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ABSTRACT

Source separation, which consists in decomposing data into mean-
ingful structured components, is an active research topic in many
fields including music signal processing. In this paper, we introduce
the Positiveα-stable (PαS) distributions to model the latent sources,
which are a subclass of the stable distributions family. They notably
permit us to model random variables that are both nonnegative and
impulsive. Considering the Lévy distribution, the only PαS dis-
tribution whose density is tractable, we propose a mixture model
called Lévy Nonnegative Matrix Factorization (Lévy NMF). This
model accounts for low-rank structures in nonnegative data that pos-
sibly has high variability or is corrupted by very adverse noise. The
model parameters are estimated in a maximum-likelihood sense.
We also derive an estimator of the sources, which extends the valid-
ity of the Wiener filtering to the PαS case. Experiments on synthetic
data and realistic music signals show that Lévy NMF compares fa-
vorably with state-of-the art techniques in terms of robustness to
impulsive noise and highlight its potential for decomposing non-
negative data.

Index Terms— Lévy distribution, Positive alpha-stable distri-
bution, nonnegative matrix factorization, audio source separation.

1. INTRODUCTION

Source separation consists in extracting underlying components
called sources that add up to form an observable signal called mix-
ture. It has applications in many fields, including data analysis or
audio processing [1].

A groundbreaking idea presented in [2] is to exploit the fact that
the observations are often nonnegative, and to decompose them as a
sum of nonnegative terms only, permitting only constructive inter-
actions of the latent factors. This Nonnegative Matrix Factorization
(NMF) has shown successful in many fields of audio signal process-
ing such as automatic transcription [3] and source separation [4].
NMF, originally introduced as a rank-reduction method, approxi-
mates a nonnegative data matrix X as a product of two low-rank
nonnegative matrices W and H . The factorization can be obtained
by optimizing a cost function measuring the error between X and
WH , such as the Euclidean, Kullback-Leibler (KL [2]) and Itakura-
Saito (IS [4]) cost functions. This may often be framed in a proba-
bilistic framework, where the cost function appears as the negative
log-likelihood of the data, e.g. Gaussian [4] or Poisson [5]. Ad-
dressing the estimation problem in a Maximum A Posteriori (MAP)
sense makes it possible to incorporate some prior distribution over

∗This work was partly supported by the French National Research
Agency (ANR) as a part of the EDISON 3D project (ANR-13-CORD-0008-
02) and the KAMoulox project (ANR-15-CE38-0003-01).

the parameters W and H in order to enforce desirable properties
for the parameters such as harmonicity, temporal smoothness [6] or
sparsity [7].

However, the above-mentioned distributions fail to provide
good results when the data is very impulsive or contains outliers.
This comes from their rapidly decaying tails, that cannot account for
really unexpected observations. The family of heavy-tailed stable
distributions [8] was thus found useful for robust signal process-
ing [9]. A subclass of this family, called the Symmetric α-stable
(SαS) distributions, has been used in audio [10, 11] for modeling
complex-valued Short-Term Fourier Transform (STFT). An esti-
mation framework based on Markov Chain Monte Carlo (MCMC)
methods has been proposed [12] to perform the separation of SαS
mixtures. The common ground of these methods is to assume all
observations as independent but to impose low-rank constraints on
the nonnegative dispersion parameters of the sources, and not on
their actual outcomes.

In this paper, we address the problem of modeling and separat-
ing nonnegative sources from their mixture, while still constraining
their dispersion to follow an NMF model. To do so, we consider an-
other subclass of the stable family which models nonnegative ran-
dom variables: the Positive α-stable (PαS) distributions. They also
benefit from being heavy-tailed and are thus expected to yield robust
estimates. Since the Probability Density Function (PDF) of those
PαS distributions does not admit a closed-form expression in gen-
eral, we study more specifically the Lévy case, which is a particular
analytically tractable member of the family. We introduce the Lévy
NMF model, where the dispersion parameters of the sources are
structured through an NMF model and where realizations are nec-
essarily nonnegative. The parameters are then estimated in a Maxi-
mum Likelihood (ML) sense by means of a Majorize-Minimization
(MM) approach. We also derive an estimator of the sources which
extends the validity of the generalized Wiener filtering to the PαS
case. Several experiments conducted on synthetic and realistic mu-
sic signals show the potential of this model for a nonnegative source
separation task and highlight its robustness to impulsive noise.

