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Abstract—Evaluating security vulnerabilities of software im-
plementations at design step is of primary importance for
applications developers, while it has received litte attention from
scientific community. In this paper, we describe virtual proto-
typing of an implementation of scalar multiplication aiming to
make it secure against simple side-channel attacks. Reproducing
information leakage as close to reality as possible requires bit-
and clock-cycle accuracy, we got with Mentor Graphics Modelsim
tool, simulating the execution of the software implementations
on PULPino, an open-source 32-bit microcontroller based on
the recently released RISC-V instruction set architecture. For
each clock cycle, we compute the number of bit toggles into
microcontroller, an image of the power consumption, and watch
the program counter to identify the assembly instruction exe-
cuted, then the corresponding C function. We first start with a
naive double-and-add implementation relying on cryptographic
primitives of the mbed TLS library, formerly PolarSSL before
acquisition by ARM. The virtual analysis pinpoints differences
in the way the double function on one side and the add function
on the other side manage variables and internal operations,
which can be used to extract the private key. We propose some
modifications of the C code, hence independent of the considered
microcontroller, then we compare the impact on performances
with other solutions such as Montgomery ladder, most used in
practice as more efficient.

I. INTRODUCTION

Today the human being is becoming more and more inti-
mately connected to technologies. Technologies are surrounding
us everywhere: smart-phones, Internet-of-Things (IoT) devices,
payment and banking cards, laptops, smart home devices, cars,
health-care tracking engines, etc. Basically, these technologies
are sharing two points: The common first point is that they
are all based on small circuits, known as embedded systems,
perfectly and assembled and packaged for the end-user product.
Those embedded systems can be defined as small computers
subject to hardware and software designing requirements.
The second common point is that all those technologies
are permanently holding manipulating sensitive data. The
manipulated data can by any private information from personal
photos and videos, e-mails, contact directory to classified and

governmental documents. Everyday, new critical security issues
are identified. The last one (october 2016) is no doubt the
spectacular DDOS attack on Dyn DNS. This was as a big alert
all over the world. The Guardian, famous UK newspaper, has
recently warned people that IoT might be the next target. One
may argues that the problem of data protection and privacy
preserving is already resolved as the solution is simply the
cryptography: This is not totally true! In fact, sure modern
cryptography with its theoretical principles is robust. As a
matter of fact, no one attacker would try to exhaustively predict
a 128-bit secret key. This means he should try all possible
combinations (2128), which would take hundreds of years even
with sophisticated computers. The real problem is coming from
the integration of cryptography into embedded systems. The
system will leak sensitive information that can be exploited
easily by the so-called physical attacks. Basically, those recent
attacks are classified into two classes:

1) Passive analysis that aims at exploiting a physical
property like the power, electromagnetic emanations,
time calculations,the sounds, etc to retrieve the secret.
The commonly known passive analysis are Side-channel
analysis (SCA.)

2) Active analysis that aims at interacting directly with
the system by perturbing it. Such perturbation impact
the systems which lead to an abnormal behaviour. Such
abnormal behaviour is exploited to retrieve the secret.
The most commonly known analyses are Fault injection
analysis (FIA)

Obviously, assessing the robustness of embedded systems
against those attacks is vital. A good evaluation of the
cryptographic implementation is the key to the success for
certification. The security certification is not just a marketing
label, more importantly it is an image of the user confidence
level. Generally, the evaluation is performed at the post-silicon
stage just before assembling the end-user product. Real physical
analysis requires a real target and acquisition equipment,
namely an oscilloscope and probes to extract the so-called978-1-5386-0689-6/17/$31.00 c©2017 European Union



consumption traces. Unfortunately, when dealing with a real
analysis, results are always severely impacted by measurement
condition like the noise or traces misalignment. Now, how about
assessing the robustness of a chip before producing its post-
silicon version. The answer is the core idea behind the so-called
virtual analysis which is entirely based on a simulated image of
the cryptographic embedded design. Moreover, evaluating such
at an early stage allows you considering the best ever attacker
with free-noise models. Additionally, virtual prototyping allows
you saving a lot of effort, time and money.

II. MIXED SOFTWARE AND HARDWARE SIMULATION

In our process, we provide the hardware description (HDL) to
the simulator to synthesise a netlist which serve us to virtualize
the design in one hand, and in the other hand we compiled
the software sources to generate the binary code that will be
converted to instruction and data memory files, and then, will
be loaded to the hardware memory. The testbench is used to
have this connection between the software and the hardware,
particularly, to load data and instructions into memory and start
the execution of the program. At the end of the simulation, a
VCD (Value Change Dump) is exported, and it contains the
transitions of each signal of the selected region in the design.
We have used a model based on Hamming distance to estimate
the power consumption, and generate the trace of the Program
counter (PC).
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Figure 1. Workflow for the mixed software and hardware simulation.

