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Abstract— The maximization of submodular functions is a
well-studied topic due to its application in many common
engineering problems. Because this problem has been shown
to be NP-Hard for certain subclasses of functions, much work
has been done to develop efficient algorithms to approximate
an optimal solution. Among these is a simple greedy algorithm,
which has been shown to guarantee a solution within 1

2
the

optimal. However, when this algorithm is implemented in a dis-
tributed way, it requires all agents to share information with one
another - a costly constraint for some applications. This work
explores how the degradation of information sharing among
the agents affects the performance of the distributed greedy
algorithm. For any underlying communication graph structure,
we show results for how well the distributed greedy algorithm
can perform. In addition, for applications where the number of
agents and number of communication links is fixed, we identify
near-optimal graph structures with the highest performance
guarantees. This result can inform system designers as to the
most impactful places to insert communication links.

I. INTRODUCTION

The optimization of submodular functions is a well-studied
topic due to its application in many common engineering
problems. Examples include information gathering [9], max-
imizing influence (viral marketing) in social networks [7],
image segmentation in image processing [8], multiple ob-
ject dection in computer vision [1], document summariza-
tion [11], path planning of multiple robots [19], sensor
placement [10], [14], and resource allocation in multi-agent
systems [14]. For each case, the problem can be formulated
as the optimization of a submodular function.

While polynomial algorithms exist to solve submodular
minimization, [5], [6], [18], maximization has been shown
to be NP-Hard for certain subclasses of submodular func-
tions [12]. Thus a tremendous effort has been placed on
developing fast algorithms that approximate the solution to
the submodular maximization problem [16], [3], [15], [2],
[23], [20], [17]. The resounding message from this extensive
research is that very simple algorithms can provide strong
guarantees on the quality of the approximation. Specifically,
this work focuses on submodular maximization with a ma-
troid constraint. Using a greedy randomized approach, [23]
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shows that the optimal solution can be approximated within
a factor of 1− 1/e ≈ 0.63.

Another proposed technique is to use a simple greedy al-
gorithm, which has been shown to guarantee an approximate
solution within 1/2 of the optimal [16]. One reason this al-
gorithm remains relevant is that it lends itself to a distributed
approach to maximization. In this approach, the distributed
greedy algorithm, a set of agents sequentially maximizes a
function without the need of centralized information. The
result is simply the compilation of all the agents’ decisions.
As each agent maximizes its function, however, it must be
able to evaluate all its potential choices and have access to
the decisions of all previous agents. In many multi-agent
systems, this amount of information and sharing is costly.

Research has therefore begun to explore how limited
information and sharing can impact the performance of the
distributed greedy algorithm. For example, [13] explores the
performance when an agent can only evaluate a local subset
of its choices. The work in [4] studies the performance when
and agent can only observe a local subset of its predecessors.
In each case, results show that localizing information can
substantially degrade performance.

This paper more closely relates to the work done in [4]
in evaluating information sharing constraints. Their work
models communication structures as graphs and demon-
strates how performance can degrade for certain graphs.
For instance, if agents are partitioned into groups that only
transmit among themselves, the lower bound on performance
degrades by a factor proportional to the number of groups.
However, two questions remain open:

1) For any communication structure, what are the perfor-
mance guarantees?

2) What communication structures make the highest per-
formance guarantees?

The contribution of this paper is to provide insights into
answering these two questions. More specifically

1) Theorem 1 gives lower and upper bounds on worst-
case performance for a given communication structure.
The bounds give intuition on what properties of the
underlying graph need to be improved in order for
performance to improve.

2) Theorem 2 shows the best performance that a system
designer can achieve with a fixed number of agents and
communication links. The results show that when in-
formation is costly, the best communication structures
spread out the communication links among the agents,
rather than clustering them among a small group.

The remainder of this paper is dedicated to proving these



two theorems.

II. MODEL

This paper focuses on the design of distributed algorithms
for attaining desirable solutions for submodular maximiza-
tion. To that end, let S be a set of elements and f : 2S →
R≥0 have the following properties:
• Submodular: For A ⊆ B ⊂ S and x ∈ S \ B, the

following holds:

f(A ∪ {x})− f(A) ≥ f(B ∪ {x})− f(B). (1)

• Monotonic: For A ⊆ B, f(A) ≤ f(B).
• Normalized: f(∅) = 0.

