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SEPARATING TIME-FREQUENCY SOURCES FROM TIME-DOMAIN CONVOLUTIVE
MIXTURES USING NON-NEGATIVE MATRIX FACTORIZATION

Simon Leglaive, Roland Badeau, Gaël Richard

LTCI, Télécom ParisTech, Université Paris-Saclay, 75013, Paris, France

ABSTRACT

This paper addresses the problem of under-determined audio source
separation in multichannel reverberant mixtures. We target a semi-
blind scenario assuming that the mixing filters are known. Source
separation is performed from the time-domain mixture signals in or-
der to accurately model the convolutive mixing process. The source
signals are however modeled as latent variables in a time-frequency
domain. In a previous paper we proposed to use the modified dis-
crete cosine transform. The present paper generalizes the method
to the use of the odd-frequency short-time Fourier transform. In
this domain, the source coefficients are modeled as centered com-
plex Gaussian random variables whose variances are structured by
means of a non-negative matrix factorization model. The inference
procedure relies on a variational expectation-maximization algo-
rithm. In the experiments we discuss the choice of the source repre-
sentation and we show that the proposed approach outperforms two
methods from the literature.

Index Terms— Audio source separation, reverberant mixtures,
non-negative matrix factorization, variational inference.

1. INTRODUCTION

Multichannel audio source separation consists in recovering sev-
eral source signals from the observation of a mixture recorded with
multiple microphones. In this paper we consider under-determined
mixtures where the number of microphones is lower than the num-
ber of sources to be estimated. Moreover we focus on separating
reverberant (or convolutive) mixtures, assuming a semi-blind sce-
nario where the mixing filters are known.

In an under-determined context, source separation methods
commonly work with a time-frequency (TF) representation of the
source signals. Indeed, model-based approaches can take advan-
tage of the very particular structure of audio signals in the TF plane
[1]. For example, sparse component analysis methods [2] exploit
the sparsity of the source signals in the TF domain. They rely on
stationary super-Gaussian priors or they make use of deterministic
approaches based on sparsity inducing penalties. Another important
trend in audio source separation corresponds to the variance model-
ing framework [3]. Non-negative matrix factorization (NMF) tech-
niques are especially popular for representing the short-term power
spectral density of the source signals [4, 5, 6, 7, 8].

Under-determined source separation becomes even more chal-
lenging when the mixtures are reverberant. In that case the time-
domain source signals are convolved with mixing filters before be-
ing added to produce a mixture. While this convolution is simply
expressed in the time domain, it is not straightforward to take it
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into account when working with a TF representation of the mix-
ture signals. Therefore, it is common to approximate the convolu-
tive mixing process as being instantaneous in each frequency band
of the short-time Fourier transform (STFT) [9, 10]. This approxi-
mation is considered to be valid when the mixing filters are short
compared with the STFT analysis window. Source separation per-
formance under this approximation is thus fundamentally limited
when the mixture is highly reverberant. To overcome this limitation
some methods have investigated more accurate TF mixture models.
For example, time-domain convolution is exactly represented as a
two-dimensional filtering in the TF domain in [11]. In [12] it is ac-
curately approximated using a convolutive transfer function model.

Another approach introduced in [13] consists in modeling the
sources in the TF domain while keeping a time-domain represen-
tation of the convolutive mixture. This is the approach we also
followed in [14]. In this previous paper the source signals were
characterized using the modified discrete cosine transform (MDCT)
which is real-valued and critically sampled. In the present paper
we generalize this method to a source representation based on the
odd-frequency STFT (OFSTFT) which is redundant and complex-
valued. This transform is similar to the STFT except that the dis-
crete Fourier transform (DFT) is replaced by the odd-frequency
DFT (OFDFT) [15]. Each source coefficient in this domain is mod-
eled as a centered complex Gaussian random variable whose vari-
ance is structured by means of an NMF model. We infer the la-
tent source variables using a variational expectation-maximization
(VEM) algorithm. We experimentally study the performance of the
method according to the choice of the source representation (MDCT
or OFSTFT with different redundancy factors). We also show that
the proposed approach outperforms two methods from the literature
[16, 13] in a semi-blind setting where the mixing filters are known.