This paper is structured as follows. Section 2 introduces the
Lévy NMF mixture model. Section 3 details the parameters esti-
mation and presents an estimator of the sources. Section 4 exper-
imentally demonstrates the denoising ability of the model and its
potential in terms of source separation for musical applications.

2. LÉVY NMF MODEL

2.1. Positive α-stable distributions

Stable distributions, denoted αS(µ, v = σα, β), are heavy-tailed
distributions parametrized by four parameters: a shape parameter
α ∈]0; 2] which determines the tails thickness of the distribution



2017 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 15-18, 2017, New Paltz, NY

x
0 2 4 6 8 10

p
(x

|
σ

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Rayleigh
Poisson
Lévy

x
2 4 6 8 10

p
(x

|
σ

)

10 -25

10 -20

10 -15

10 -10

10 -5

10 0

Figure 1: PDF of several distributions with a nonnegative support
on a linear (left) and logarithmic (right) scale.

(the smaller α, the heavier the tail of the PDF), a location parameter
µ ∈ R, a scale parameter σ ∈]0;+∞[ measuring the dispersion
of the distribution around its mode, and a skewness parameter β ∈
[−1; 1]. For convenience, we define everywhere in this study v =
σα. The SαS distributions, which are such that β = 0, are an
important subclass of this family and a growing topic of interest in
audio [10, 12].

Such distributions are said ”stable” because of their additive
property: a sum of K independent stable random variables Xk ∼
αS(µk, vk, β) is also stable: X =

∑
kXk ∼ αS (µ, v, β), with

µ =
∑
k µk and v =

∑
k vk.

Stable distributions do not in general have a nonnegative sup-
port. However, it can be shown [13] that when β = 1 and α < 1,
the support of the distribution is [µ; +∞[. In this paper, we con-
sider that µ = 0 thus the support is R+. The PαS distributions are
therefore such that PαS(v) = αS(0, v, 1) with α < 1.

2.2. Lévy NMF mixture model

The only α for which the PDF of a PαS distribution can be ex-
pressed in closed form is the Lévy case L (v) = P 1

2
S (v):

p(x | v =
√
σ) =


√

σ

2π

1

x3/2
e−

σ
2x if x > 0

0 otherwise.
(1)

As it can be seen in Fig. 1, the Lévy distribution has a heavier tail
than the most commonly used distributions for nonnegative data
modeling (the Rayleigh distribution is non-other that the distribu-
tion of the modulus of a complex Gaussian variable).

Let us consider a nonnegative data matrix X ∈ RF×T
+ (it can

be, for instance, the modulus of the STFT of an audio signal).
Each entry of X is modeled as the sum of K independent Lévy-
distributed components Xk(f, t) ∼ L(vk(f, t)). Note that all en-
tries are independent, which allows us to extend the standard nota-
tion to matrices. Then, X ∼ L(v) with v =

∑
k vk.

The scale parameters are structured by means of an NMF [2],
which preserves the additive property of the model as in [11]: v =
WH ,with W ∈ RF×K

+ and H ∈ RK×T
+ . We then refer to this

model as the Lévy NMF model.

