τ is aperiodic and irreducible for all τ ∈ (0, τh],
2. limτ→0 P

τ
ab = P 0

ab,
3. for a strictly positive TPF P τab there exists a non-negative number Rab called the

resistance of transition such that 0 < limτ→0+ e
Rab
τ P τab <∞.

Note that if P 0
ab > 0 then Rab = 0.

A tree, T , rooted at a state a, is a set of |X| − 1 directed edges such that, from
every other state a′, there is a unique directed path in the tree to a. The resistance of
the directed edge a → b is denoted as Rab. The resistance of a rooted tree, T , is the
sum of the resistances on its edges R(T ) =

∑
a,b∈T Rab. Let T (a) be defined as the

set of trees rooted at the state a. The stochastic potential of the state a is defined as
γ(a) = minT∈T (a)R(T ). A minimum resistance tree is a tree that has the minimum
stochastic potential, that is, any tree T that satisfies R(T ) = mina∈X γ(a).

The following theorem by [2, Lemma 1] gives the existence and uniqueness of the
stationary distribution of a PMC.

Theorem 1. Let {P τ} be a regular perturbed Markov process, and for each τ > 0, let
µτ be the unique stationary distribution of P τ . Then limτ→0 µτ exists and the limiting
distribution µ0 is a stationary distribution of P 0. The stochastically stable states are
the roots of minimum resistance trees.
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2.2 Convergence of log-linear learning algorithm using resistance trees [5]

Log-linear learning algorithm induces a regular perturbed Markov process over the ac-
tion space X of a n-player potential game [5]. Let a = (ai, a−i) denotes an action
profile of the players where ai denote the action of player i and a−i denotes the actions
of all the other players. Let Xi and X−i denote the action space of player i and action
space of other players, respectively. Let b = (a′i, a−i) denotes another action profile
where player i changes its action. For a ∈ X , let φ(a) and Ui(a) denote the potential
function and utility of player i, respectively. In a potential game, for all ai, a′i ∈ Xi and
for all a−i ∈ X−i, we have φ(a)− φ(b) = Ui(a)− Ui(b). Assuming that the player is
selected with uniform probability the transition probability function of log-linear learn-
ing algorithm is given as below [5, (5)].

P τab =
1

n

exp
(
Ui(a

′
i,a−i)
τ

)
∑
ai∈Xi exp

(
Ui(ai,a−i)

τ

) (1)

The first step in the proof of convergence is to derive an expression of resistance of
transition. Let V (a−i) := maxai∈Xi Ui (ai, a−i) and Bi (ai) denotes the set of actions
that have the maximum utility. Multiplying the numerator and denominator of (1) by

e
V (a−i)

τ , we obtain

P τab =
1

n

exp
(
V (a−i)−Ui(a′i,a−i)

τ

)
∑
ai∈Xi exp

(
V (a−i)−Ui(ai,a−i)

τ

) . (2)

After simplifying the above equation, we obtain

lim
τ→0+

P τab

exp
(
V (a−i)−Ui(a′i,a−i)

τ

) =
1

n |Bi (ai)|
. (3)

Since, the above limit is positive and finite the induced process is a regular Markov
process and the resistance according to Definition 1 is

Rab = V (a−i)− Ui(a′i, a−i). (4)

Second step is to obtain the resistance of a path in the resistance trees. This is ob-
tained in Lemma [5, Lemma 3.2] that we present below.

Lemma 1. Let P =
{
a0 → a1 → . . .→ am

}
and PR =

{
am → am−1 → . . .→ a0

}
be feasible forward path and reverse path, respectively. If all the players in a n-player
potential game with potential function φ : X → R, adhere to log-linear learning
algorithm then the difference of resistance of paths is

R (P)−R
(
PR
)
= φ

(
a0
)
− φ (am) . (5)

The final step is to prove that the stochastically stable states of the log-linear algo-
rithm are the potential function maximizers of the potential game. This is accomplished
by using Lemma 1 and minimum resistance tree definition. The detailed proof of the
following theorem can be found in Proposition [5, 3.1].
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Theorem 2. If all the players of a potential game adhere to log-linear learning algo-
rithm then the stochastically stable states are the potential function maximizers.