We start by presenting in Section 2 the OFDFT from which the
OFSTFT can be constructed. In Section 3 we introduce the model.
Section 4 details the VEM algorithm. The experimental evaluation
is presented in Section 5 and we finally conclude in Section 6.

2. THE ODD-FREQUENCY DFT

The OFDFT of a signal z(t), t = 0, ..., T − 1, is defined for
f = 0, ..., T − 1 as zf = 1√

T

∑T−1
t=0 z(t) exp

(
−ı 2π

T

(
f + 1

2

)
t
)

[15], where ı =
√
−1. It is a particular case of the General-

ized DFT [17]. Compared with the standard DFT, we see that
it simply corresponds to shifting the frequency index by a factor
1/2. For a real-valued signal z(t), the following symmetry prop-
erty holds: zT−f−1 = z∗f where ·∗ denotes complex conjugation.
Compared with the standard DFT where the coefficients at the zero
and the Nyquist’s frequencies are real-valued, all coefficients of
the OFDFT are complex-valued. It is thus more appropriate when
the frequency coefficients are modeled as complex-valued random
variables, which is common in audio source separation. Moreover
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this symmetry property allows us to write a simple expression for
the inverse OFDFT involving only the non-redundant coefficients:
z(t) = 2√

T
<
(∑T/2−1

f=0 zf exp
(
ı 2π
T

(
f + 1

2

)
t
))

, where <(·) de-
notes the real part. The OFSTFT can then be defined similarly as
the standard STFT but using the OFDFT. We can mention that in
[18] it has been shown that the MDCT and the OFSTFT are more
appropriate than the standard STFT for assuming independent TF
coefficients, which is common in audio source separation.

3. MODEL

The signal at each microphone i = 1, ..., I is represented as a noisy
mixture of J source images yij(t), j = 1, ..., J , for t = 0, ..., T−1:

xi(t) =
∑J

j=1
yij(t) + bi(t), (1)

where bi(t) ∼ NR(0, σ
2
i ) is a white Gaussian additive noise. The

probability density function (pdf) ofNR is defined in Appendix A.
Each source image yij(t) corresponds to the discrete convolu-

tion of a source signal sj(t) ∈ R, t = 0, ..., Ls − 1, with a mixing
filter aij(t) ∈ R, t = 0, ..., La − 1, (such that T = Ls + La − 1):

yij(t) = [aij ? sj ](t). (2)

Similarly as in [19], a source signal sj(t) is represented by a set of
TF synthesis coefficients {sj,fn ∈ K = C or R}f,n for (f, n) ∈ B
with B = {0, ..., F − 1} × {0, ..., N − 1}:

sj(t) =
2

φ
<
(∑

(f,n)∈B
sj,fnψfn(t)

)
. (3)

ψfn(t) ∈ K, t = 0, ..., Ls − 1, is a TF synthesis atom and φ = 1
if K = C or φ = 2 if K = R. In this work we consider either the
MDCT [20] if K = R or the OFSTFT if K = C. For the MDCT,
the TF synthesis atom is defined as:

ψfn(t)=

√
2

F
w(t− nH) cos

(
2π

Lw

(
t− nH +

1

2
+
Lw
4

)(
f +

1

2

))
,

(4)
while for the OFSTFT we have:

ψfn(t) =

√
1

Lw
w(t− nH) exp

(
ı
2π

Lw

(
f +

1

2

)
(t− nH)

)
.

(5)
w(t) is a sine window of even length Lw, therefore F = Lw/2.
The hop size H equals Lw/2 when using the MDCT, while for the
OFSTFT different values can be chosen so that perfect reconstruc-
tion is achieved. Note that compared with [19] we explicitly ac-
count for the fact that audio signals are real-valued. Indeed, in the
OFSTFT case, {sj,fn}F−1

f=0 corresponds to the set of non-redundant
coefficients for each time frame n (see Section 2).

