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ABSTRACT

The objective of the Surface Water and Ocean Topography
(SWOT) mission is to regularly monitor the height of the
earth’s water surfaces. One of the challenges toward obtaining
global measurements of these surfaces is to detect small water
areas.

In this article we introduce a method for the detection of
thin water surfaces, such as rivers, in SWOT images. It com-
bines a low-level step (segment detection) with a high-level
regularization of these features. The method is then tested on
a simulated SWOT image.

Index Terms— SWOT, Classification, SAR, Linear fea-
tures detection

1. INTRODUCTION

The SWOT mission aims at improving the spatiotemporal
coverage of altimetry measurements both for oceans and con-
tinental water surfaces. This mission is jointly led by NASA’s
Jet Propulsion Laboratory (JPL) and the French space Agency,
Centre National d’Études Spatiales (CNES). The main instru-
ment of the SWOT mission is a Ka-band Radar Interferometer
(KaRIn) which operates at 35.6 GHz (0.85cm) with an inci-
dence angle from 1◦ to 4◦. Using such a near-nadir incidence
angle causes high variations in the pixel size (from 60 to 10m)
in the range direction. Therefore, many continental water
surfaces will appear as thin in SWOT images (especially in
the near-nadir part of the image), in addition to rivers. One of
the challenges faced in SWOT mission is the detection of thin
water surfaces.

Detection of thin structures is a widely studied problem
in image processing, as it leads to many applications. In [1],
automatic road cracks detection is performed. It first selects
pixels that are likely to belong to the crack network based on
their intensities before connecting them. In [2], a morpholog-
ical toolchain is used for the detection vessels in eye fundus
images. Thin objects detection has also been studied for SAR
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images in the framework of road detection, for mapping ap-
plications. In [3], a two-step approach is used; first a linear
structure detection is performed, which are then connected
using a high-level step. This method has been applied to water
detection in [4] with the addition of a multiscale step. A mor-
phological approach has also been applied in the framework
of SWOT in [5]. In this paper, we use a two-step approach for
the detection of thin elements in SWOT images. In a low-level
step, candidate segments are selected based on a line detector.
These segments are then connected using Dijkstra’s algorithm
[6] and connections are selected using a Markov Random
Fields (MRF) process.

The proposed method is described in section 2. Results on
SWOT simulated data are presented in section 3. Finally, we
discuss the method in section 4.

2. METHOD

2.1. Overview

We illustrate the general workflow of the proposed method in
Figure 1. The first step is a linear feature detection adapted
to SAR images. We follow the work of [3] for this first step.
The set of segments detected in the low-level step covers only
parts of rivers, either because other parts are not straight lines
or simply because the segment brightness is too low for it to be
detected at the pixel level. Therefore a high-level step based
on the segment detection is required.

First, pairs of candidate segments that could be consec-
utive in a river are selected, and a path-finding algorithm is
performed to link them. A Markov Random Field (MRF) is
then applied to the sets of connections in order to enforce basic
geometrical properties of rivers, which yields a set of lines cov-
ering the rivers. Finally, a simple expansion step is performed
in order to obtain a pixel-based detection of the rivers.

Compared to the work of [4], we have added new priors
based on the geometrical shape of rivers. Furthermore, our
method focuses only on narrow elements (as it is designed to
be ran alongside a detector for large water bodies such as the
one presented in [7]).
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Fig. 1: Illustration of the different steps.
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Fig. 2: Low-level line detector for vertical direction and fixed
width

2.2. Low-level step

Segment detection in SAR images has been widely studied
and we decided to use the same approach as in [3]. It models
the segment as a rectangle µ1 centered in a given pixel s, and
compare it to the two surrounding segments (µ2 and µ3, see
Figure 2).

Two detectors are combined:

• D1: as we try to find bright segments, we compute the
mean in amplitude of µ1 and compare it to µ2 and µ3.

• D2: computes the cross correlation between a mask and
the regions.

These two detectors are applied for different widths (1 to
5 pixels) and different angles (16) then merged using an asso-
ciative symmetrical sum:

l(i) =
D1(i)D2(i)

1−D1(i)−D2(i) + 2D1(i)D2(i)
, (1)

where l(i) indicates how likely a pixel i is a part of a seg-
ment. This image is then thresholded and detected pixels are

linearized allowing us to have a set of segments S that are
supposed to belong to rivers. Note that the thresholds used for
this low-level step are chosen to give a very small false alarm
rate.

2.3. Segment connection and regularization

2.3.1. Connection of segments

We use Dijkstra’s algorithm for the connection of candidate
segments. As this algorithm can be computationally expen-
sive (and depends on the space search for the connection), we
restrict the connection to “compatible” segments. The com-
patibility between two segments is defined by the proximity
of their extremities and the angular difference they form. For
each compatible pair of segment (s1, s2) such that (s1, s2) ∈
S2 and s1 6= s2, we perform the classical Dijkstra’s algorithm.