3 Rules for Computing Resistance

The resistance in Definition 1 can be computed in case the transition function can be
factorised into simple function and in case the limit can be evaluated as shown in Sec-
tion 2.2. However, transition functions can be composite and intricate that cannot al-
ways be simplified. Moreover, the limit in Definition 1 cannot always be feasible to
evaluate. For example, when P τab = τ , the limit cannot be evaluated. To overcome these
limitations of Definition 1 we first give a new generalised definition of resistance that
allows us to develop easy rules to compute the resistance of any positive function.

Let o (.) and ω (.) denote little “o” order and little “ω” order, respectively.

Definition 2 (Resistance of positive function). The resistance of a strictly positive
function f(τ) is Res(f) if there exists a strictly positive function g(τ) such that
g ∈ o

(
ek/τ

)
and g ∈ ω

(
e−k/τ

)
for any k > 0; and

lim
τ→0

f(τ)

g(τ)e−
Res(f)
τ

= 1. (6)

Remark 1. Note that Definition 2 includes Definition 1, in which g(τ) = κ, 0 < κ <∞.
Now, we can evaluate the resistance of P τab = τ , i.e., Res(τ) = 0.

Remark 2. Note that (6) is equivalent to

f(τ) = g(τ)e−
Res(f)
τ + h(τ), (7)

where h(τ) ∈ o
(
g(τ)e−

Res(f)
τ

)
.

Remark 3. We call g(τ) as a sub-exponential function if g ∈ o
(
ek/τ

)
and g ∈

ω
(
e−k/τ

)
for any k > 0. Note that it is equivalent to |log g| ∈ o

(
1
τ

)
.

Lemma 2. Consider any two sub-exponential functions g1(τ) and g2(τ). Consider two
real numbers R1 and R2. If R1 < R2 then

g2(τ)e
−R2/τ ∈ o

(
g1(τ)e

−R1/τ
)
. (8)

Proof. Let k be a real number. Then

lim
τ→0

g2(τ)e
−R2/τ

g1(τ)e−R1/τ
= lim
τ→0

g2(τ)

e−(R2−k)/τ

[
g1(τ)

e−(R1−k)/τ

]−1
. (9)

The above limit goes to zero when we choose R1 < k < R2. This is because the first
factor goes to zero as R2 − k > 0. Also, the second factor goes to zero as R1 − k < 0.
Recall that it is because g1 and g2 are sub-exponential.
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Lemma 3. If Res(f) exists then it is unique.

Proof. Assume that function f have two different resistances R1 and R2. Then, there
exist g1, g2, h1, h2 such that

f(τ) = g1(τ)e
−R1

τ + h1(τ) = g2(τ)e
−R2

τ + h2(τ), (10)

where h1(τ) ∈ o
(
g1(τ)e

−R1
τ

)
and h2(τ) ∈ o

(
g2(τ)e

−R2
τ

)
. Let R1 < R2. Using

Lemma 2, we have h2 ∈ o
(
g1(τ)e

−R1
τ

)
. Rearranging terms in (10), we have

1 +
h1(τ)

g1(τ)e−
R1
τ

=
g2(τ)e

−R2
τ

g1(τ)e−
R1
τ

+
h2(τ)

g1(τ)e−
R1
τ

. (11)

Using Lemma 2 to evaluate the limit of the above equation as τ goes to zero, we arrive
at contradiction that 1 = 0.

The following proposition gives the rules for computing Res(f).