We say f is modular if (1) is an equality.
In many applications maximizing such f can be formu-

lated as the compilation of decisions made by agents, each
maximizing a local utility. Suppose we have agents labeled
1, ..., n and a corresponding family of sets X1, ..., Xn, where
Xi ⊆ 2S . Here we define X = X1×· · ·×Xn. For notational
purposes, if A is a set of agents, then let xA =

⋃
A xi,

where xi ∈ Xi and i ∈ A. We also use the notation that
xa:b =

⋃b
i=a xi for b ≥ a. Finally, we define x∗1, ..., x

∗
n as

the optimal set of decisions for each agent. In this context,
the submodular maximization problem can be formulated as

f(x∗1:n) = max
x1∈X1,...,xn∈Xn

f(x1:n). (2)

This type of constraint where we choose from a family of
subsets Xi is equivalent to a partition matroid constraint [4].
Each Xi can be considered the action space of agent i.

As mentioned in the previous section, the maximization
problem in (2) can be approximated using a distributed
greedy algorithm. Since the algorithm requires agents to
make decisions sequentially, without loss of generality we
impose an ordering on the agents according to their labels,
i.e., agent 1 chooses first, agent 2 chooses second, etc. Agent
i makes its choice xi ∈ Xi based on the following rule:

xi ∈ arg max
x̃i∈Xi

f(x̃i ∪ x1:i−1), (3)

where x1:0 is defined to be ∅. Note that there could be several
xi to choose from in the arg max, so define X ⊆ X to be the
set of all possible choices if agents choose according to (3). It
is well-known in the literature that for any submodular f , any
set of action spaces X , and any order of agents, the quality of
the resulting solution x = x1:n derived from the distributed
greedy algorithm compared to the optimal solution x∗ = x∗1:n
satisfies

γ(f,X) :=
infx∈X f(x)

f(x∗)
≥ 1

2
, (4)

which means the solution is within 50% of the optimal [16].
Here we say that γ(f,X) is the efficiency of solution x. For
special classes of submodular functions, and additional con-
straints placed on X1, ..., Xn, [16] also shows that γ(f,X) ≥
1− 1/e.

Notice that in (3), agent i must have access to the decisions
of all previous agents. However, this may not hold in

some real-world applications. Therefore a more generalized
version of the distributed greedy algorithm is where agent i
makes its choice using the following rule:

xi ∈ arg max
x̃i∈Xi

f(x̃i ∪ xNi
), (5)

where Ni ⊆ {1, ..., i − 1}. The sets Ni, i = 1, ..., n are the
sets that represent the communication structure - in other
words, Ni is the set of agents whose choices are observed
by agent i when making its decision. It is helpful to visualize
this communication structure as a graph G = (V,E), where
V is a set of vertices and E ⊆ V × V is a set of edges
between vertices. In this scenario each vertex is an agent
and each edge (j, i) implies j ∈ Ni, i.e., Ni is the set of
in-neighbors for vertex i. Since there is an imposed ordering
on the vertices, and the agents choose sequentially, the set

G = {G = (V,E) : (i, j) ∈ E =⇒ i < j} (6)

is the set of admissible graphs that correspond to a commu-
nication structure. In this context, we define X ⊆ X to be
the set of all possible choices if agents choose according to
(5), and again measure the efficiency of solution x according
to the decision rule (5) with

γ(f,X,G) :=
infx∈X f(x)

f(x∗)
, (7)

where G ∈ G is defined by the sets Ni.
The goal of this paper will be to identify the efficiency

guarantees associated with this more generalized version of
the distributed greedy algorithm for any monotone normal-
ized submodular function. To that end, let F be the set
of such functions, where each f ∈ F is defined on some
element set Sf . We now define

γ(G) = inf
f∈F

inf
X:Xi⊆2Sf

γ(f,X,G) (8)

In words, γ(G) is the worst-case efficiency for any f and
family of sets X1, ..., Xn as defined above, given that the
communication structure among the agents is represented by
G.

