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ABSTRACT
This paper introduces a new method for single-channel denoising
that sheds new light on classical early developments on this topic
that occurred in the 70’s and 80’s with Wiener filtering and spectral
subtraction. Operating both in the short-time Fourier transform
domain, these methods consist in estimating the power spectral
density (PSD) of the noise without speech. Then, the clean speech
signal is obtained by manipulating the corrupted time-frequency
bins thanks to these noise PSD estimates. Theoretically grounded
when using power spectra, these methods were subsequently gener-
alized to magnitude spectra, or shown to yield better performance
by weighting the PSDs in the so-called parameterized Wiener filter.
Both these strategies were long considered ad-hoc. To the best
of our knowledge, while we recently proposed an interpretation
of magnitude processing, there is still no theoretical result that
would justify the better performance of parameterized Wiener
filters. Here, we show how the α-stable probabilistic model for
waveforms naturally leads to these weighted filters and we provide
a grounded and fast algorithm to enhance corrupted audio that
compares favorably with classical denoising methods.

Index Terms—denoising, Wiener filtering, α-stable processes, prob-
ability theory

I. INTRODUCTION

Single-channel speech enhancement consists in estimating a
speech signal s(t) corrupted by an additive noise n(t) from the noisy
observation x(t) = s(t)+n(t). Early foundations to solve this prob-
lem date back to the late 70’s and early 80’s, with a series of works
on spectral subtraction and Wiener filtering [9], [2], [1], [14], [8]
(see also [13] for a more recent overview). Both techniques work
in the short-time Fourier transform (STFT) domain. Therefore, let
v( f , t) denote the STFT coefficients of a signal v(t) at frequency
f and time frame t. Let σ2

v ( f , t) = E(|v( f , t)|2) denote its power
spectral density (PSD), assuming local wide-sense stationarity. In
the STFT domain we have:

∀( f , t) , x( f , t) = s( f , t)+n( f , t) . (1)

We now describe spectral subtraction, that consists of the follow-
ing. An estimate σ̂2

n ( f , t) of σ2
n ( f , t) is first calculated on segments

of x(t) where speech is assumed to be absent1, assuming that the
noise does not change too rapidly and that some prior automatic
voice activity detection has been applied. Then, an estimate of the

This work was partly supported by the research programme KAMoulox
(ANR-15-CE38-0003-01) funded by ANR, the French State agency for
research.

1In full generality, some studies consider estimation of σα
n with α ∈ (0,2].

speech short-time spectral amplitude (STSA) |ŝ( f , t)| is obtained
as:2

|ŝ( f , t)|=
(
|x( f , t)|α − σ̂

α
n ( f , t)

)1/α
, (2)

with α ∈ (0,2]. Finally, the STSA estimate |ŝ( f , t)| is combined
with the phase of the noisy signal to provide an estimate of
the speech STFT coefficients, and the estimated speech signal is
obtained using inverse STFT. For α = 2, (2) corresponds to power
spectral subtraction, which is theoretically supported by i) the
assumption of signal and noise decorrelation, and thus summation
of their PSDs into the PSD of x(t), and ii) the fact that |ŝ( f , t)|2
is the maximum likelihood (ML) estimator of σ2

s ( f , t) under the
Gaussian assumption [14]. Setting α = 1 corresponds to magnitude
spectral subtraction and was the original choice in [2]. It was
experimentally justified based on good noise rejection and enhanced
speech intelligibility, but, to our knowledge, it has never been
justified theoretically.

As another filtering method, Wiener filtering provides the mini-
mum mean squared error (MMSE) linear estimator of s( f , t) as:

ŝ( f , t) =
σ2

s ( f , t)
σ2

s ( f , t)+σ2
n ( f , t)

x( f , t). (3)

Eq. (3) is a theoretical result and in practice estimates of σ2
s ( f , t)

and σ2
n ( f , t) must be used. Since we can use the estimate of σ2

n ( f , t)
discussed above and we can use the square of (2) with α = 2 as
an estimate of σ2

s ( f , t), and since in turn the spectral subtraction
can be reshaped into a filtering process [9], there are strong links
between power spectral subtraction and Wiener filtering.

Extending this baseline spectral subtraction method, further
studies propose to use [1], [9]:

|ŝ( f , t)|α = |x( f , t)|α − k σ̂
α
n ( f , t), (4)

with 0< k < 1 being a parameter tempering the spectral subtraction.
Again, although this formula is now part of “signal processing
classics”, to our knowledge, it has never been properly theoretically
justified. Instead, it has been presented as an ad-hoc improvement
leading to better enhanced speech quality or intelligibility, depend-
ing on the nature of the noise.