III. VIRTUAL PROTOTYPING FOR COUNTERMEASURE
DESIGN

This section presents an example of virtual prototyping, that
is to say, an example of iterating a process which consists in
searching for security flaws using simulated observations, then
correcting them. The source code in C language of the initial
implementation is reproduced in listing 1. It performs scalar
multiplication between a point P in the group grp of an elliptic
curve and a private key k, according to the left-to-right binary
algorithm: Point doubling (2P ) is systematically performed,
then the addition to itself (P+P ) if the current key bit (ki) is set.
For these two functions, we used ecp_double_jac (line 13)
and ecp_add_mixed (line 14) primitives of mbed TLS [1]
library. As the left-to-right binary algorithm is particularly
sensitive to Simple side-channel attacks (SSCAs), it is the
perfect candidate to illustrate in the simplest way possible our
example of virtual prototyping.

Figure 2 represents the simulated observation obtained when
the implementation of listing 1 is executed by PULPino [2], an
open-source microcontroller based on a small 32-bit RISC-V
core, and designed for Internet of things (IoT) applications.

1 static int l2r_jac(
2 mbedtls_ecp_group *grp,
3 mbedtls_ecp_point *R,
4 const mbedtls_mpi *k,
5 const mbedtls_ecp_point *P,
6 size_t l)
7 {
8 // Initialization
9 mbedtls_ecp_point_init(R);

10 mbedtls_ecp_set_zero(R);
11 // Left-to-right binary algorithm
12 for (int i=l-1; i>=0;i--) {
13 ecp_double_jac(grp, R, R);
14 if (mbedtls_mpi_get_bit( k, i )==1)

ecp_add_mixed(grp, R, R, P);
15 }
16 return OK;
17 }

Listing 1. Left-to-right binary algorithm using mbed TLS primitives.

The clock cycle number is plotted on the abscissa. In total,
376 771 cycles have been simulated. The first 28 027 cycles
correspond to the boot of the microcontroller followed by the
execution of the main program until the initialization and the
zeroing of the result point R (line 10 of listing 1). The next
cycles correspond to the execution of the left-to-right binary
algorithm for the first four most significant bits of the key
(0b1101). Simulation results contain the successive values
taken by each register of the processor, in particular those of the
register PC. Therefore, we know exactly for each clock cycle
which address of the assembly code is running, and can deduce
the corresponding function of the C source code. Moreover,
by tracking the evolution of PC, we can determinate the
calling function. We used this technique to identify the instants
during which ecp_double_jac (line 13 of listing 1)) and
ecp_add_mixed (line 14 of listing 1) primitives are executed.
In fig. 2, these instants are indicated in green for the first
primitive, in purple for the second one. Their succession is
consistent with the value of the private key. The first execution
of the primitives ecp_double_jac then ecp_add_mixed,
from cycle 28 027 to cycle 52 192, is much shorter than the
following executions. Indeed, as the result point R is set to
zero (line 10 of listing 1), ecp_double_jac1makes only a
copy of R into R, and ecp_add_mixed a copy of P into P
(see lines 1006 to 1013 of [3]).

The ordinate is the number of RISC-V core’s nets toggling,
that is to say whose state has changed. It is an image of the
global activity of the microcontroller, as would be in the real
world a measure of its power consumption or of its electro-
magnetic radiation with a large probe. We distinguish very
clearly at the end of the execution of each primitive some quiet
instants, whose duration is doubled for ecp_add_mixed
(in purple). This difference makes it possible to distinguish
the two primitives, and thus ultimately to reconstruct the
complete sequence, which reveals the private key with a single

1More exactly, primitives mbedtls_mpi_mul_mpi,
mbedtls_mpi_add_mpi and mbedtls_mpi_sub_mpi (see listing 3 in
appendix.



observation. A zoom on these quiet instants is given at the
bottom of figs. 3 and 4. At the top of these figures, the
evolution of the PC’s value shows four executions of the
primitive mbedtls_mpi_free in the first case, seven in
the second. They come from sequences of memory cleaning,
line 973 of listing 3 (in appendix) for ecp_double_jac
primitive, and lines 1065 and 1066 of listing 2 (or [3]) for
ecp_add_mixed.