A. An Illustrative Example: Weighted Set Cover

We now describe the weighted set cover problem using our
model, in order to illustrate how the generalized distributed
greedy algorithm works using a communication structure
represented by a graph G. The following sections leverage
instances of this problem to show worst-case scenarios and
to prove tight lower bounds, so it serves as both a simple
example and part of our proof technique. For a base set of
elements S:
• let s1, ..., sT be a partition on S, each with an associated

value v1, ..., vT ,
• let Xi ⊆ {s1, ..., sT }, and
• let f(x1:n) =

∑
j∈J vj , where j ∈ J if sj was chosen

by some agent.
In this case, f is submodular (more specifically, it is mod-
ular), monotone, and normalized, thus it meets the require-
ments for the model. Essentially, the agents are collectively



(a) The setup of a weighted set cover problem. The set S is partitioned
into subsets s1, ..., s5, each with a corresponding value v1, ..., v5. The
available choices to each agent are represented by the black lines,
where the dotted lines are an optimal set of choices. The goal for the
agents is to maximize the value of the union their choices.

Algorithm x1 x2, x3 x4 f(x1:4)

Optimal s2 s3 s4 s5 9
Distributed Greedy s3 s1 s4 s5 8
Generalized
Distributed Greedy s3 s3 s4 s4 6

(b) This table shows the agents’ decisions in an optimal case, the
case where the distributred greedy algorithm is used (agents choose
according to (3)) and the case where the generalized distributed
algorithm is used (agents choose according to (5), constrained to the
graph shown).

Fig. 1: An instance of the weighted set cover problem

trying to “cover” as much of S as they can, given each agent
i’s restriction to choose from Xi. An instance of the weighted
cover set problem is shown in Figure 1.

III. WORST-CASE EFFICIENCY BOUNDS

In this section we present lower and upper bounds for
the worst-case efficiency γ(G) for any G ∈ G based on
its structure. We begin with some preliminaries from graph
theory, and then prove the bounds.

A. Preliminaries

In order to show bounds on γ(G), we leverage terminology
and work done in graph theory. For all definitions in this
section, we assume that G = (V,E) is any general graph.
We begin with cliques:
• A clique is a set of nodes C ⊆ V such that for every
i, j ∈ C, either (i, j) ∈ E or (j, i) ∈ E.

• The clique number ω(G) is the size of the largest clique
in G.

• A clique cover is a partition on V such that the nodes
in each partition form a clique.

• The clique cover number k(G) is the minimum number
of sets within any clique cover of G.

As an example, consider the graph in Figure 2. Here there
are 4 cliques of size 1 (one for each node), 5 cliques of size
2 (one representing each edge), and 2 cliques of size 3 (the
sets {1, 2, 3} and {1, 2, 4}). Thus the clique number is 3. A

Fig. 2: An example graph used to illustrate some basic graph
theory concepts. In this case ω(G) = 3, k(G) = 2, and
α(G) = 2.

minimum clique cover is {1, 3}, {2, 4}, so the clique cover
number is 2.

Another important notion in graph theory is that of inde-
pendence:
• An independent set I ⊆ V is a set of vertices such that
v1, v2 ∈ I implies (v1, v2), (v2, v1) /∈ E.

• A maximum independent set Imax is an independent
set of G such that no other independent set has more
vertices.

• The independence number of G is α(G) := |Imax|.
As an example, consider again the graph in Figure 2. The
maximum independent set is {3, 4}, thus the independence
number is 2.

B. Related Work

As mentioned in the previous section, this work relates to
that done in [4]. We give a brief description of their results,
as it pertains to this section. The first is that for a graph
G ∈ G:

γ(G) ≥ 1

n− ω(G) + 2
, (9)

and a second is that if G is a family of disconnected cliques,
then

γ(G) ≥ 1

2k(G)
. (10)

The lower bound on γ(G) that we show in the next section
is greater than or equal to these bounds in all cases.

