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ABSTRACT

Classification of SAR images is a challenging task as the ra-
diometric properties of a class may not be constant throughout
the image. The assumption made in most classification algo-
rithms that a class can be modeled by constant parameters is
then not valid.

In this paper, we propose a classification algorithm based
on two Markov random fields that accounts for local and
global variations of the parameters inside the image and pro-
duces a regularized classification. This algorithm is applied
on airborne TropiSAR and simulated SWOT HR data. Both
quantitative and visual results are provided, demonstrating the
effectiveness of the proposed method.

Index Terms— SAR, Classification, SWOT, MRF

1. INTRODUCTION

Thanks to their interferometric potential and their ability to
acquire images independently of the weather conditions or
solar illumination, SAR sensors are particularly popular. In
the Surface Water and Ocean Topography (SWOT) mission
jointly led by NASA’s Jet Propulsion Laboratory (JPL) and
the French space Agency, Centre National d’Études Spatiales
(CNES), the main instrument is a Ka-band Radar Interferom-
eter (KaRIn). It will allow for repetitive measurements of the
height of the earth’s water surfaces [1]. Other applications
of SAR images include mapping, change detection and crop
monitoring. One of the first steps in these applications is a clas-
sification of the image. This can be achieved at the pixel level
[2] or after a segmentation of the image. For instance, in [3],
the segmentation is performed using an anisotropic diffusion
on the filtered image and by applying an adaptative threshold
to suppress unwanted edges. A local threshold is then applied
to separate between the classes. In [4] the segmentation is
done using level-sets with the probability density functions es-
timated using the Expectation-Maximization algorithm. In [5],
a non-local active contour model is applied in order to account
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for some variations in the radiometry of the object. Finally,
it can be achieved using the Markov Random Fields (MRF)
framework, as in [6].

In the context of the SWOT mission, classification to sepa-
rate water from land is a preliminary step toward height estima-
tion in these areas. Given the high frequency used by KaRIn
(35.6 GHz, 0.85cm) and the near-nadir incidence angle (1-4◦),
most water areas are expected to backscatter the radar pulse,
whereas rougher surfaces (such as land) will appear dominated
by the thermal noise. The very specific operating mode of
KaRIn prevents from efficiently performing the correction of
the antenna pattern, which is usually done during SAR pro-
cessing (see [7] for the case of TerraSAR-X): the evolution
through the swath depends on the class (i.e., water or land).
Moreover, the small incidence angle causes high variations in
the pixel size (from 60 to 10m in the range direction). For
these two reasons, the parameters of the water class can not
be considered constant in the image. It is also necessary to
capture more local variations that result from the geometry of
the scene or from wind variations.

In [8], we presented a method that used a quad-tree par-
titioning in order to obtain small regions where parameters
could be supposed constant. While this approach accounts for
global variations due to the uncorrected antenna pattern, it fails
to capture variations at smaller scales. In this paper, we pro-
pose to alternatively optimize the classification (regularized
through a MRF model) and a class parameter map defining
the value of the class parameter at each pixel. This parameter
map is also spatially regularized using a MRF.

The remainder of this paper is organized as follows. In
section 2 the proposed method is described. In section 3, we
present the datasets and experimental results of our method
and compare them to some reference approaches. Finally, a
discussion and some perspectives are presented in section 4.

2. METHOD

Detection of water in near-nadir incidence images is difficult
because of the variations of water reflectivity in the image due



in particular to varying windspeed and surface roughness, see
Fig. 1(a) and (e). Detection of water areas therefore requires
to estimate a map of water reflectivity jointly to the detection
of water.

Starting from an observed SAR image v, our aim is to
estimate the map of water reflectivity u and the detection of
water areas w. The following paragraphs describe the image
models proposed for those two unknown images u and w.
Paragraph 2.3 then describes an algorithm to perform the joint
estimation / detection.