3. PARAMETERS ESTIMATION

The parameters W and H are estimated in an ML sense, which is
natural in a probabilistic framework. The log-likelihood of the data
is given by:

L(W,H)
c
=

1

2

∑
f,t

log([WH](f, t)2)− [WH](f, t)2

X(f, t)

c
= −1

2
dIS([WH]�2, X),

where c
= denotes equality up to an additive constant which does

not depend on the parameters, ·�2 is entry-wise exponentiation and
dIS denotes the IS divergence [4]. We thus remark that maximizing
the log-likelihood of the data in the Lévy NMF model is equivalent
to minimizing the IS divergence between [WH]�2 and X , which
boils down to minimizing the following cost function:

C(W,H) =
∑
f,t

[WH](f, t)2

X(f, t)
− 2 log([WH](f, t)). (2)

3.1. Naive multiplicative updates

The cost function (2) can be minimized with the same heuristic
approach that has been pioneered in [2] and used in many NMF-
related papers in the literature. The gradient of C with respect to a
parameter θ (W or H) is expressed as the difference between two
nonnegative terms: ∇θC = ∇+

θ − ∇
−
θ , which leads to the multi-

plicative update rules:

θ ← θ �
∇−
θ

∇+
θ

= θ � aθ, (3)

where � (resp. the fraction bar) denotes the element-wise matrix
multiplication (resp. division). For Lévy NMF:

aW =
[WH]�−1HT

([WH]�X�−1)HT
, (4)

and

aH =
WT [WH]�−1

WT ([WH]�X�−1)
. (5)

Provided W and H have been initialized as nonnegative, they re-
main so throughout iterations. Even though this methodology of-
ten leads to a non-increasing cost function, this monotonicity is not
guaranteed in general, and does not hold in the particular case of
Lvy NMF, which motivates the research for a novel optimization
approach.

3.2. Majorize-Minimization updates

We then propose to adopt an MM approach [14] to derive novel
update rules. The core idea of this strategy is to find an auxiliary
function G which majorizes the cost function C:

∀(θ, θ), C(θ) ≤ G(θ, θ), and C(θ) = G(θ, θ). (6)

Then, given some current parameter θ, we aim at minimizing
G(θ, θ) in order to obtain a new parameter θ. This approach guar-
antees that the cost function C will be non-increasing over itera-
tions. Such an auxiliary function is obtained in a similar fashion as
in [15, 16]. We introduce the auxiliary parameterW and the weight:

ρk(f, t) =
W (f, k)H(k, t)

V (f, t)
, with V =WH. (7)
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Since
∑
k ρk(f, t) = 1, we can apply the Jensen’s inequality to the

convex function x 7→ x2:

[WH](f, t)2 =

(∑
k

ρk(f, t)
W (f, k)H(k, t)

ρk(f, t)

)2

(8)

≤
∑
k

ρk(f, t)

(
W (f, k)H(k, t)

ρk(f, t)

)2

, (9)

which leads to the majorization of the first term of C in (2):∑
f,t

[WH](f, t)2

X(f, t)
≤
∑
f,t

V (f, t)

X(f, t)

∑
k

W (f, k)2H(k, t)

W (f, k)
. (10)

In a similar fashion, we majorize the second term in (2) (x 7→
− log(x) is also a convex function) and therefore we obtain the fol-
lowing auxiliary function G:

G(W,H,W ) =
∑
f,t,k

V (f, t)H(k, t)

X(f, t)W (f, k)
W (f, k)2

− 2
W (f, k)H(k, t)

V (f, t)
log

(
W (f, k)

V (f, t)

W (f, k)

)
. (11)

We then set the partial derivative of G with respect to W to zero,
which leads to an update rule on W . The update rule on H is ob-
tained in exactly the same way. Thus, the updates are:

θ ← θ � a�1/2
θ , (12)

where aW and aH are given by (4) and (5). A MATLAB imple-
mentation of this algorithm can be found at [17].

Remark: Let us assume that K = 1 and that ∀f , W (f) = 1.
Then the Lévy NMF and ISNMF [4] updates on H rewrite:

HLévy(t)←
√√√√√ F∑

f

1

X(f, t)

and HIS(t)←
1

F

∑
f

X(f, t). (13)

Therefore, the update onH in the Lévy NMF (resp. ISNMF) model
boils down to an harmonic (resp. arithmetic) mean on X . Since the
harmonic mean is known to attenuate the impact of strong outliers
(compared to the arithmetic mean), the corresponding Lévy NMF
procedure is expected to yield robust estimates.