C. Lower and Upper Bounds on γ(G)

Now we present lower and upper bounds on γ(G) in the
terms of the clique cover number k(G) and independence
number α(G), respectively. In order to assist, let

∆(xi|xP ) = f(xi, xP )− f(xP ) (11)

be the marginal contribution of agent i given the choices of
the agents in set P . We will also make use of the following
Lemma:

Lemma 1: Let A ⊆ S and B ⊆ V . Then

f(A, xB) = f(A) +
∑
i∈B

∆(xi|A, xj∈B:j<i). (12)

Proof: Let j be the smallest element of B. From (11), it
follows that f(A, xB) = f(A, xB\{j}, xj) = f(A, xB\{j})+
∆(xj |A, xB\{j}). Let l be the next smallest element of B,
then it follows that

f(A, xB) =f(A, xB\{j,l}) + ∆(xj |A, xB\{j})
+ ∆(xl|A, xB\{j,l}).

(13)



Continuing this line of reasoning sequentially for all i ∈ B,
we arrive at (12)

We now proceed with the main theorem and its proof.
Theorem 1: Let G ∈ G. Then

1

α(G)
≥ γ(G) ≥ 1

k(G) + 1
. (14)

Proof: We first begin to show the lower bound begin
with the following inequality:

f(x∗1:n) ≤f(x∗1:n, x1:n), (15)

=f(x1:n) +

n∑
i=1

∆(x∗i |x1:n, x∗1:i−1), (16)

≤f(x1:n) +

n∑
i=1

∆(x∗i |xNi
), (17)

≤f(x1:n) +

n∑
i=1

∆(xi|xNi
), (18)

where (15) holds by submodularity, (16) holds by Lemma 1,
(17) holds by submodularity since Ni ⊆ {1, ..., n}, and (18)
holds because agents make decisions according to (5).

Now let C1, ..., Ck be a minimal clique cover of G. In
other words, C1, ..., Ck is a partition on V where for every
j ∈ {1, ..., k} every vertex in Cj is connected to every other
vertex in Cj . Let P be the function that maps vertex i to its
assigned partition, i.e., if i ∈ Cj , then P (i) = j. We also
define Qi = {m ∈ CP (i) : m < i}. Now we see that

n∑
i=1

∆(xi|xNi) ≤
n∑
i=1

∆(xi|xQi), (19)

=

k(G)∑
j=1

∑
i∈Cj

∆(xi|xQi
), (20)

=

k(G)∑
j=1

f(xCj ), (21)

≤
k(G)∑
j=1

f(x1:n), (22)

=k(G)f(x1:n), (23)

where (19) is true by submodularity since Qi ⊆ Ni, (20) is
true since it merely imposes a different order on the sum, (21)
is true by Lemma 1, (22) is true by submodularity since Cj ⊆
{1, ..., n}, and (23) is the result of the sum. Substituting the
above value into (18), we see that

f(x∗1:n) ≤ (k(G) + 1)f(x1:n), (24)

which holds for any f , S, and X1, ..., Xn. Therefore γ(G) ≥
1

k(G)+1 .
Next we prove the upper bound. It is sufficient to show

that for any G we can choose S, f and X1, ..., Xn such
that γ(f,X,G) = 1

α(G) . Then by definition γ(G) cannot
be greater than γ(f,X,G). Consider a weighted set cover
problem where S is partitioned by s0, s1, ..., sα(G)+1, where
v0 = 0, and where v1 = · · · = vα(G)+1 = 1. Suppose that

Fig. 3: An example weighted set cover problem from the
proof of Theorem 1. Here we use Imax = {2, 4, 5}. The
optimal choices are shown by dotted lines, thus f(x∗1:5) = 3.
The worst case using the generalized distributed greedy algo-
rithm, is where 2, 4, and 5 all choose s1, where f(x1:5) = 1.
Therefore, in this case γ(f,X,G) = 1

α .