Proposition 1. Let f, f1 and f2 be strictly positive functions. Let κ be a positive con-
stant. If Res(f1) and Res(f2) exist then

I f1(τ) is sub-exponential if and only if Res(f1) = 0. In particular Res(κ) = 0,
II Res(e−κ/τ ) = κ,

III Res(f1 + f2) = min {Res(f1),Res(f2)},
IV Res(f1 − f2) = Res(f1), if Res(f1) < Res(f2),
V Res(f1f2) = Res(f1) + Res(f2),

VI Res( 1f ) = −Res(f),
VII If f1(τ) ≤ f2(τ), Res(f1) and Res(f2) exist then Res(f2) ≤ Res(f1),

VIII Let f1(τ) ≤ f(τ) ≤ f2(τ), If Res(f1) = Res(f2) then Res(f) exists and Res(f) =
Res(f1).

Remark 4. In Rule IV, if Res(f1) = Res(f2) then we cannot compute Res(f1 − f2)
because in general the difference of sub-exponential functions may not be a sub-
exponential function. For example, choose f1(τ) = 1 + e−k/τ and f2(τ) = 1 with
k > 0 then Res(f1) = Res(f2) = 0 but Res(f1 − f2) = k.

Remark 5. For Rule VIII, in general if f1(τ) ≤ f(τ) ≤ f2(τ) and Res(f1) 6= Res(f2)
then Res(f) may not exist. For example, for f(τ) = λ(τ)f1 + (1 − λ(τ))f2, λ(τ) =
1
2

(
cos
(
1
τ

)
+ 1
)

the Res(f) does not exist.

Proof. Proof of Rule I: Let f(τ) be a sub-exponential function. Choosing g(τ) = f(τ)

and substituting Res(f) = 0 in (6) we get limτ→0
f(τ)

f(τ)e−
Res(f)
τ

= 1. Therefore, we have

Res(f) = 0.
Assume Res(f) = 0. From (7), we have f(τ) = g(τ) + h(τ), which is a sub-

exponential function.
Let f(τ) = κ and g(τ) = κ then g(τ) ∈ o

(
e
κ
τ

)
and g(τ) ∈ ω

(
e−

κ
τ

)
, κ > 0.

Substituting these in (6) we have Res(κ) = 0.
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Proof of Rule II: Substituting f(τ) = e−κ/τ and g(τ) = 1 in (6) we get Res(f) = κ.
Proof of Rule III: Let Res(f1) and Res(f2) be the resistances of functions f1 and

f2, respectively. Then, from (7) we have f1(τ) = g1(τ)e
− Res(f1)

τ + h1(τ), f2(τ) =

g2(τ)e
− Res(f2)

τ +h2(τ), where h1(τ) ∈ o
(
g1(τ)e

− Res(f1)
τ

)
, h2(τ) ∈ o

(
g2(τ)e

− Res(f2)
τ

)
.

The sum of two functions can be written as

f1(τ) + f2(τ) = g1(τ)e
− Res(f1)

τ

(
1 +

h1(τ)

g1(τ)e−
Res(f1)
τ

+
g2(τ)e

− Res(f2)
τ

g1(τ)e−
Res(f1)
τ

+
h2(τ)

g1(τ)e−
Res(f1)
τ

)
, (12)

Consider the case when Res(f1) < Res(f2). Using Lemma 2 we have
h2 ∈ o

(
g1(τ)e

− Res(f1)
τ

)
. Therefore, f1(τ) + f2(τ) = g1(τ)e

− Res(f1)
τ + h3(τ), where

h3(τ) ∈ o
(
g1(τ)e

− Res(f1)
τ

)
. According to (7), we have Res(f1 + f2) = Res(f1).