3.3. Estimator of the components

For a source separation task, it can be useful, once the model pa-
rameters are estimated, to derive an estimator X̂k of the isolated
components Xk. In a probabilistic framework, a natural estimator
is given by the posterior expectation of the source given the mixture
E(Xk|X). For SαS random variables, such an estimator is pro-
vided by a generalized Wiener filtering [10]. One contribution of
this paper is to prove that this result still holds for the PαS family.
Derivations may be found in the companion technical report for this
paper [18]. For Lévy-distributed random variables (α = 1/2), we
then have:

X̂k = E(Xk|X) =
vk∑
l

vl
�X =

WkHk
WH

�X. (14)

α

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

lo
g

(L
α

)

0

200

400

600

800

ISNMF
KLNMF
Cauchy NMF
RPCA
Lévy NMF

α

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

lo
g

(K
L

)

0

50

100

150

Figure 2: Fitting impulsive noise: estimation quality.

4. EXPERIMENTAL EVALUATION

4.1. Fitting impulsive noise

To test the ability of Lévy NMF to model impulsive noise, we have
generated 5 components’ pairs for W and H by taking the 4th
power of random Gaussian noise, in order to obtain sparse com-
ponents. The entries of the product [WH], of dimensions 50× 50,
were then used as the scale parameters of independent PαS random
observations, for various values of α in the range 0.1 − 0.5: small
values of α lead to very impulsive observations. We ran 200 it-
erations of the Lévy, IS [4], KL [2] and Cauchy [11] NMFs, and
RPCA [19, 20] algorithms with rank K = 5. To measure the qual-
ity of the estimation, we computed the KL divergence and the α-
dispersion, defined as a function of the data shape parameter α:

Lα =
∑
f,t

|σ(f, t)− σ̂(f, t)|1/α, (15)

where σ�α = WH (resp. σ̂�α = Ŵ Ĥ) contains the synthetic
(resp. estimated) parameters. Results averaged over 100 synthetic
data runs are presented in Fig. 2. The Lévy NMF algorithm shows
very similar results to those obtained using RPCA or Cauchy NMF,
with slightly better results than these methods for very small values
of α. The reconstruction quality is considerably better than with
ISNMF and KLNMF. Those results demonstrate the potential of the
Lévy NMF model for fitting data which may be very impulsive.

4.2. Music spectrogram inpainting

We propose to test the denoising ability of the Lévy NMF model
when the data is corrupted by very impulsive noise. When audio
spectrograms are corrupted by such noise, the retrieval of the lost
information is known as an audio inpainting task. We consider 6
guitar songs from the IDMT-SMT-GUITAR [21] database, sampled
at 8000 Hz. The data X is obtained by taking the magnitude spec-
trogram of the STFT of the mixture signals, computed with a 125
ms-long Hann window and 75 % overlap. The spectrograms are
then corrupted with synthetic impulsive noise that represents 10
% of the data. We run 200 iterations of the algorithms with rank
K = 30 in order to estimate the clean spectrograms.

We present the obtained spectrograms in Fig. 3 (KLNMF and
ISNMF lead to similar results). The traditional NMF techniques are
not able to denoise the data: the estimation of the parameters is de-
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Figure 3: Music spectrogram restoration.

Table 1: Audio inpainting performance
Log(KL) SDR (dB)

ISNMF 9.0 −23.5
KLNMF 6.2 −8.9

Cauchy NMF 3.4 7.6

RPCA 3.6 7.4

Lévy NMF 3.2 9.2

Weighted ISNMF 3.8 4.5

teriorated by the presence of impulsive noise. Conversely, the noise
has been entirely removed in the Lévy NMF estimate. This is con-
firmed in the second column of Table 1 which presents the quality of
the estimation measured with the KL divergence between the origi-
nal and estimated spectrograms averaged over the 6 audio excerpts.
The best results are obtained with Lévy and Cauchy NMFs.