Imax is a maximum independent set in G, and that the action
sets are assigned as follows

Xi =

{
{s1, P (i)} if i ∈ Imax

{s0} otherwise,

where P : Imax → {s2, ..., sα(G)+1} is injective. An instance
of this scenario is shown in Figure 3. Essentially, this choice
of Xi has “zeroed out” any vertex that is not in Imax, mean-
ing that only vertices in Imax are adding value. However, note
that by definition no vertex in Imax is connected to any other,
so the corresponding agents make choices independently. The
optimal set of choices are for each agent i ∈ Imax to choose
P (i), and thus f(x∗1:n) = α(G). The worst set of choices
would be for each agent i ∈ Imax to choose s1, which they
have equal incentive to do. In this case, f(x1:n) = 1, thus
γ(f,X,G) = 1

α(G) .
As stated, the lower bound presented in Theorem 1 is

greater than or equal to those lower bounds shown in
[4]. This is trivially true for (10), and it’s true for (9) if
n − ω(G) + 1 ≥ k(G) for all G ∈ G. We can see that
this statement holds since n− ω(G) is all vertices outside a
largest clique and k(G) would not include any two from the
same clique.

D. Examples

Theorem 1 shows lower and upper bounds on γ(G), but
we have not shown whether either of these bounds is tight. In
fact, there exist some choices of f, S, and X1, ..., Xn where
the lower bound is tight and other choices where the upper
bound is tight. In this section, we provide an example of
each.

Example 1: Consider the weighted set coverage problem
presented in Figure 4a. For this graph G, α(G) = k(G) = 2.
As shown, γ(f,X,G) = 1

k(G)+1 . Since γ(G) ≤ γ(f,X,G)

by definition, it follows that γ(G) = 1
k(G)+1 . Also, since

α(G) = 2, the upper bound in Theorem 1 is 1
2 , and is not

tight in this case. As a note, the lower bounds on γ(G) in
(9) and (10) are both 1

4 .



(a) An example of a graph G where γ(G) = 1
k(G)+1

. Here k(G) = 2,
and we can see that f(x∗1:4) = 3. The worst-case results from the
generalized distributed greedy algorithm occur when x1 = x2 =
x3 = s2, and therefore f(x1:4) = 1. Therefore γ(f,X,G) =

1
k(G)+1

= 1
3

, so the lower bound in Theorem 1 is tight for this
graph.

(b) An example of a graph where γmin = 1
α

Fig. 4: Example graphs that meet the (a) lower bound and
(b) upper bound given in Theorem 1.

Example 2: Consider the graph G in Figure 4b. Again
k(G) = α(G) = 2, and we claim the upper bound given in
Theorem 1 is tight. This can be shown beginning with the
following inequality:

f(x∗1:4) ≤f(x∗1:4, x1:2) (25)
=f(x1:2) + ∆(x∗1|x1:2) + ∆(x∗2|x∗1, x1:2)

+ ∆(x∗3|x∗1:2, x1:2) + ∆(x∗4|x∗1:3, x1:2) (26)
≤f(x1:2) + f(x∗1) + ∆(x∗2|x1) + ∆(x∗3|x1:2)

+ ∆(x∗4|x1:2) (27)
≤f(x1:2) + f(x1) + ∆(x2|x1) + ∆(x3|x1:2)

+ ∆(x4|x1:2) (28)
=f(x1:3) + f(x1:2, x4) (29)
≤2f(x1:4), (30)

where (25) is true by submodularity, (26) is true by Lemma
1, (27) is true by submodularity, (28) is true since agents
choose according to (5), (29) is true by Lemma 1, and (30)
is true by submodularity. Therefore we conclude γ(G) = 1

2 ,
which is the upper bound given in Theorem 1. We also see
that since k(G) = 2, the lower bound from Theorem 1 is 1

3
and is therefore not tight.

IV. OPTIMAL GRAPH STRUCTURES

The bounds on γ(G) given above dictate a near-optimal
approach to communication structure design. Using these
results, we describe how to build graph structures that
approximate the highest γ(G). In other words, given n
vertices and m edges, we show where to put edges in order

Fig. 5: The lower and upper bounds shown in Theorem 2 for
graphs with 10 vertices, ranging from 0 to 1000 edges.

to maximize γ(G). We begin by defining the following
notation:
• Let Gm,n := {G = (V,E) ∈ G : |V | = n, |E| = m}.
• Let

G∗m,n ∈ arg max
G∈Gm,n

γ(G). (31)

Note that G∗m,n is not necessarily unique for a given m
and n.

• For a graph G = (V,E), its complement is Ḡ = (V, Ē),
where (i, j) ∈ E ⇐⇒ (i, j) /∈ Ē.