Figure 2. Simulated observation of a RISC-V core running the implementation
of listing 1, for the first four most significant key bits (0b1101).

Figure 3. Program counter (top) and toogle count (bottom) at the end of
ecp_double_jac mbed TLS primitive.

Figure 4. Program counter (top) and toogle count (bottom) at the end of
ecp_add_mixed mbed TLS primitive.

1063 cleanup:
1064
1065 mbedtls_mpi_free( &T1 ); mbedtls_mpi_free( &

T2 ); mbedtls_mpi_free( &T3 );
mbedtls_mpi_free( &T4 );

1066 mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y
); mbedtls_mpi_free( &Z );

Listing 2. Cleanup of ecp_add_mixed primitive [3].

To make this security vulnerability unexploitable, the number
of mbedtls_mpi_free in ecp_double_jac primitive
has to be balanced, but also their duration, which depends
on the size of the variable to be unallocated. Primitive
ecp_add_mixed (fig. 4) uses seven variables: T1, T2, T3,
T4, X and Z of a size of 512 bits, and Y of a size of 256 bits.
Primitive ecp_double_jac uses four variables: S, T and
U of a size of 512 bits, and M of a size of 256 bits. In the
end, three dummy 512-bit variables have to be declared at the
beginning of ecp_double_jac primitive, along with three
mbedtls_mpi_free to unallocate them. The impact of this
modification on the initial implementation is 6690 cycles, so an
overhead of 6.99 %, as indicated in the second line of table I.

In previous figures, simulated observations were represented
as a sequence of pulses, one per clock cycle, each having an
amplitude equal to the number of nets having toggled at the
beginning of the cycle. To get an observation closer to reality,
each individual pulse must be convolved with the temporal
response of the transmission channel. This channel extends
from the internal gates of the integrated circuit to the analog-
to-digital converter of the oscilloscope, including measurement
probes. A common technique for locating patterns potentially
revealing confidential information is to extract the maximum
value of the observation in each clock cycle, then to display a
trace composed of the sequence of the maximums connected
to each other. Applying it to the observation of fig. 2, as well
as a zoom on the end, we get fig. 5.

In the zones identified in red, the bottom of the simulated
observation takes the form of a solid rectangle, because
of a number of commutations oscillating to low values,
around 250 nets. There are eight such areas in the part
corresponding to ecp_double_jac primitive (in green), and
eleven in that of ecp_add_mixed (in purple). As before,
the knowledge of the PC value makes it possible to identify
the corresponding primitive. It is mbedtls_mpi_mul_mpi,
and there are indeed eleven systematic calls to this primitive
from ecp_add_mixed, at lines 1024, 1025, 1026, 1027,
1046, 1047, 1048, 1049, 1051, 1055 and 1056 of [3], and
six systematic calls from ecp_double_jac, at lines 945,
947, 951, 955, 961 and 965 of listing 3 (in appendix). The
two remaining calls are these at lines numlist921;924. Indeed,
since we use the elliptic curve secp256r1 (y2 = x3 + 7)
whose parameter a is null, the condition of line 918 is
valid. Note that for other curves, previous analyses remain
valid. More precisely, the particular pattern which makes the
identification of mbedtls_mpi_mul_mpi possible is due
to eight successive executions of mpi_mul_hlp primitive,



Table I
AVERAGE DURATION OF DOUBLE-AND-ADD IMPLEMENTATIONS.

Version #Clock cycles/key bit Overhead

Initial (listing 1) 95 669 -
Idem w/ #mbedtls_mpi_free balanced 102 359 6.99 %
Idem w/ #mpi_mul_mpi balanced 119 377 24.78 %
double-and-add-always 133 447 39.48 %

ecp_mul_mxz (Montgomery ladder) 80 702 −15.64 %

generated by the loop of lines 1190 and 1191 of [4], to calculate
a 256-bit multiplication by piece of 32-bit width. This pattern is
identified in red in fig. 6 which represents a complete execution
of mbedtls_mpi_mul_mpi primitive.

As before, it is possible to add three dummy calls
to mbedtls_mpi_mul_mpi in ecp_double_jac prim-
itive to in order to balance their number with those of
ecp_add_mixed, thus removing this second security vulnera-
bility. Multiplications should involve 256-bit variables, possibly
already existing. The impact of this modification is 17 018
cycles. Added to the balancing in mbedtls_mpi_free, the
total overhead on the initial implementation reaches 24.78 %,
as reported in the third line of table I.