From (2) and (3) a source image can be further written as:

yij(t) =
2

φ
<
(∑

(f,n)∈B
sj,fngij,fn(t)

)
, (6)

where gij,fn(t) = [aij ? ψfn](t).
The synthesis coefficients sj,fn are then modeled as centered

and real Gaussian random variables if K = R or complex circularly
symmetric Gaussian random variables if K = C:

sj,fn ∼

{
NR(0, vj,fn) if K = R;
N p

C (0, vj,fn) if K = C.
(7)

The pdfs of these distributions are provided in Appendix A. The
variances vj,fn ∈ R+ are finally structured by means of an NMF
model of rankKj , generally chosen such thatKj(F +N)� FN :

vj,fn = [WjHj ]fn, (8)

with Wj ∈ RF×Kj

+ , Hj ∈ RKj×N
+ .

4. VARIATIONAL INFERENCE

Let x = {xi(t)}i,t denote the set of observed variables, s =
{sj,fn}j,f,n the latent variables and θ = {{σ2

i }i, {Wj ,Hj}j} the
model parameters. Remember that the mixing filters {aij(t)}i,j,t
are assumed to be known. Exact posterior inference of the latent
variables is here computationally heavy because the time-domain
convolution induces complex posterior dependencies between the
latent variables. We thus adopt a variational approach to infer the
latent variables and estimate the model parameters. Let q ∈ F be
a pdf over s, where F is a variational family. Variational inference
consists in optimizing a criterion called the variational free energy
and defined as [21]:

L(q;θ) = 〈 ln ( p(x, s;θ) / q(s) ) 〉q , (9)

where < · >q denotes the mathematical expectation taken with
respect to q. More precisely we will use the VEM algorithm that
consists in iterating two steps until convergence: the E-step where
we compute q? = argmaxq∈F L(q;θ?) and the M-step where we
compute θ? = argmaxθ L(q?;θ). In practice we will use the
mean-field approximation by constraining the variational family F
to the set of pdfs that factorize as q(s) =

∏
j,f,n qjfn(sj,fn). Un-

der this approximation we can show that the pdf over s ∈ s that
maximizes the variational free energy satisfies [21]:

ln q?(s)
c
= 〈ln p(x, s;θ)〉q(s\s), (10)

where c
= represents equality up to an additive constant and s\s de-

notes the set of all latent variables but s.

Source estimate. Under the variational mean-field approximation,
the estimate of the j-th source in the TF domain is given by:

ŝj,fn = 〈sj,fn〉q. (11)

The time-domain signal ŝj(t) is then reconstructed by inverse TF
transform and the source image ŷij(t) is obtained by convolution
with the corresponding mixing filter: ŷij(t) = [aij ? ŝj ](t).

Complete-data log-likelihood. From the model introduced
in Section 3, the complete-data log-likelihood ln p(x, s;θ) =
ln p(x|s;θ) + ln p(s;θ) can be expressed as:

ln p(x, s;θ)
c
=− 1

2

I∑
i=1

T−1∑
t=0

[
ln(σ2

i ) +
1

σ2
i

(
xi(t)−

J∑
j=1

yij(t)

)2]

− 1

φ

J∑
j=1

∑
(f,n)∈B

[
ln(vj,fn) +

|sj,fn|2

vj,fn

]
. (12)

E-step. From (10) and (12) we can show that:

q?jfn(sj,fn) =

{
NC(ρj,fn, ŝ

r
j,fn, ŝ

ı
j,fn, γ

r
j,fn, γ

ı
j,fn) if K = C;

NR(ŝ
r
j,fn, γ

r
j,fn) if K = R,

(13)
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where these pdfs are defined in Appendix A and for p ∈ {r, ı} we
have:

ρj,fn=

(
2

φ2

I∑
i=1

1

σ2
i

T−1∑
t=0

<(gij,fn(t))=(gij,fn(t))

)/
[(

2

φ2

I∑
i=1

1

σ2
i

T−1∑
t=0

<(gij,fn(t))2+
1

φvj,fn

)
×

(
2

φ2

I∑
i=1

1

σ2
i

T−1∑
t=0

=(gij,fn(t))2+
1

φvj,fn

)]0.5
; (14)

γp
j,fn=

[
2(1−ρ2j,fn)

