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Abstract. Since 1970, Boolean functions have been the focus of a lot of at-
tention in cryptography. An important topic in symmetric ciphers concerns

the cryptographic properties of Boolean functions and constructions of Boolean

functions with good cryptographic properties, that is, good resistance to known
attacks. An important progress in cryptanalysis areas made in 2003 was the

introduction by Courtois and Meier of algebraic attacks and fast algebraic at-

tacks which are very powerful analysis concepts and can be applied to almost
all cryptographic algorithms. To study the resistance against algebraic attacks,

the notion of algebraic immunity has been introduced. In this paper, we use

a parameter introduced by Liu and al., called fast algebraic immunity, as a
tool to measure the resistance of a cryptosystem (involving Boolean function-

s) to fast algebraic attacks. We prove an upper bound on the fast algebraic

immunity. Using our upper bound, we establish the weakness of trace inverse
functions against fast algebraic attacks confirming a recent result of Feng and

Gong.

1. Introduction

Symmetric cryptosystems are commonly used for encrypting and decrypting ow-
ing to their efficiency. A classical model of symmetric cryptosystem are stream
ciphers. Most of them are composed of one or several Linear Feedback Shift Regis-
ter (LFSR) combined or filtered by a Boolean function. These cryptosystems have
been the objects of a lot of cryptanalyses and several design criteria have been pro-
posed concerning the filtering or combining functions. In several stream ciphers, the
generation of the keystream consists of a linear part, producing a sequence with a
large period, usually composed of one or several LFSR’s, and a nonlinear combining
or filtering function f that produces the output, given the state of the linear part.
Until 2003, a list of some main classical cryptographic criteria for designing such a
function f was known (see [1]) In 2003, new kinds of attacks drawn from an original
idea of Shannon [13] emerged; these attacks are called algebraic attacks and fast
algebraic attacks [4, 5, 9].

These attacks have changed the situation in symmetric cryptography by adding
a new criterion of considerable importance to this list.They proceed by modeling
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the problem of recovering the secret key by means of an over-defined system of
multivariate nonlinear equations of algebraic degree at most deg(f). The core of
algebraic attacks is to find out low degree Boolean functions g 6= 0 and h such that
fg = h. It is shown in [9] that this is equivalent to the existence of low degree
annihilators of f , that is, of n-variable Boolean functions g such that f · g = 0 or
(1 + f) · g = 0. The minimum degree of such g is called the algebraic immunity of
f , and we denote it by AI(f). It must be as high as possible (the optimum value
of AI(f) being equal to

⌈
n
2

⌉
). Fast algebraic attacks proceed in a different way but

having a high algebraic immunity is not only a necessary condition for resistance to
standard algebraic attacks but also for resistance to fast algebraic attacks.

Nowadays, the resistance against algebraic attacks and fast algebraic attacks, is
considered as an important cryptographic property for Boolean functions used in
stream ciphers. Both attacks are very powerful analysis concepts and can be applied
to almost all cryptographic algorithms.

The notion of algebraic immunity has received a wide attention since it is a pow-
erful tool to measure the resistance of standard algebraic attacks. Nevertheless, an
algebraic tool to handle the resistance to fast algebraic attacks is not clearly iden-
tified in the literature. To fill the gap, we introduce in Section 3 the notion of the
so-called fast algebraic immunity as a tool to measure the resistance of a cryptosys-
tem (involving Boolean functions) to fast algebraic attacks. Next, in Section 4, we
focus on the inverse function x 7→ x−1 over the finite field F2n which is an important
multi-output Boolean function, firstly introduced by Niberg [11]. Such a function
has several good cryptographic properties, including involutivity, high nonlinearity,
high algebraic degree, almost optimal differential uniformity etc. It has also been
used and adopted in many symmetric algorithms in stream and block ciphers. Us-
ing our tool, we demonstrate easily the weakness of trace inverse functions against
fast algebraic attacks, confirming a recent result of Feng and Gong.

This paper is organized as follows. Formal definitions and necessary preliminaries
are introduced in Section 2. Our main contributions described above are presented
in Sections 3 and 4.