Theorem 2: For any integers m ≥ 0 and n > 0 such that
m ≤ 1

2n(n− 1),

1

r∗
≥ γ(G∗m,n) ≥ γ(T̂ (n, r∗)) =

1

r∗ + 1
(32)

where

r∗ =

⌈
n2

2m+ n

⌉
(33)

and T̂ (n, r) ∈ G for any positiver integer r is a graph
constructed with the following algorithm:

1) Partition the vertices into r different sets C1, ..., Cr
such that |Ci| and |Cj | differ by no more than 1 for all
i, j ∈ {1, ..., r}. In other words, all sets in the partition
are as close to equal size as possible.

2) Create edges between all nodes within each set.
Prior to the proof, we give some insight into the implica-

tion of this theorem. With some algebraic manipulation, (32)
becomes

1 ≥ γ(T̂ (n, r∗))

γ(G∗m,n)
≥ r∗

r∗ + 1
. (34)

This format shows that the worst-case efficiency of G∗m,n can
be approximated by that of T̂ (n, r∗). The approximation gets
closer as r∗ increases, which according to (33) corresponds
to when m is on the order of n and not n2. In other words, r∗



(a) The Turán graph T (8, 3), where the clique number is 3. No other
graph with 8 vertices can have more edges without also having a
clique of size 4 or higher.

(b) The complement Turán graph T̂ (8, 3), where the independence
number is 3. No other graph with 8 vertices can have less edges
without also having an independent set of size 4 or higher.

Fig. 6: A Turán graph and its complement

is high for sparse graphs. This idea is represented in Figure
5.

This result gives insight into how to construct a graph
given n vertices and m edges: construct the graph T̂ (n, r∗).
As an example, if a system designer had 8 agents but could
only place 7 edges, an optimal structure would be that in
Figure 6b. Implied in the following proof is that in the case
where n is divisible by r∗, G∗m,n = T̂ (n, r∗). However, when
this is not true, T̂ (n, r∗) is an approximation of G∗m,n, since
G∗m,n has more edges. Theorem 1 does not give insight as
to where to place these extra edges. Intuitively, this leads to
the slack between the upper and lower bounds in Theorem
2, although technically it need not be the case that T̂ (n, r∗)
is an induced subgraph of G∗m,n. We now proceed with the
proof.

Proof: We first describe some properties of T̂ (n, r) as
is it constructed in the theorem statement. In graph theory a
Turán graph T (n, r) is a graph with n vertices created with
the following algorithm:

1) Partition the vertices into r different sets C1, ..., Cr
such that |Ci| and |Cj | differ by no more than 1 for
all i, j ∈ {1, ..., r}.

2) Create edges between all nodes not within the same
set.

The number of edges m̄ in T (n, r) satisfies the following
inequality

m̄ ≤
(

1− 1

r

)
· n

2

2
. (35)

A result known as Turán’s theorem states that T (n, r) is an
n-vertex graph with the most edges that has clique number

Fig. 7: A graph T̂ (6, 3) with a weighted set cover problem
described in the proof for Theorem 2, where we know
k(T̂ (6, 3)) = 3. In this instance, y = 1, z = 2 and
the set I = {2, 4, 6}. By the dotted lines we see that the
optimal choices yield f(x∗1:6) = 4 and in the worst-case, the
generalized distributed greedy algorithm yields f(x1:6) = 1.
Therefore γ(f,X, T̂ (6, 3)) = 1

4 , and the lower bound on
γ(T̂ (6, 3)) given in Theorem 1 is tight.

r or smaller [21]. Alternatively stated,

T (n, r) ∈ arg max
G=(V,E):ω(G)≤r

|E|. (36)

Note that Step 1 above is the same as in the procedure
for creating T̂ (n, r), but Step 2 is different. Any edge in
T (n, r) will not be present in T̂ (n, r), and vice versa, thus
these graphs are complements of each other, i.e.,

T̂ (n, r) = T (n, r). (37)

It is also well-known in graph theory that an independent
set of vertices in a graph G forms a clique in Ḡ. This implies
that α(G) = ω(Ḡ). Combining this fact with (37) and (36),
we conclude that

T̂ (n, r) ∈ arg min
G=(V,E):α(G)≤r

|E|. (38)

In words T̂ (n, r) is a graph with the least edges that has
independence number r or fewer. An example of a Turán
graph and its complement is found in Figure 6.