The classic countermeasure against the analyses we have
just carried out is to always perform the addition operation
(double-and-add-always). Its performances are reported in the
penultimate line of table I. They are 15 points under the
performances of the implementation with both balancing. But
in reality, to be complete, it would also be necessary to balance
the other functions like mbedtls_mpi_add_mpi. In the end,
their performance should be similar. However, in practice, it
is rather the Montgomery multiplier that is used, much more
efficient (see last line of table I). But we recall that the aim of
this article is not to design a strong counter-measure, but to
illustrate the principles of virtual prototyping.

Figure 5. Simulated observation during the last execution of
ecp_double_jac and ecp_add_mixed mbed TLS primitives.

IV. CONCLUSION & PERSPECTIVES

During this work we were able to conceive a simulation
method of a soft program running on a SoC, and to propose a

Figure 6. Program counter (top) and toogle count (bottom) during
mbedtls_mpi_mul_mpi mbed TLS primitive.

way of a cryptographic system evaluation. Our next purpose
would at first be to improve the performance of the simulations
and the trace acquisition and secondly, to improve the con-
sumption model to be more realistic. The advanced evaluation
as leaks detection at the hardware level needs more means
for data management issued from the simulation which has
to target high levels of analysis as post synthesis, place &
route and post layout, which require more important material
resources. Soon, we are going to consider a generic solution
for any SoC, and to analyse other standard implementation and
propose a mechanism more automated for the virtualisation.
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905 int ecp_double_jac( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
906 const mbedtls_ecp_point *P )
907 {
908 int ret;
909 mbedtls_mpi M, S, T, U;
910
911 #if defined(MBEDTLS_SELF_TEST)
912 dbl_count++;
913 #endif
914
915 mbedtls_mpi_init( &M ); mbedtls_mpi_init( &S ); mbedtls_mpi_init( &T ); mbedtls_mpi_init( &U );
916
917 /* Special case for A = -3 */
918 if( grp->A.p == NULL )
919 {
920 /* M = 3(X + Zˆ2)(X - Zˆ2) */
921 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S, &P->Z, &P->Z ) ); MOD_MUL( S );
922 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &T, &P->X, &S ) ); MOD_ADD( T );
923 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U, &P->X, &S ) ); MOD_SUB( U );
924 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S, &T, &U ) ); MOD_MUL( S );
925 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M, &S, 3 ) ); MOD_ADD( M );
926 }
927 else
928 {
929 /* M = 3.Xˆ2 */
930 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S, &P->X, &P->X ) ); MOD_MUL( S );
931 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M, &S, 3 ) ); MOD_ADD( M );
932
933 /* Optimize away for "koblitz" curves with A = 0 */
934 if( mbedtls_mpi_cmp_int( &grp->A, 0 ) != 0 )
935 {
936 /* M += A.Zˆ4 */
937 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S, &P->Z, &P->Z ) ); MOD_MUL( S );
938 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &S, &S ) ); MOD_MUL( T );
939 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S, &T, &grp->A ) ); MOD_MUL( S );
940 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &M, &M, &S ) ); MOD_ADD( M );
941 }
942 }
943
944 /* S = 4.X.Yˆ2 */
945 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &P->Y, &P->Y ) ); MOD_MUL( T );
946 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T, 1 ) ); MOD_ADD( T );
947 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S, &P->X, &T ) ); MOD_MUL( S );
948 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &S, 1 ) ); MOD_ADD( S );
949
950 /* U = 8.Yˆ4 */
951 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &U, &T, &T ) ); MOD_MUL( U );
952 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &U, 1 ) ); MOD_ADD( U );
953
954 /* T = Mˆ2 - 2.S */
955 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &M, &M ) ); MOD_MUL( T );
956 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T, &T, &S ) ); MOD_SUB( T );
957 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T, &T, &S ) ); MOD_SUB( T );
958
959 /* S = M(S - T) - U */
960 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &S, &S, &T ) ); MOD_SUB( S );
961 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S, &S, &M ) ); MOD_MUL( S );
962 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &S, &S, &U ) ); MOD_SUB( S );
963
964 /* U = 2.Y.Z */
965 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &U, &P->Y, &P->Z ) ); MOD_MUL( U );
966 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &U, 1 ) ); MOD_ADD( U );
967
968 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->X, &T ) );
969 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Y, &S ) );
970 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Z, &U ) );
971
972 cleanup:
973 mbedtls_mpi_free( &M ); mbedtls_mpi_free( &S ); mbedtls_mpi_free( &T ); mbedtls_mpi_free( &U );
974
975 return( ret );
976 }

Listing 3. ecp_double_jac primitive [3].