2.1. Water reflectivity estimation

Due to the speckle phenomenon, the observed intensity vi at
pixel i in the water region of a SAR image is described by a
multiplicative model:

vi = ui · ξi , (1)

where ui is the water reflectivity at pixel i and ξi is the speckle
that follows a Gamma distribution of unit mean. The log-
transformed intensity ṽi = log(vi) is thus corrupted by an
additive term ξ̃i that can be considered, in first approximation,
as Gaussian distributed1:

ṽi = ũi + ξ̃i ≈ ũi + η̃i , (2)

with ũi = log ui, ξ̃i = log ξi and η̃i Gaussian distributed.
Water reflectivity is expected to vary slowly in the azimuth

direction, and more quickly in the range direction where it
should follow quite closely the theoretical antenna diffraction
pattern. Following an MRF modeling, we define the following
Gaussian prior for water reflectivity ũ to account for these two
types of variations:

− log p(ũ) = βaz

∑
i∼azj

(ũi − ũj)2 + βrg

∑
i∼rg j

(ũi − ũj)2

+ βth
∑
i

(ũi − p̃i)2 , (3)

where i∼azj denotes all pairs of pixels (i, j) that are neighbors
in azimuth direction, i∼rgj pairs of pixels that are neighbors in
range direction, and p̃i = log pi is the log-transformed the-
oretical reflectivity given by the antenna diffraction pattern.
Parameters βaz, βrg and βth are tuning parameters used to bal-
ance the importance of each term. Note that βth can be set to
0 if the antenna pattern is not known.

A full map ũ of (log-transformed) water reflectivity can
be obtained by maximum a posteriori estimation:

argmin
ũ

∑
i

wi · (ũi − ṽi)2 + βaz

∑
i∼azj

(ũi − ũj)2

+ βrg

∑
i∼rg j

(ũi − ũj)2 + βth
∑
i

(ũi − p̃i)2 , (4)

1a more accurate model is provided by Fisher-Tippett distribution, see [9]

with w the water detection map, i.e., wi = 1 if the pixel i
belongs to water areas, wi = 0 otherwise. Computation of
the water detection map w is discussed in the following para-
graph.

2.2. Water detection

While water areas backscatter strongly in the near-nadir inci-
dence angles, ground areas backscatter much more weakly so
that the observed intensity in ground areas is dominated by
thermal noise: ũi ≈ γ for pixels i on the ground.

Since isolated ground pixels in water areas or isolated wa-
ter pixels in ground areas are unlikely, we introduce an Ising
regularization prior that penalizes such configurations for the
detection map w:

− log p(w̃) = βdet

∑
i∼j

δ(w̃i 6= w̃j) , (5)

where δ(w̃i 6= w̃j) = 1 if w̃i 6= w̃j and δ(w̃i 6= w̃j) = 0 if
w̃i = w̃j , and βdet is a parameter to control the smoothness of
the detection map.

For a fixed water reflectivity map u and a given level of
noise γ, the optimal detection with respect to the MRF model
is given by the following binary optimization problem:

argmin
w∈{0,1}N

∑
i

wi · (ũi − ṽi)2 + (1− wi) · (γ − ṽi)2

+ βdet

∑
i∼j

δ(w̃i 6= w̃j) , (6)

where i ∼ j stands for all pairs (i, j) of neighboring pixels.

2.3. Proposed algorithm

The MRF formulations for the water reflectivity map and the
detection map lead to optimization problems that can be ef-
ficiently solved one at a time. Optimization problem (4) is
continuous and quadratic. It can be solved approximately by
a few iterations of conjugate gradients. The estimation of
the detection map with equation (6) requires to solve a bi-
nary optimization problem. This can be solved exactly by re-
casting the problem as a max-flow / min-cut problem [10].
We alternate both steps, leading to the following algorithm:

Algorithm for water detection

Input: SAR image v, thermal noise level γ,
(optional) antenna diffraction pattern p
Output: detection map w

ũ← log(p)
do

w ← compute solution of (6) by graph-cuts
u← compute solution of (4) by conjugate gradients

while w or u change



3. EXPERIMENTS

3.1. Data sets description

The proposed method is evaluated on both simulated and
real data sets. The SWOT satellite is projected for launch in
2021, so only simulated images are currently available for
evaluation. We use a simulation based on a Digital Elevation
Model (DEM) of the Camargue area, France [11] shown in
Figure 1(a). The azimuth resolution is 10m and the range
resolution goes from 60 to 10m. Image size is 1839 × 2979.
This image features the uncorrected antenna pattern (see sec-
tion 1) and local variations in the water radiometries (which
are currently based on a gradient map).

