
Title In-advance signaling of MPEG containers content

Author Cyril Concolato

Abstract: This document summarizes various aspects related to the signaling of MPEG

containers content, reviews different technologies and recommends best practices.

1 Introduction
MPEG defines several container formats, in particular ISOBMFF and MPEG-2 TS. Files

conformant to these formats may contain multiple media streams, each of which may conform to

different media formats, with different profiles and levels. There are several file consumption

scenarios under which the full content of the file is not available to a player but under which the

player has nevertheless to take a decision to retrieve the file or not. These scenarios include

progressive file download, adaptive streaming, etc. In such scenarios, the player needs to have

sufficient information to determine if it has or not the capabilities of playing the entire content or

only a part of the container content, and when multiple container files are provided, to enable a

player to choose the most appropriate file(s) to process. The practice to send information about

the container content, together with URL(s) to the content and prior to its retrieval, is called

hereafter "in-advance signaling". This document reviews what the current practices are, what the

challenges are and recommends best practices for MPEG container formats, in particular for the

ISOBMFF.

2 Requirements
In-advance signaling of the container content is usually subject to the following requirements:

 should provide sufficient information for a player to decide if it needs and can process the

file or not

The information is content dependent, and typically includes:

o the type of the container format (e.g. ISOBMFF vs MPEG-2 TS) and required

features of the container format (e.g. brands of ISOBMFF)

o the number of media streams in the container

o the detailed coding type of each media stream

 This includes the media type (audio, video, subtitle, metadata), codec

information (HEVC, AAC, …) and codec-specific information. It is

assumed that each codec defines a way to signal minimum requirements to

decode the stream, such as profile and level indications.

o the characteristics of each media stream

 This typically include basic description such as width and height of a

video stream, number of channels and sample rate for an audio stream,

language information, …

o pre-decoding capabilities required to process each stream

 In particular, decryption when content is protected

o post-decoding capabilities required to correctly present each stream.

 Post-decoding capabilities are more and more often used, in particular in

video applications. When using AVC or HEVC, SEI messages are used to

describe the post-processing required at the client side to properly display

the video. For instance, when a video stream uses frame packing it can be

necessary to signal it in advance as a player non-capable of unpacking the

frames should not decode and display the stream.

It should be noted, that most of this information (except coding type) is not dependent on the

compression format used and should have (or already has) a well-defined mapping in 23001-8

CICP.

 shall be accurate

It is important that the information provided prior to the file download be correct to avoid wasted

downloads. It shall describe accurately the container content. But since the signaling information

is stored/sent separately from the file, there is a risk that the signaling and the content diverge.

The signaling information may be incomplete in the sense that it may not suffice for a player to

decide if it needs or can play the content of the container.

In particular, when the content type or characteristics change within the file, the signaling

information shall describe the entire lifetime of the content: either by providing all the different

features or by providing only the common part.

 should be compatible with protocols and formats carrying such information

Early signaling information may be carried in delivery protocols (such as HTTP), in manifest

formats for adaptive streaming (such as MPEG DASH). Therefore, it should respect the

constraints (e.g. the encoding) of these protocols and formats. Usually, the information to be

provided includes binary information, while formats and protocols are text-based. Early

signaling is therefore usually encoded in a text-compatible way (e.g. base64).

 should not be too large in size

Players may have to retrieve the signaling information of multiple files before making a decision.

The size of the signaling information should not therefore be too large to make this decision

process efficient.

 should not interfere with manifest stream selection instructions

Many features of the manifest formats used in adaptive streaming technologies are also available

in MPEG container technologies:

 the ability to describe multiple streams, possibly alternative versions of each stream

 the ability to provide stream-specific metadata enabling the selection of a media stream

(language, kind, encryption, …)

Fundamentally, a manifest is a playlist. A manifest implies sequencing media content, possibly

of different types and containers. In-advance signaling information should not carry information

about sequencing, alternates or parallel stream selection, since such information is present in the

manifest.

3 Current usages of signaling information
This section reviews some of the current usages, from the perspective of the consumer of this

information, typically player devices.

3.1 Use in HTTP-based environments
In HTTP environments, headers are used to carry such information.

When using an HTTP HEAD request, a player receives the signaling information in the

"Content-Type" header of the HTTP response without actually downloading the resource. A

player may issue multiple HEAD requests for multiple files and then, based on the signaling

information, issue a GET request for the most appropriate content.

NOTE: This scenario may not be representative of current practices. It is usually assumed that

in-advance signaling information is obtained at the same time as the URL(s) to the content and

that no additional round-trip (HEAD or GET) is necessary to obtain it.

Alternatively, when using the "Accept" header in a GET request, players can indicate to the

server its supported features. The server can in turn respond with the most appropriate file.

NOTE: This scenario is also not a current practice and does not strictly rely on "content

signaling" but rather on "capabilities signaling". It may still be relevant because one may

describe its capabilities in terms of hypothetical content it could process.