Similarly, the following parameterized Wiener filter has been
proposed in the “classical” literature [9]:

ŝ( f , t) =
(

σ2
s ( f , t)

σ2
s ( f , t)+ k σ2

n ( f , t)

)β

x( f , t), (5)

2In fact, half-wave (or full-wave) rectification is applied to the term in
parentheses to ensure its positivity. Other post-processes can be applied.
Here and in the following, we omit their description for clarity, since they
are poorly relevant to the discussion.



where β > 0. Again, the true PSDs must be replaced in practice
with their corresponding estimates. Following that spirit, we can
think of alternatives such as:

ŝ( f , t) =
σα

s ( f , t)
σα

s ( f , t)+ k σα
n ( f , t)

x( f , t). (6)

In the same vein, the renowned MMSE STSA estimator of [3] can
be interpreted as a sophisticated Wiener filter, parameterized by
both a prior and a posterior signal-to-noise ratio (SNR). Indepen-
dently from the speech enhancement problem, and many years later,
(6) with α = 1 (and k = 1) has been largely considered for audio
source separation [20], [15], [7]. Yet, using (6) with α 6= 2 was for
a long time justified only heuristically as a spectral soft-weighting
scheme that gives good performance in practice, rather than from
grounded theoretical foundations.

A theoretical interpretation of (6) with α 6= 2 has been proposed
recently in [10] as naturally arising when the signals are assumed
α-harmonizable. Skipping details, it may be shown that (6) with
k = 1 can be understood as the computation of E [s( f , t) | x] under
this model, hence the name generalized Wiener filter given to the
procedure. Furthermore, a remarkable fact is that the so-called
fractional α-PSD σα ( f , t) of additive α-harmonizable sources add
up to form the α-PSD of their sum, generalizing the Gaussian case
α = 2. Although it has never been mentioned in the literature, this
fact is a strong theoretical support to the general form (2) of spectral
subtraction, for α ∈ (0,2] and k = 1. See also [11], [19] for recent
works on α-stable audio modeling.

In the present study, we make a further step in this attempt to
revisit the above signal processing classics, by providing grounded
theoretical justification for the parameterized forms (4) and (6) of
spectral subtraction and Wiener filtering. In the above-mentioned
studies, we indeed always had k = 1. Here, we focus on this
parameter k, and we show that it can be understood in a theoreti-
cally grounded way through α-stable modeling. Interestingly, this
comes with an automatic way to tune k as a consequence of the
signals distribution, rather than through empirical tuning. In short, a
parameter k 6= 1 arises whenever we are considering the separation
of α-stable sources with different characteristic exponents α , which
is a typical situation in denoising. Interestingly, the same line of
thought may be used for devising parametric Wiener filters for an
arbitrary number of signals, as in source separation. As a result
of this discussion, we propose the Multi-Alpha Denoising (MAD)
algorithm, that is very simple to implement and fully exploits this
renewed understanding of parameterized Wiener filtering.

II. THEORETICAL BACKGROUND & MODEL

II-A. α-harmonizable processes

The α-harmonizable model introduced in [10] generalizes the
classical Wide-Sense Stationary (WSS) model for an audio signal.
It is the probabilistic model that obeys the following three funda-
mental assumptions:

1) The signal should be infinitely divisible, meaning that it is
possible to write it as a sum of an arbitrary large number
of independent and identically distributed (i.i.d.) contribu-
tions [21]. In the case of audio, we may think of the infinitely
many vibrating elements present in a sound source.

2) For convenience of analytical derivation, it is desirable that
the sum of these i.i.d components has a distribution that

belongs to the same family, up to some scaling. These first
two assumptions lead us to model each source as an α-stable
process [18], [21].

3) When observed on a sufficiently short time-scale, the signal
may be considered locally stationary, meaning that its distri-
bution does not depend on the time origin.