The case of Res(f1) = Res(f2) leads to the same result as shown below.

f1(τ) + f2(τ) = e−
Res(f1)
τ [g1(τ) + g2(τ)] + h1(τ) + h2(τ). (13)

Note that sum of sub-exponential functions g1(τ)+g2(τ) is a sub-exponential function.
Observe that h1(τ) + h2(τ) ∈ o

(
[g1(τ) + g2(τ)] e

− Res(f1)
τ

)
. As in the previous case,

according to (7) we have Res(f1 + f2) = Res(f1)
Proof of Rule IV: Also, it can be shown similarly to the proof of rule III that if

Res(f1) < Res(f2) then Res(f1 − f2) = Res(f1).
Proof of Rule V:

lim
τ→0

f1(τ)

g1(τ)e−
Res(f1)
τ

lim
τ→0

f2(τ)

g2(τ)e−
Res(f2)
τ

= lim
τ→0

f1(τ)f2(τ)

g1(τ)g2(τ)e−
Res(f1)+Res(f1)

τ

= 1. (14)

Therefore, Res(f1f2) = Res(f1) + Res(f2).
Proof of Rule VI: Since Res(f) exists, inverting both sides of (6), we have

lim
τ→0

f(τ)

g(τ)e−
Res(f)
τ

= 1 = lim
τ→0

1
f(τ)

1
g(τ)e

−−Res(f)
τ

. (15)

Note that 1
g(τ) is sub-exponential. Therefore, we have Res( 1f ) = −Res(f).

Proof of Rule VII: Assume that Res(f1) < Res(f2). Using Lemma 2, we have
g2(τ)e

−Res(f2)/τ ∈ o
(
g1(τ)e

−Res(f1)/τ
)

and h2 ∈ o
(
g1(τ)e

−Res(f1)/τ
)
.

f1 ≤ f2, (16)

g1(τ)e
−Res(f1)/τ + h1(τ) ≤ g2(τ)e−Res(f2)/τ + h2(τ), (17)

1 +
h1(τ)

g1(τ)e−Res(f1)/τ
≤ g2(τ)e

−Res(f2)/τ + h2(τ)

g1(τ)e−Res(f1)/τ
. (18)
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As τ → 0, we arrive at a contradiction that 1 ≤ 0. Therefore, Res(f1) ≥ Res(f2).
Proof of Rule VIII: We have 1 ≤ f(τ)

f1(τ)
≤ f2(τ)

f1(τ)
and Res

(
f2(τ)
f1(τ)

)
= Res(f2) −

Res(f1) = 0. By Rule I f2(τ)
f1(τ)

is sub-exponential. This implies that f(τ)
f1(τ)

is also sub-
exponential. Therefore, there exists g01(τ) such that

1 = lim
τ→0

f(τ)
f1(τ)

g01(τ)
= lim
τ→0

f(τ)

g01(τ)g1(τ)e−
Res(f1)
τ

lim
τ→0

g1(τ)e
− Res(f1)

τ

f1(τ)
, (19)

= lim
τ→0

f(τ)

g01(τ)g1(τ)e−
Res(f1)
τ

, (20)

where the product g01(τ)g1(τ) is also a sub-exponential function. Therefore, Res(f)
exists and Res(f) = Res(f1) = Res(f2).

4 Application of Proposed Rules

In this section, we illustrate the application and robustness of the proposed rules for
computing the resistance of composite TPFs.

4.1 Resistance of log-linear learning algorithm

By using Rule V and VI the resistance of Res (P τab) (1) is obtained as below.

Res (P τab) = Res
(
1

n

)
+ Res

(
e
Ui(a

′
i,a−i)
τ

)
− Res

( ∑
ai∈Xi

e
Ui(ai,a−i)

τ

)
. (21)

Applying the Rule III to the above equation, we have

Res (P τab) = Res
(
1

n

)
+ Res

(
e
Ui(a

′
i,a−i)
τ

)
− min
ai∈Xi

Res
(
e
Ui(ai,a−i)

τ

)
. (22)

Applying the Rule I and II, we get

Res (P τab) = −Ui(a′i, a−i)− min
ai∈Xi

(−Ui(ai, a−i)) = V (a−i)− Ui(a′i, a−i). (23)

4.2 Resistance of payoff-based learning algorithm

In this subsection, we illustrate the application of the proposed rules by obtaining the
expression of resistance payoff-based algorithm as in [5, Claim 6.1]. Let denotes two
states of PMC of this algorithm as z1 :=

[
a0, a1, x1

]
and z2 :=

[
a1, a2, x2

]
, where

a0, a1, a2 are action profiles and x1, x2 denotes the vectors representing whether the
players have experimented or not, x1i = 0 and x2i = 1 represents that the player i had
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experimented. The transition probability function of Payoff-based algorithm is much
involved as can be seen in [5, Claim 6.1].