2. Preliminaries and notation

Let n be any positive integer. In this paper, we shall denote by Bn the set of all
n-variable Boolean functions over Fn

2 . Any n-variable Boolean function f (that is
an application from Fn

2 to F2) admits a unique algebraic normal form (ANF), that
is, a representation as a multivariate polynomial over F2

f(x1, . . . , xn) =
⊕

I⊆{1,...,n}

aI
∏
i∈I

xi,

where the aI ’s are in F2. The terms
∏

i∈I xi are called monomials. The algebraic
degree deg(f) of a Boolean function f equals the maximum degree of those mono-
mials whose coefficients are nonzero in its algebraic normal form. If we identify Fn

2

with the Galois field F2n of order 2n, Boolean functions of n-variables are then the
binary functions over the Galois field F2n (one can always endow this vector space
with the structure of a field, thanks to the choice of a basis of F2n over F2) of order
2n. The weight of f , denoted by wt(f), is the Hamming weight of the image vector
of f , that is, the cardinality of its support supp(f) := {x ∈ F2n | f(x) = 1}.
For any positive integer k, and r dividing k, the trace function from F2k to F2r ,

denoted by Trkr , is the mapping defined as: ∀x ∈ F2k , T rkr (x) :=
∑ k

r−1
i=0 x2ir

.
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In particular, we denote the absolute trace over F2 of an element x ∈ F2n by

Trn1 (x) =
∑n−1

i=0 x
2i

.
Every non-zero Boolean function f defined on F2n has a (unique) trace expansion
of the form:

∀x ∈ F2n , f(x) =
∑
j∈Γn

Tr
o(j)
1 (ajx

j) + ε(1 + x2n−1)

called its polynomial form, where Γn is the set of integers obtained by choosing one
element in each cyclotomic class of 2 modulo 2n−1, o(j) is the size of the cyclotomic
coset of 2 modulo 2n − 1 containing j, aj ∈ F2o(j) and, ε = wt(f) modulo 2. The
algebraic degree of f is equal to the maximum 2-weight of an exponent j for which
aj 6= 0 if ε = 0 and to n if ε = 1. We recall that the 2-weight of an exponent j, that
we denote w2(j), is the number of 1 in its binary expansion.

The algebraic immunity [9] of a Boolean function f quantifies the resistance to the
standard algebraic attack of the pseudo-random generators using it as a nonlinear
function. It is defined as follows.

Definition 1 (Algebraic Immunity). Let f be an n-variable Boolean function. An
n-variable Boolean function g is said to be an annihilator of f if the product f · g
is null (that is, the support of g is included in the support of 1⊕ f). The algebraic
immunity of f is the minimum algebraic degree of all the nonzero annihilators of f
or of f ⊕ 1. The algebraic immunity of f , is denoted by AI(f).

Clearly, the algebraic immunity of a Boolean function f is less than or equal to
its algebraic degree since 1 ⊕ f is an annihilator of f . As shown in [5], we have
AI(f) ≤ dn2 e as already recalled above. Obviously, we have

Proposition 2. Let f be a Boolean function, then AI(1 + f) = AI(f).

3. Fast algebraic immunity

Let f be an n- variable Boolean function. Courtois [4](Theorem 7.2.1) has shown
that there always exists g with deg(g) > 1 such that deg(g) + deg(f · g) ≤ n. If
there exists a nonzero n-variable Boolean function g with low algebraic degree with
respect to n, then a fast algebraic attack (FAA) might be efficient. It was said
that f has optimal resistance against fast algebraic attack if and only if there does
not exist a nonzero n-variable Boolean function g of degree at most e such that
deg(g) + deg(f · g) ≤ n and e < n

2 ([2, 6]). In general, to study the resistance of
f against FAA’s, we need to determine whether deg(f · g) ≥ n − e holds for any
nonzero n-variable Boolean function g of degree at most e ([12, 6]). To this end,
it has been introduced in [8] a tool to evaluate the resistance f to FAA’s that we
recall below (note that in [3] (Definition 2), the authors have proposed very recently
a more precise definition).

Definition 3 (Fast Algebraic Immunity). Let f be an n-variable Boolean function.
We call fast algebraic immunity of f , denoted by FAI(f), the minimum value
between 2AI(f) and the smallest value taken by deg(g) + deg(f · g) when g ranges
over the set of non-constant n-variable Boolean functions of algebraic degree less
than AI(f). That is,

FAI(f) = min

(
2AI(f), min

g∈Bn|1≤deg g<AI(f)
(deg g + deg(f · g))

)
.