While WSS signals obey these three assumptions, they are only
a small subset of the set of all models that do so, which may be
proved to coincide with the α-stable harmonizable processes [18],
coined in as α-harmonizable in [10]. Skipping irrelevant technical
details that can be found in [10], the main features of an α-
harmonizable signal v(t) are twofold:

1) All the entries v( f , t) of its STFT are independent;
2) Each entry is distributed as:

v( f , t)∼ SαSc (σv( f , t)) , (7)

where SαSc denotes the centered isotropic complex α-stable distri-
bution [18]. This distribution for complex numbers is rotationally
invariant and fully characterized by a scale parameter σv ≥ 0 and a
characteristic exponent α ∈ (0,2] that controls the thickness of the
tails: the smaller α , the most likely the extreme values. α = 2 cor-
responds to the Gaussian case, for which σv is called the standard
deviation. In practice, a noticeable feature of these processes is
that they can account for the sparsity, high impulsiveness and large
dynamics of audio signals [4], [6], while allowing for effective
processing in the STFT domain.

II-B. Conditional Gaussianity of α-harmonizable processes
A well documented feature of SαSc random variables is that they

are conditionally Gaussian [5], [19], [18]. Intuitively, it means we
can understand v ∼ SαSc(σv) as a mixture of complex isotropic
Gaussians, whose variances are distributed w.r.t. a random impulse
variable φv:

v|φv,σv ∼Nc

(
0, φvσ

2
v

)
, (8)

where Nc(µ,σ
2) denotes the proper complex Gaussian distribution

of mean µ and variance σ2, and φv ≥ 0 follows a positive α

2 -stable
distribution,3 written P α

2 S, whose parameters depend only on α:

φv ∼ P
α

2
S
(

2cos
(

πα

4

)2/α
)
. (9)

The impulsive nature of v appears in the fact that this variance can
take very large values since φv has a heavy tail distribution.

II-C. Multi-α Wiener filtering
We now address the single-channel speech enhancement problem

and thus focus on the case of only two sources: speech and noise. In
the present study, we extend the previous work on α-harmonizable
models [10] by assuming that speech and noise do not share the
same characteristic exponent. In the STFT domain, this gives:

∀( f , t) , s( f , t)∼ SαsSc (σs ( f , t)) , (10)

∀( f , t) , n( f , t)∼ SαnSc (σn ( f , t)) , (11)

where all variables in (10) and (11) are mutually independent.
Allowing each source to have its own characteristic exponent

3This particular subset of the α-stable distributions has support on R+

and exhibits very heavy tails. A noticeable example is the Levy distribu-
tion [18].



accounts for different general “impulsiveness” for different sources.
On the other hand, the time-varying spectral content of the signals
is encoded into the scale parameters σs( f , t) and σn( f , t).

Applying conditional Gaussianity (8)-(9) independently to (10)
and to (11) leads to define impulse variables φs ( f , t) and φn ( f , t)
for target signal and noise respectively. We thus obtain:

s( f , t)|φs( f , t),σs( f , t)∼Nc

(
0, φs( f , t)σ2

s ( f , t)
)
, (12)

n( f , t)|φn( f , t),σn( f , t)∼Nc

(
0, φn( f , t)σ2

n ( f , t)
)
. (13)

Assuming from now on that we know all parameters σ and φ , we
can estimate the speech signal through classical Wiener filtering:

E [s( f , t) |x,σ ,φ ] = w( f , t)x( f , t) , (14)

where

w( f , t) =
φs ( f , t)σ2

s ( f , t)
φs ( f , t)σ2

s ( f , t)+φn ( f , t)σ2
n ( f , t)

. (15)

Eq. (14) provides a form of the Wiener filter which adds degrees
of freedom compared to the classical form (3). As can be seen, it
establishes a theoretically grounded justification to the generalized
form (5), provided we set β = 1 and identify k = φn( f , t)/φs( f , t).

We recall that (5) was an ad-hoc proposition in the signal
processing literature of the 80’s. To the best of our knowledge,
no theoretical justification for parameter k was given to date. Of
course, although the α-harmonizable model comes with the nice
property of bringing some explanations for parameterized Wiener
filters, we now face the important issue of estimating not only the
scale parameters σ but also the impulse variables φ for this multi-
α-Wiener filter (14). We address this problem in the next section.

III. PARAMETERS ESTIMATION AND SIGNAL
DENOISING

In this section, we present an iterative algorithm designed to
estimate the parameters of the multi-α Wiener filter (14). Target
signal estimation is embedded as a subtask into this algorithm,
and is thus implicitly solved. First, assuming knowledge of the
scale parameters σs and σn, we propose to marginalize out the
impulse variables to get a simple expression for the filter. Then,
assuming knowledge of the separated signals, we show how the
scale parameters can easily be estimated. The resulting Multi-Alpha
Denoising (MAD) algorithm is depicted in Fig. 1 and summarized
in the algorithm box.