We now show the rightmost equality in (32). By construc-
tion T̂ (n, r) is a series of r disconnected cliques C1, ..., Cr,
therefore k(T̂ (n, r)) = r. By Theorem 1 it follows that
γ(T̂ (n, r)) ≥ 1

r+1 . However, to show that this bound is
tight, we again leverage the weighted set cover problem.
Let y and z be the first and second vertices, respectively,
in some clique. Let s0, ..., sr+1 be the partition on S, where
v0 = 0, v1 = · · · = vr+1 = 1, and let I be a set of nodes,
one from each clique Cj , that includes z. Then the Xi are
assigned as follows:

Xi =

 {s1} if i = z
{s1, P (i)} if i ∈ I
{s0} otherwise,

where P : I → {s2, ..., sr+1} is injective. An instance of
such a weighted set cover problem is shown in Figure 7.
Here the optimal sequence is for each i ∈ I to choose
P (i), yielding f(x∗1:n) = r + 1. However, the worst-case
generalized distributed greedy algorithm set of decisions is



when all i ∈ I choose s1, so that f(x1:n) = 1. Therefore,
γ(f,X, T̂ (n, r)) = 1

r+1 . Since this example meets the lower
bound shown above, it follows that γ(T̂ (n, r)) = 1

r+1 . The
rightmost equality in (32) is the case where r = r∗.

Next we show the middle inequality in 32: γ(G∗m,n) ≥
γ(T̂ (n, r∗)). We claim that

r∗ = min
T̂ (n,r):m̂≤m

r, (39)

where m̂ is the number of edges in T̂ (n, r). The equations
(37) and (35) imply that in order to guarantee T̂ (n, r) does
not have more than m edges the following must be true:

1

2
n(n− 1)−m ≤

(
1− 1

r

)n2
2
, (40)

since m̄ = 1
2n(n−1)−m. With some algebraic manipulation,

this implies
n2

2m+ n
≤ r. (41)

Since r must be a positive integer, the lowest value of r is
r∗ as defined in (33), therefore (39) holds.

Let Gm,n ∈ Gm,n be a graph which is created by starting
with T̂ (n, r∗) and adding m− m̂ edges. Since adding edges
cannot remove any cliques, k(Gm,n) ≤ k(T̂ (n, r∗)) = r∗.
Thus by Theorem 1

γ(G∗m,n) ≥ γ(Gm,n) ≥ 1

k(Gm,n) + 1
≥ 1

r∗ + 1
, (42)

proving the middle inequality.
Finally, we show the leftmost inequality 1

r∗ ≥ γ(G∗m,n).
According to (38) and (39), one cannot achieve a lower
independence number than r∗ in a graph with n vertices and
m edges. Therefore, by Theorem 1 this inequality holds.

V. CONCLUSION

In this paper we have shown bounds on the worst-case
efficiency of the distributed greedy algorithm for submodular
maximization. These bounds show how to design communi-
cation structures that maximize the worst-case efficiency.

Future research can follow in several directions. For exam-
ple, while the bounds presented in Section III are applicable
to any graph structure G ∈ G, it is not clear how to
characterize graphs where γ(G) = 1

α(G) versus those where
γ(G) = 1

k(G)+1 . It is also not clear whether there exists
any graph such that 1

α(G) > γ(G) > 1
k(G)+1 . Precisely

characterizing γ(G) for any graph structure will also lead
to an exact formulation on how to construct any G∗m,n.

Another idea for future research is to consider a game-
theoretic approach instead of a greedy approach, similar to
work done in [22]. In this case, the order of the agents
wouldn’t matter, and the goal would be to define charac-
teristics of the Nash equilibrium for certain graph structures.
Finally, future work could include exploring the use of a
different utility function rather than marginal contribution in
order to make greedy decisions. The key point of study here
would be whether a different set of functions could yield
better performance guarantees than marginal contribution.
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