(
2

φ2

I∑
i=1

1

σ2
i

T−1∑
t=0

P(gij,fn(t))
2+

1

φvj,fn

)]−1

;

(15)

ŝpj,fn = ŝpj,fn − γ
p
j,fn(1− ρ

2
j,fn)d

p
j,fn, (16)

with P(·) denoting the real part<(·) (resp. the imaginary part=(·))
if p = r (resp. ı) and

drj,fn=
2

φ

 ŝrj,fn
vj,fn

−
I∑
i=1

1

σ2
i

T−1∑
t=0

<(gij,fn(t))

xi(t)− J∑
j′=1

ŷij′(t)

;
(17)

dıj,fn=
2

φ

 ŝıj,fn
vj,fn

+

I∑
i=1

1

σ2
i

T−1∑
t=0

=(gij,fn(t))

xi(t)− J∑
j′=1

ŷij′(t)

.
(18)

Interestingly, in the complex case (K = C) q?jfn(sj,fn) is the pdf
of a complex Gaussian distribution which is not proper (see Ap-
pendix A). It means that the real and imaginary parts of the source
coefficients are a posteriori correlated and have different variances.
In the real case (K = R) we obtain the same results as presented
in [14]. We have to mention that update (16) for p ∈ {r, ı} holds
if the parameters are updated in turn. However we can show that
dpj,fn = ∂(−L(q?;θ))/(∂ŝpj,fn) where L(q?;θ) is given in the
next paragraph. Therefore, (16) corresponds to a coordinate ascent
of the variational free energy. In practice, as in [14], we will rather
use the conjugate gradient method with diagonal preconditioning
[22] for optimizing this criterion with respect to the whole set of co-
efficients {ŝrj,fn, ŝıj,fn}. This choice allows us to make the E-Step
more computationally efficient. Further details on the derivation of
the E-step and on this conjugate gradient algorithm can be found in
the supporting document [23]. The source estimate is finally given
by ŝj,fn = ŝrj,fn + ıŝıj,fn. We also define the following second-
order moments that will be used in the sequel:
. Variance: γj,fn = 〈|sj,fn − ŝj,fn|2〉q = γrj,fn + γıj,fn;

. Pseudo-variance: γ̃j,fn=〈(sj,fn−ŝj,fn)2〉q

=γrj,fn−γıj,fn+2ıρj,fn
√
γrj,fnγ

ı
j,fn.

Variational free energy. Omitting the terms that are independent
of the model parameters, the variational free energy can be written
from (9), (12) and the E-step as follows:

L(q?;θ) c
= −1

2

I∑
i=1

T−1∑
t=0

[
ln(σ2

i ) +
ei(t)

σ2
i

]

− 1

φ

J∑
j=1

∑
(f,n)∈B

[
ln (vj,fn) +

|ŝj,fn|2 + γj,fn
vj,fn

]
, (19)

where ei(t) =
〈(
xi(t) −

∑J
j=1 yij(t)

)2〉
q?

can be further ex-
pressed from the mean-field approximation and (6) as:

ei(t) =

(
xi(t)−

J∑
j=1

ŷij(t)

)2

+
2

φ2

J∑
j=1

∑
(f,n)∈B

[
<
(
γ̃j,fng

2
ij,fn(t)

)
+ γj,fn|gij,fn(t)|2

]
.

(20)

M-step. The M-step consists in maximizing (or only increasing)
L(q?;θ) in (19) with respect to θ. Zeroing the derivative of this
criterion with respect to σ2

i leads to the following update:

σ2
i =

1

T

∑T−1

t=0
ei(t). (21)

For the NMF parameters, we can recognize in (19) the Itakura-
Saito divergence [4] between the posterior mean of the source
power spectrogram 〈|sj,fn|2〉q? = |ŝj,fn|2 + γj,fn and
vj,fn = [WjHj ]fn (up to an additive constant). Therefore the
NMF parameters can be updated using the multiplicative update
rules given in [4].