In both approaches, headers are based on the MIME format (see below).

3.2 Use in HTML-based environments
In Web-based environment, in particular in HTML content, a web page can use media content

coming from MPEG containers and in that case the signaling information may be embedded in

the HTML content (or CSS, JavaScript, XML …) and therefore no additional round trip is

required for the purpose of selecting which media content to download and play.

In particular, when multiple container files are offered, the "type" attribute on the <source> tag

(used in the <video>, <audio> and <picture> tags) enables a browser to know which resource to

download. The "type" attribute follows the MIME format.

In JavaScript, it is possible to ask the browser if it supports a given container format using the

methods HTMLMediaElement.canPlayType(mediaType) and

MediaSource.isTypeSupported(mimeType). Both methods rely on a MIME type

parameter.

Additionally, the MediaSource.addSourceBuffer(mimeType) API used for mapping

of Adaptative Streaming protocols and formats such as MPEG DASH into browsers, also

supports the use of MIME type.

Finally, the Media Capabilities API
1
 provides JavaScript APIs to allow websites to make an

optimal decision when picking media content for the user. The APIs will expose information

about the decoding and encoding capabilities of a browser for a given format, but also output

capabilities of the current device to find the best match based on the device’s display. It is also in

part based on the MIME type of the media container.

3.3 Use in Hardware
One use case where advance signaling could also be used is when two devices are physically

connected by hardware interfaces such as HDMI and need to negotiate which content to play

among a set of pieces of content.

[Editor's note: This section should contain more context, more information about the current or

envisaged hardware usages]

3.4 Use in Manifest Formats

Manifest formats such as MPEG DASH declare different media resources for the selection by

media players. It is therefore important for those players to distinguish between supported and

non-supported resources.

In MPEG DASH, several attributes, in particular at the Representation level, enable providing

in-advance signaling of the Representation features, within the manifest itself. It is also based on

declaring the MIME type as well as its sub-parameters.

3.5 MIME

The Multipurpose Internet Mail Extensions (MIME) RFC 2045 defines a set of messages to

exchange data and in particular syntax known as MIME Type, also known as Internet Media

Type or Content Type, to describe the exchanged data. The general definition of the MIME type

can and is extended for specific media data and in particular for MPEG containers by RFC6381.

3.5.1 General definition

The MIME type is a string, with a specific encoding. It is composed of a type, a subtype, and

optional parameters. A reduced list of types is defined at IANA (audio, video, image, font, …)

and a list of defined subtypes is maintained by IANA
2
.

The MIME standard is extensible and additional sub-parameters can be defined to provide

specific information for a given type/subtype. The syntax for these parameters is generic, but the

allowed parameters and semantics for a given type/subtype are provided by the RFC defining the

type/subtype.

3.5.2 Media specific definition

There are currently several documents defining MPEG related MIME types:

 RFC 3003 defines the audio/mpeg type

 RFC 3640 defines the video/mpeg-4 generic type

 RFC 5691 and RFC 6295 define the audio/mpeg-4 generic type

 RFC 4337 defines the MIME subtype "mp4" allowing the description of resources of

type "video/mp4", "audio/mp4" and "application/mp4" (and the

1
 https://wicg.github.io/media-capabilities/

2
 https://www.iana.org/assignments/media-types/media-types.xhtml

https://www.iana.org/assignments/media-types/media-types.xhtml

 RFC 6381 defines two sub-parameters ("codecs" and "profiles") in particular for the

above types

4 Current practices
Several options are currently used to provide in-advance signaling:

1. Use of the low-level MIME sub-parameters

This option consists in using one or more MIME sub-parameters to describe the different

required capabilities (pre-decoding, decoding, and post-decoding). It is the mostly used options

today because it has the advantages of enabling a progressive, detailed, compact and almost

human readable signaling. The main problems are:

 The signaled information is rarely complete

 The risk of the signaling information becoming stale is high

 It is currently hard to indicate the presence/absence and parameters associated to pre-

/post-decoding (encryption, SEI messages, HDCR info). Proposal exists to refine existing

parameters or to define additional ones. This raises the question of the complexity of such

signaling, involving many parameters.

2. Use of the "profiles" parameter

A practice used to reduce the complexity of the signaling information is to define application

profiles, i.e. restricting the possible variations at different layers of an application (pre-decoding,

decoding, post-decoding and rendering) and to only signal the application profile required to

process a given content via the "profiles" attribute. This approach is followed by MPEG

Application Formats such as CMAF.

3. Use of ISOBMFF Initialization Segments

Another practice is to transmit the entire initialization segment instead of redundant information.

It has the advantages of being complete, accurate, future-proof, but the drawback of not being

human readable and possibly requires transmitting more information than the other approaches.

This can be illustrated by the use of Base64 encoded Initialization Segments with "data:" URLs

in DASH manifest.

5 Conclusion
MPEG recommends experts to provide contributions improving this document by giving

additional use cases, practices, problems and by providing guidelines on when to use the above

current practices.