To demonstrate that the method can be applied to multi-
ple sensors, we also show some results on data acquired by
SETHI (P-Band airborne sensor of ONERA) in HH polariza-
tion on Kaw, French Guiana. The amplitude image is shown
in Figure 1(e). Azimuth resolution is 1.5m and slant-range
resolution is 1.2m. The image size is 4000× 5788.

3.2. Experimental results

Model parameters selection: The proposed model is tuned
by four parameters (βaz, βrg, βth, βdet) that depend on the
amount of variations we choose to allow and on the scales
of the objects we want to be able to detect. Results presented
in the following paragraph have been computed using the fol-
lowing parameters:

• βaz = 130 and βrg = 500 for both data sets;

• βth = 3 for Camargue, βth = 1 for Kaw;

• βdet = 4 for Camargue, βdet = 10 for Kaw.

We have to use a smaller βth for Kaw as the antenna pattern
was not known and could only be estimated. Also, due to the
fact that the Kaw image has a finer resolution, higher regular-
ization in the classification is required. However it can be seen
that the parameters βaz and βrg are the same for both images.
The parameters tuning process therefore only depends on the
resolution and the availability of the antenna pattern variation
model, leading to a rather straightforward adaptation of the
value of the parameters to new sensors.

Comparison with other methods: To demonstrate the ef-
fectiveness of our method, we compare it to the same model
(Ising MRF with exact optimization) without the parameter
map. We also compare to the method presented in [8] which
also aims at finding a classification in image with varying pa-
rameters. Visual results are presented in Figure 1. The ground
truth for the Camargue area has been obtained using the DEM
from the simulation while it has been manually labeled for the
Kaw data set. Note that for the Camargue area, we try to find
water bodies (so a true positive is a water pixel labeled as a
water pixel) while we are in a land vs. water configuration for
the Kaw area.

Constant NUMRF [8] Proposed method

TPR 78% / 99.00% 78.64% / 99.14% 92.98% / 98.25%
FPR 0.27% / 21.30% 0.17% / 7.45% 1.12% / 3.31%
MCC 0.85 / 0.87 0.86 / 0.93 0.92 / 0.95
ER 23.65% / 11.37% 22.21% / 4.49% 12.71% / 3.36%

Table 1. Classification results for the Camargue and Kaw area

As could be expected, the method of [8] and the proposed
method better capture spatial variations than the MRF with a
constant parameter. While results from the proposed method
and [8] are close on the Kaw data set (dominated by large
scale variations), our method significantly improves [8] on the
Camargue data set (displaying smaller scale variations).

These qualitative observations are confirmed by the quan-
titative evaluation available in Table 1. For each method, we
report the True Positive Rate (TPR, higher is better), the False
Positive Rate (FPR, lower is better), the Matthews correlation
coefficient (MCC, higher is better) and the Error Rate (ER,
lower is better) used in SWOT mission to define the scientific
requirements. The MCC is defined as:

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
,

(7)
and the Error Rate is defined as:

ER =
FP + FN

TP + FN
, (8)

where TP, TN, FP and FN are True Positives, True Negatives,
False Positives and False Negatives respectively.

Table 1 confirms the small improvement on the error rate
and the MCC for Kaw area with the proposed method (ex-
pected as variations are of large scale), and the strong improve-
ment over the Camargue area.

4. CONCLUSION

In this paper, a classification method for images with varying
reflectivity parameters is proposed. It is based on a double
Markov Random Field to jointly estimate the parameters and
detect water. Visual and quantitative evaluation indicate that
the proposed method outperforms a recently proposed tech-
nique. Our method seems promising both for airborne and
satellite sensors. In the future, we will investigate the use of
coherence and interferometric information, when available, to
improve the results.
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