5. EXPERIMENTS

We perform the experiments using audio source signals provided
by the MTG MASS database [24]. We created 8 stereo mixtures
sampled at 16 kHz using room impulse responses from the RWCP
(JR2) database [25]. These room responses were recorded in a real
room with a reverberation time of 470 ms. Each mixture contains
between 3 and 5 spatially disjoint sources and the duration ranges
from 12 to 28 seconds.

All experiments are performed with the true mixing filters
known and fixed. We evaluate the quality of the separation in
terms of reconstructed mono sources. We use standard energy ra-
tios defined in [26] and expressed in decibels (dB): the Signal-to-
Distortion (SDR), Artifact (SAR) and Interference (SIR) Ratios.
These measures are computed using the BSS Eval toolbox [27]. We
also consider perceptually motivated objective measures introduced
in [28, 29]: the Overall (OPS), Target-related (TPS), Interference-
related (IPS) and Artifact-related (APS) Perceptual Scores. They
are expressed in percentage and computed using the PEASS toolbox
[30]. For all experiments we use an analysis/synthesis sine window
of 128 ms. For the methods relying on NMF, the factorization rank
is arbitrarily fixed to 10 for all sources.

We refer the reader to our web page for listening to audio ex-
amples illustrating the results discussed below1. Matlab code im-
plementing the proposed method is also available.

We first evaluate the separation according to the TF source rep-
resentation used in the proposed framework. More precisely, we
study the influence of the redundancy of the transform. The MDCT
is critically sampled which means that there are as many TF co-
efficients as time-domain samples. On the contrary, the OFSTFT
is a redundant transform, the redundancy being controlled by the
overlap size. For example, a 50% overlap leads to a number of
(real) TF coefficients which is twice the number of time-domain
samples. The average separation results for the different transforms

1https://perso.telecom-paristech.fr/leglaive/
demo-waspaa17.html
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are shown in Table 1 (lines 2 to 5), higher overlap means higher re-
dundancy. The VEM algorithm was run for 200 iterations. We first
observe that according to the SDR, SIR and SAR, the more redun-
dancy we use, the better the results are. However this improvement
is not so clear by listening to the separated sources. Therefore we
also computed perceptually motivated objective measures. As can
be seen from Table 1, the overall separation quality as measured by
the OPS is much less dependent on the TF representation. We even
obtain the best performance with the MDCT which is critically sam-
pled. These results seem to be more consistent with the perceived
separation quality. Moreover we have to mention that by increasing
the redundancy we increase the number of latent TF source vari-
ables, so the separation is computationally more expensive. Finally
we can see that according to the IPS and APS, increasing the re-
dundancy seems to help reducing interferences to some extent, but
it induces more artifacts. The overlap-add of multiple incoherent
short-term estimates of the source signals at the synthesis stage may
explain this phenomenon.

We also compare our approach with two methods from the lit-
erature. The first one was introduced in [16]. It also relies on a local
Gaussian source model based on NMF2 but the convolutive mixing
process is approximated as being instantaneous in each frequency
band of the STFT. Inference is performed with an EM algorithm that
was run for 200 iterations in this experiment. We see from Table 1,
line 6, that this method obtains much lower scores than the proposed
one. This is due to the fact that reverberation is not accurately rep-
resented by the approximate mixture model in the STFT domain.
This experiment thus demonstrates the usefulness of representing
the convolutive mixture in the time domain. The second method we
consider for this evaluation was introduced in [13]. It also relies on
exact time-domain modeling of the convolutive mixing process but
it uses a sparse source model based on `1 regularization of the STFT
source coefficients. This approach results in a Lasso problem that is
solved with the FISTA algorithm. As proposed in the paper by the
authors we run this algorithm for 20000 iterations. Source separa-
tion results with this method are given in the last line of Table 1. Ac-
cording to the SDR, SIR and SAR, the proposed method performs
better only with the OFSTFT and an overlap of 50 or 75%. Nev-
ertheless the perceptually motivated measures show that the source
separation quality is also improved with less redundant represen-
tations, even with the critically sampled MDCT. This is confirmed
when listening to the separated sources. Comparing our approach
with this method shows that not only the exact convolutive mixture
modeling is important but also the NMF-based source model. We
can also mention that evaluating the separation quality in terms of
reconstructed stereo source images instead of mono sources leads
to the same conclusions.