P τz1→z2 =

 ∏
i:x1

i=0,x2
i=0

(
1− e−mτ

) ∏
i:x1

i=0,x2
i=1

e−
m
τ

|Xi|


 ∏
i:x1

i=1,a2i=a
0
i

e
Ui(a

0)

τ

e
Ui(a

0)

τ + e
Ui(a

1)

τ

 ∏
i:x1

i=1,a2i=a
1
i

e
Ui(a

1)

τ

e
Ui(a

0)

τ + e
Ui(a

1)

τ

 (24)

Using the Rule V, we have

Res (P τz1→z2) =
∑

i:x1
i=0,x2

i=0

Res
(
1− e−mτ

)
+

∑
i:x1

i=0,x2
i=1

Res
(
e−

m
τ

|Xi|

)
∑

i:x1
i=1,a2i=a

0
i

Res

 e
Ui(a

0)

τ

e
Ui(a

0)

τ + e
Ui(a

1)

τ

+
∑

i:x1
i=1,a2i=a

1
i

Res

 e
Ui(a

1)

τ

e
Ui(a

0)

τ + e
Ui(a

1)

τ


(25)

Applying the Rules III, IV, V, and VI, we have

Res (P τz1→z2) =
∑

i:x1
i=0,x2

i=0

min
{

Res (1) ,Res
(
e−

m
τ

)}
+

∑
i:x1

i=0,x2
i=1

[
Res

(
e−

m
τ

)
+ Res

(
1

|Xi|

)]

+
∑

i:x1
i=1,a2i=a

0
i

[
Res

(
e
Ui(a

0)

τ

)
− Res

(
e
Ui(a

0)

τ + e
Ui(a

1)

τ

)]

+
∑

i:x1
i=1,a2i=a

1
i

[
Res

(
e
Ui(a

1)

τ

)
− Res

(
e
Ui(a

0)

τ + e
Ui(a

1)

τ

)]
(26)

Simplifying further by applying the Rules I and II, we get

Res (P τz1→z2) =
∑

i:x1
i=0,x2

i=0

min {0,m}+
∑

i:x1
i=0,x2

i=1

[m]

+
∑

i:x1
i=1,a2i=a

0
i

[
−Ui(a0)−min

{
−Ui(a0),−Ui(a1)

}]
+

∑
i:x1

i=1,a2i=a
1
i

[
−Ui(a1)−min

{
−Ui(a0),−Ui(a1)

}]
(27)

Let V (a0, a1) = max
{
Ui(a

1), Ui(a
2)
}

, then we have
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Res (P τz1→z2) =
∑

i:x1
i=0,x2

i=1

m+
∑

i:x1
i=1,a2i=a

0
i

(
V (a0, a1)− Ui(a0)

)
+

∑
i:x1

i=1,a2i=a
1
i

(
V (a0, a1)− Ui(a1)

)
(28)

The above obtained expression of resistance is same as in [5, (13)], verifying it.

5 Conclusion

Novel rules are proposed for computing the resistance of transition of a perturbed
Markov chain. These rules reduce the computation of resistance of composite and
intricate transition probability function into the computation of resistance of simple
functions. These rules are simple and yet are powerful. The strength of these rules is
illustrated by using them to calculate efficiently the resistance of transition of the well-
known log-linear learning algorithm and the payoff-based learning algorithm. These
calculations are verified by comparing the obtained expressions with that of in the liter-
ature. These rules provide an efficient tool that can be used to characterize the stochas-
tically stable states of learning algorithms in finite games. We hope to apply these rules
for analyzing new algorithms based on perturbed Markov chains as well as new game
settings like potential games with noisy rewards [9].
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