Fig. 1. Outline of the proposed denoising algorithm.

Algorithm 1 MultiAlpha Denoising (MAD) algorithm
1) Input

• STFT x of the single-channel signal.
• Number of iterations.
• Characteristic exponents αs and αn.
• Fixed-size horizons ∆s and ∆n for log-spectrogram

smoothing.
2) Initialization

• ∀( f , t) , ŝ( f , t) = n̂( f , t) = x( f , t)/2.
• Compute φ̂s and φ̂n as the empirical median values under

distribution (9).
3) Parameter estimation

• Compute ln |ŝ( f , t)| and ln |n̂( f , t)|. Smooth them on ∆s
and ∆n. This yields E ln(|ŝ( f , t)|) and E ln(|n̂( f , t)|).

• Compute σ̂s( f , t) and σ̂n( f , t) using (20) and (21).
4) Filtering

• Apply multi-α Wiener filtering (18) to get ŝ( f , t)
and n̂( f , t).

• Go back to 3) if needed.

III-A. Marginalizing out the impulse variables
Let us first assume we know the scale parameters σs and σn.

For the sake of clarity, the TF indexes ( f , t) will be omitted in the
following derivations. Considering (14), we see that the knowledge
of the impulse variables φs and φn is required to perform filtering.
One solution is to marginalize out these variables, so as to compute:

E(s | x,σ) = Eφ (E(s | x,σ ,φ))

=
∫

φ

E(s | x,σ ,φ)P(φ | x,σ)dφ , (16)

where φ = {φs,φn}. Unfortunately, the posterior distribution
P(φ | x,σ) in the integral in (16) has no analytical form. One
solution is to run a Markov Chain Monte Carlo (MCMC) estimation
of this integral, as done in [19]. Still, this MCMC strategy is
computationally very demanding. A quite simplifying alternative
we consider in the present study is to replace the distribution
P(φ | x,σ) in (16) by a degenerate Dirac distribution, with unit
mass at the most probable value for φ . In other words, we assume:∫

φ

E(s | x,σ ,φ)P(φ |x,σ)dφ ≈ E
(
s | x,σ , φ̂

)
, (17)

where φ̂ is a point estimate for the impulse variable. Now let us
remind that the impulse variable distribution (9) does not depend
on the scale parameter, but only on the characteristic exponent, i.e.
either αs or αn in the present problem. Hence, the distribution is
independent of ( f , t), and when it comes to picking a point estimate
for φ in (17), there is no particular reason to choose a different
one for different TF bins, since all impulse variables for a given
source are i.i.d. Eventually, we found out that replacing φs( f , t)
and φn( f , t) in (15) by their median M(φs) and M(φn) under their
prior distribution (9) gives a very satisfying fit to the optimal multi-
α Wiener filter (15). The resulting parameterized filter becomes:

E [s( f , t) |x,σ ]≈ ŵ( f , t)x( f , t) , (18)

where

ŵ( f , t) =
σ2

s ( f , t)M(φs)

σ2
s ( f , t)M(φs)+σ2

n ( f , t)M(φn)
. (19)



In practice, the median values are computed from i.i.d. sam-
pled random variables following distribution (9) using the method
discussed in [22], [5]. We set αs = 1.2 and αn = 1.89, since
these two values fit well the impulsiveness of speech and the
near-Gaussianity of non-stationary noise, respectively (see [19]).
Note that this computation needs only to be done once. In Fig. 2
(up), we display the ground-truth Wiener masks for both target
signal (up-left) and noise (up-right). The ground-truth masks were
obtained for each “fixed” couple (σs,σn) by averaging (15) over
many realizations drawn according to the generative model (9). We
can see that the approximation (19) plotted in Fig. 2 (down), fits
the ground-truth very well. The average relative error is as small
as 1.8%. For completeness, we mention that using the mode instead
of the median for φ̂ induces a greater average error (' 3.1%).

Fig. 2. Illustration of the ground-truth Wiener mask (up) and the
approximated mask (down) for several couples (σs,σn) ∈ [0,1]2.