Fast algebraic immunity FAI is invariant under affine transformations:
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Proposition 4. Let f be an n-variable Boolean function. Let A be an affine auto-
morphism of F2n . Then FAI(f ◦A) = FAI(f).

Proof. Recall that the standard algebraic immunity is invariant under affine trans-
formations: AI(f ◦ A) = AI(f). Now, observe that deg g + deg(f · g) = deg(g ◦
A) + deg(f ◦A · g ◦A). The result follows then straightforwardly from noting that
{g ∈ Bn | 1 ≤ deg(g) < AI(f)} = {g ◦A | g ∈ Bn, 1 ≤ deg(g) < AI(f)}.

4. Study of the resistance of Boolean power functions to FAA by
means of fast algebraic immunity

The resistance of Boolean power functions has been studied in [6, 10]. In this
paper, we are also interested in this topic but with a different approach. Indeed,
we believe that having a parameter to study the resistance to FAA would help. A
candidate is the FAI introduced in [8] and recalled in Definition 3. Boolean power
functions are functions of the form Trn1 (γxd) where γ ∈ F2n and d is a positive
integer. Given a positive integer d, let Wd be the set of integers t lying between 1
and 2n − 2 such that w2(t) ≤ d.

Proposition 5. Let f of algebraic degree d be such that f(0) = 0. Then

FAI(f) ≤ min
(

2AI(f), min
e∈WAI(f)−1

(
w2(e) + max

0≤l≤n−1
(r,t)∈We×Wd

w2(r + 2lt)
))
.

Proof. Let 1 ≤ e < AI(f). Let g be of algebraic degree e such that g(0) = 0.
Write f(x) =

∑
t∈Wd

Trn1 (γtx
t) and g(x) =

∑
r∈We

Trn1 (βrx
r). Then f(x)g(x) =∑n−1

l=0

∑
(r,t)∈We×Wd

Trn1

(
βtγ

2l

t x
r+2lt

)
. Thus

deg(f · g) ≤ max
0≤l≤n−1,(r,t)∈We×Wd

w2(r + 2lt).

The result follows then straightforwardly.

Let us now state a result established in [10]. For a binary string, λ consecutive
1 preceded by a zero and followed by a zero is called a run of ones of length λ. We
are only interested in the number of runs of ones in a given binary string and not
in their lengths. Furthermore the runs are considered to be cyclic. For example
1100011100001111 has two runs and not three.

Lemma 6 ([10, Lemma 1]). Let f(x) = Trn1 (γxd) where γ ∈ F2n and d is a positive
integer. There exists g of algebraic degree

⌈
n
b
√
nc
⌉

such that

deg(f · g) ≤ ub
√
nc+

⌈ n

b
√
nc

⌉
− 1

where u is the number of runs of 1 in the binary representation of d.

Collecting together Proposition 5 and Lemma 6, one gets

Proposition 7. Let f(x) = Trn1 (γxd) where γ ∈ F2n and d is a positive integer.

Suppose that AI(f) ≥
⌈

n
b
√
nc

⌉
+ 1. Then

FAI(f) ≤ ub
√
nc+ 2

⌈ n

b
√
nc

⌉
− 1

where u is the number of runs of 1 in the binary representation of d.
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It has been shown in [7] that the algebraic immunity AI of Trn1 (λx−1) =

Trn1 (λx2n−2) is equal to b
√
nc +

⌈
n
b
√
nc

⌉
− 2 ≥

⌈
n
b
√
nc

⌉
+ 1 provided that n ≥ 4.

Now, observe that there is a single run in 2n − 2 proving that

Proposition 8. Let n ≥ 4. Then

FAI(Trn1 (λx−1)) ≤ min
(

2b
√
nc+ 2

⌈ n

b
√
nc

⌉
− 4, b

√
nc+ 2

⌈ n

b
√
nc

⌉
− 1
)
.

Remark 9. Observe that 2b
√
nc + 2

⌈
n
b
√
nc

⌉
− 4 > b

√
nc + 2

⌈
n
b
√
nc

⌉
− 1 whenever

n ≥ 16.

5. Concluding remarks

In this paper, we use the notion of fast algebraic immunity introduced in [8]
to measure the resistance to FAA of Boolean power functions. We provide some
results related to this parameter and study the case of the trace inverse function. A
natural extension would be to study other important classes of Boolean functions
and use it to investigate their resistance to FAA’s.
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