Remarkably, none of the algorithms used above is informed
with any prior knowledge about the location of the noise. As a com-
plementary experiment, we informed ISNMF with this knowledge
by incorporating a mask containing the position of the noise into the
NMF, resulting into a weighted ISNMF [22]. The blind Lévy NMF
still leads to better results than the informed ISNMF.

Finally, the phase of the mixture is assigned to the estimated
STFT in order to resynthesize time signals. Note that this is theo-
retically justified only for ISNMF and Cauchy NMF models: im-
proved separation quality could therefore be reached by using an
additional phase retrieval algorithm such as [23]. The quality of the
estimation is measured by means of the Signal to Distortion Ratio
(SDR) computed with the BSS Eval toolbox [24] and presented in
the last column of Table 1. We remark that Lévy NMF outperforms
all the other approaches in terms of SDR, but also in a subjective
perceptual evaluation (the interested reader can find some sound
excerpts at [25]). It is thus promising for such an audio inpainting
application, since it does not require any additional noise modeling
or detection technique.

4.3. Musical accompaniment enhancement

We propose to test the performance of the Lévy NMF model for en-
hancing the accompaniment in music signals. We consider 50 music

ISNMF KLKNMF Cauchy NMF RPCA Lévy NMF
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Figure 4: Musical accompaniment enhancement quality. Each box-
plot is made up of a central line indicating the median of the data,
upper and lower box edges indicating the 1st and 3rd quartiles, and
whiskers indicating the minimum and maximum values.

excerpts of various genres from the DSD100 database (a remastered
version of the database used for the SiSEC 2015 campaign [26]).
Each track consists of a singing voice signal and a musical accom-
paniment signal. While musical accompaniment is assumed to be
well represented by a low-rank NMF model, voice is assumed to be
similar to impulsive noise. Thus, when fitting a model that is robust
to such a noise on the data, we expect that the voice will be treated
as noise, therefore leading to enhance the musical accompaniment.

The dataX is obtained by taking the magnitude spectrogram of
the STFT of the mixture signals, computed as in the previous ex-
periment. We then run 200 iterations of the algorithms with a rank
of factorization K = 30, and we estimate the sources by means of
the generalized Wiener filtering (14). The phase of the mixture is
then assigned to the estimated musical accompaniment source in or-
der to resynthesize time signals. The quality of the enhancement is
measured by means of the SDR between the original and estimated
accompaniment tracks and presented in Fig. 4.

Musical accompaniment enhancement performed with Lévy
NMF leads to better results than traditional NMF techniques. An
informal subjective evaluation of the synthesized signals (sounds
examples available at [25]) shows that ISNMF and KLNMF meth-
ods do not lead to a significant attenuation of the voice, while with
the other techniques, the voice is hardly perceptible, at the cost of
very few artifacts. Lévy NMF competes with other robust methods
such as Cauchy NMF and RPCA, and thus appears to be a good
candidate for robust musical applications.

5. CONCLUSION

In this paper, we introduced the Lévy NMF model, which struc-
tures the dispersion parameters of PαS distributed sources when
α = 1/2. Experiments have shown the potential of this model for
robustly decomposing realistic nonnegative data.

Such a model could be useful in many other fields where the
source separation issue frequently occurs and where the Lévy dis-
tribution finds applications, such as optics [27]. Future work could
focus on novel estimation techniques for the Lévy NMF model, us-
ing for instance a MAP estimator, which would permit us to incor-
porate some prior knowledge about the parameters [6]. Besides,
drawing on [12], the family of techniques based on MCMC could
be useful to estimate the parameters of any PαS distribution. Alter-
natively, one could extend the Lévy NMF model to the family of in-
verse gamma distributions it belongs to. Although this would result
in losing the additivity property and thus the theoretical foundation
for α-Wiener filtering, this would allow for convenient analytical
derivations thanks to tractable likelihood functions. This strategy is
reminiscent of recent work [28] where the tractable Student-t distri-
bution is used instead of the SαS one.
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