III-B. Estimation of scale parameters σ

Now, assume that for each TF-bin ( f , t) the target signal s( f , t)
and the noise n( f , t) have been separated at the previous step of the
algorithm (using (18) for the speech signal). We propose to build
the estimation of σs ( f , t) and σn ( f , t) on the following relations,
taken from [16, p. 69]:

∀( f , t) , E ln(|s( f , t)|) = γ

(
1
αs
−1
)
+αs ln(σs ( f , t)) , (20)

∀( f , t) , E ln(|n( f , t)|) = γ

(
1

αn
−1
)
+αn ln(σn ( f , t)) , (21)

where γ ≈ 0.5772156 is the Euler constant. In practice, we assume
that several adjacent TF bins share the same scale parameters σs and
an effective strategy for their estimation is to average ln(|s( f , t)|)
over those TF bins with a moving average and then use (20) to
obtain a local estimate of σs. σn is estimated in the same way
from (21). The method is mostly parameterized by the length ∆s
and ∆n of those smoothing filters for speech and noise. This strategy
is reminiscent of Kernel Additive Modeling (KAM, [12]) in the
sense that separation is alternated with spectrogram filtering. The
difference is that the filtering performed here is linear w.r.t. log-
spectrograms, instead of the median filter considered for KAM.
A nice feature is that the proposed MAD method appears as
theoretically grounded in terms of probabilistic models.

In practice, we noticed that using longer averaging horizons for
the noise source (approximatively 0.16 s) than for the target source
(0.09 s) leads to the best results.

IV. EVALUATION
To evaluate the proposed algorithm, we used a corpus of 30, 16-

bit, 3-s long speech signals sampled at 8-kHz from the NOIZEUS
dataset4. Each excerpt was corrupted by additive noise at different
signal-to-noise ratios (SNR). Three types of noise were used: car
engine, babble noise and airport environment. We used a 1024-
sample long Hamming STFT window with 85%-overlap. For the
evaluation metrics, we used the perceptual evaluation of speech
quality (PESQ) improvement score [17], ranging between −0.5
and 4.5 respectively corresponding to the worst and best denoising
performance.

The MAD algorithm described in Fig. 1 and in Algorithm 1
was compared with three baseline methods: the magnitude spectral
subtraction (MSS) defined in (2) with α = 1, the generalized
spectral subtraction (GSS) defined in (4) with α = 1.2 and k = 0.8,
and the MMSE-STSA estimator method of [3] with α = 0.92 and
β = 2. In this assessment, the parameters for the MAD algorithm
are αs = 1.3, αn = 1.8, ∆s = 0.09 s, ∆n = 0.16 s (we assume that
speech is slightly less stationary than noise) and a fixed number
of 4 iterations. Note that all those parameters for the baseline and
proposed methods were selected to yield the best PESQ scores.

The PESQ scores are illustrated in Table I. Basically, the MAD
algorithm outperforms all baseline methods for every SNR value
and every type of noise. In a general manner, the MMSE-STSA
method has the best scores among the baseline methods. However,
when listening the denoised speech signals, a more significant
residual noise is present with MMSE-STSA compared to MAD.

Noise SNR MAD MSS GSS MMSE

Car

0 dB 1.312 1.183 1.201 1.178
5 dB 1.558 1.300 1.343 1.282
10 dB 1.913 1.405 1.560 1.515
15 dB 2.208 1.504 1.755 1.889

Airport

0 dB 1.308 1.174 1.192 1.208
5 dB 1.561 1.301 1.390 1.368
10 dB 1.844 1.389 1.556 1.642
15 dB 2.102 1.507 1.755 2.000

Babble

0 dB 1.272 1.170 1.200 1.199
5 dB 1.519 1.272 1.351 1.357
10 dB 1.816 1.390 1.576 1.603
15 dB 2.121 1.494 1.771 2.042

Table I. PESQ scores for each algorithm. Bold font indicates best
scores.

V. CONCLUSION
In this paper, we proposed a new denoising algorithm which sets

the classical parameterized Wiener filtering (and spectral subtrac-
tion method) on solid theoretical grounds. We demonstrated how
the α-stable theory naturally leads to a strategy for automatically
tuning the parameters of the Wiener filter, that depend on different
tail behaviors for the distribution of the different sources, with also
a robust initialization. The resulting multi-alpha denoising (MAD)
algorithm was shown to give very good performance compared to
several baseline methods. Future works may include multichannel
and multi-source denoising scenarios.

4NOIZEUS http://ecs.utdallas.edu/loizou/speech/noizeus/

http://ecs.utdallas.edu/loizou/speech/noizeus/
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