We apply Dijkstra’s algorithm on a directed graph with
nodes corresponding to the pixels of the image that are in the
space search (a band starting and ending at the two extremities
of the segments s1 and s2 to be connected), and edges which
link to the 8 neighbors. Whereas a geodesic distance was de-
fined in [8], the weight associated to an edge going to a node
representing the pixel i is set to the opposite of the low-level
step value of i: l(i). By doing so, the “shortest path” will be
the one going through pixels that are likely to belong to a seg-
ment. As we do not normalize the distance definition by the
number of pixels in the path, long connections are penalized.
The set of obtained connections after this step is named CD.

2.3.2. Selection of connections

While the union of S and CD is likely to contains the rivers of
the image, CD also contains many unwanted connections, as



it can be seen in Figure 1. To remove them, we use priors on
the geometrical shape of a river:

• Rivers have few end points.

• Rivers have few intersections.

• Generally, an end point of a segment has only one con-
nection.

• Connections should only fill gaps; therefore they should
be short.

• Long segments strongly indicate the presence of rivers;
they should be connected.

We enforce these priors in a Markov Random Field framework;
we aim at selecting a set of connections from CD. Note that in
[4], the authors also needed to label the whole set of segments:
S ∪ CD. The problem is expressed as a labeling search: each
connection co ∈ CD, is assigned a label xco which is 1 for
a connection labeled as a river and 0 otherwise. It yields the
following energy minimization:

x̂ = argmin
x

∑
co∈CD

U(l|xco) + Ushape(x) , (2)

where the likelihood term is U(l|xco = 1) = 1
|co|

∑
i∈co

l(i)

and U(l|xco = 0) = 0 and the prior Ushape(x) penalizes end
points, intersections, forks, long connections and isolated long
segments in the network. We denote by C the set of connec-
tions of CD with x̂co = 1.

2.3.3. Expansion of segments and connections

The union N of S and C indicates the presence of rivers as
chains of pixels with a width of 1 pixel. To recover a pixel-
based classification and improve the positioning of the rivers,
a local classification is needed. A direct classification as in [7]
is not possible due to the thinness of the rivers and the noise
level. Therefore, a local denoising approach is first applied.
NL-SAR algorithm [9] has been chosen due to its good preser-
vation of edges and lines. Since it is based on patch matching,
it follows locally the river to compute the denoised values. We
apply NL-SAR to the bounding box of each connected com-
ponent extracted from N (Figure 3(b)). The denoised image
is then thresholded based on the theoretical intensity of the
water in SWOT images in order to have a binary map of water
(Figure 3(c)). A labeling in connected components is then per-
formed and the component which has the largest intersection
with the connected component from N is selected.

3. RESULTS

The SWOT image used for the evaluation of the proposed
method is a simulation based on a Digital Elevation Model
(DEM) and landcover map of the Camargue area, France [10]

(a) Input image (b) Non-local denois-
ing

(c) Threshold

Fig. 3: Segment expansion

Camargue

[7] [7] + Rivers

TPR 92.98% 93.26%
FPR 1.12% 1.17%
MCC 0.9236 0.9240
ER 12.71% 12.66%

Table 1: Classification results for the Camargue area

shown in Figure 4(a). The azimuth resolution is 10m and
the range resolution goes from 60 to 10m. The image size
is 1839 × 2979 pixels. We show visual results in Figure 4.
Note that we have many false negatives in the result for the de-
tected rivers, as we only aim at finding narrow elements (and
test the result against the whole ground truth). As this method
is designed to be run alongside a classification algorithm for
larger water surfaces, we provide results combined with the
method proposed in [7] in Figure 4(c).

In the framework of the SWOT mission, the metric used
for the evaluation of the algorithms is the Error Rate (ER,
lower is better) defined as:

ER =
FP + FN

TP + FN
. (3)

We also use the the Matthews correlation coefficient (MCC,
higher is better) defined as:

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
,

(4)
Numerical results are give in Table 1. We can see that we
have a small improvement due to the addition of the proposed
method.

4. CONCLUSION

The proposed method combines an object detection low-level
step and a high-level step connecting the linear features for
the detection of narrow water bodies in SWOT images. We



(a) Amplitude image (b) Rivers detected (c) Rivers + [7]

Fig. 4: Results on the Camargue dataset. Green, black, blue and red are for true positive, true negative, false negative and false
positive respectively

show some preliminary results on a simulated SWOT image
demonstrating the effectiveness of the method.

Further works include extensive tests on a wide range of
images and a simplification of the processing chain for opera-
tional purposes.
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