To conclude this experimental evaluation we give some indica-
tions on the computational complexity of the different methods for
one of the mixture that contains 3 sources and lasts for 12 seconds.
We present the computational time normalized by the one obtained
with the proposed method when using the MDCT. The results are
given in the last column of Table 1. As expected, the more redun-
dant the TF transform, the higher the computational time. Ozerov
and Févotte’s method [16] is clearly the fastest one because it does
not rely on time-domain convolutive mixture modeling. The com-
putational time for the method by Kowalski et al. [13] is similar to
the one obtained with the proposed method when using the MDCT.

2As proposed later by the authors in [31], the NMF parameters are up-
dated differently from [16] by using multiplicative update rules.

SDR SIR SAR OPS TPS IPS APS NCT
MDCT [14] 4.8 10.9 8.2 38.9 66.5 65.7 38.2 1.00

OFSTFT - overlap 25% 6.5 12.9 9.5 38.7 63.4 67.7 35.7 2.83
OFSTFT - overlap 50% 7.6 14.9 10.4 37.9 64.6 68.6 35.1 4.07
OFSTFT - overlap 75% 9.7 17.9 12.1 36.4 62.8 67.4 34.1 7.79
Ozerov and Févotte [16] -2.4 4.3 2.1 22.5 45.3 63.9 9.1 0.01

Kowalski et al. [13] 7.5 14.1 10.1 29.1 63.2 60.7 23.1 1.13

Table 1: Source separation results averaged over all the sources in
the dataset and normalized computational time (NCT) for one of the
mixtures containing 3 sources and lasting for 12 seconds.

6. CONCLUSION

In this paper we generalized our previous work [14] to the use of
a source representation based on the OFSTFT. We experimentally
studied the impact of using this complex-valued and redundant TF
transform on the source separation performance compared with the
use of the MDCT. We also showed that the proposed approach out-
performs two standard methods from the literature in a semi-blind
setting where the mixing filters are known. This experimental eval-
uation demonstrated the importance of jointly modeling the convo-
lutive mixing process in the time domain and the source signals in
the TF domain by means of an NMF model.

Future work will focus on developing a fully blind source sepa-
ration method where the mixing filters will also be estimated. Using
probabilistic priors on the mixing filters could help us to reach this
objective [32]. Indeed, the mixing filters are room responses so they
exhibit a simple specific structure in the time domain that could be
used to guide their estimation.

A. GAUSSIAN PROBABILITY DISTRIBUTIONS

Let NR(x;µ, σ
2) denote the Gaussian distribution over a real-

valued random variable (r.v.) x. Its pdf is given by:

NR(x;µ, σ
2) =

1√
2πσ2

exp

(
− (x− µ)2

2σ2

)
. (22)

Let NC(x; ρ, µxr , µxi , σ
2
xr , σ

2
xi) denote the Gaussian distribution

over a complex-valued r.v. x = xr + ıxı. Its pdf is given by [33]:

NC(x; ρ, µxr , µxı , σ
2
xr , σ

2
xı) =

1

2πσxrσxı
√

1− ρ2

× exp

[
− 1

2(1− ρ2)

(
(xr − µxr )2

σ2
xr

+
(xı − µxı)2

σ2
xı

− 2ρ(xr − µxr )(xı − µxı)
σxrσxı

)]
,

(23)

where ρ = E[(xr − µxr )(xı − µxı)]/(σxrσxı) ∈ [−1, 1]. The
particular case NC(x; 0, µxr , µxı , σ

2/2, σ2/2) corresponds to
the proper complex Gaussian distribution. It is denoted by
N p

C (x;µ, σ
2) where µ = µxr + ıµxı and σ2 = 2σ2

xr = 2σ2
xı .

In this case the pdf gets simplified to:

Np
C(x;µ, σ

2) =
1

πσ2
exp

(
−|x− µ|

2

σ2

)
. (24)

Finally, the complex Gaussian distribution is circularly symmetric
if it is proper and µ = 0.
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