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ABSTRACT
Optical coherence tomography (OCT) has emerged as a promising image modality to characterize biological
tissues. With axio-lateral resolutions at the micron-level, OCT images provide detailed morphological information
and enable applications such as optical biopsy and virtual histology for clinical needs. Image enhancement is
typically required for morphological segmentation, to improve boundary localization, rather than enrich detailed
tissue information. We propose to formulate image enhancement as an image simplification task such that tissue
layers are smoothed while contours are enhanced. For this purpose, we exploit a Total Variation sparsity-based
image reconstruction, inspired by the Compressed Sensing (CS) theory, but specialized for images with structures
arranged in layers. We demonstrate the potential of our approach on OCT human heart and retinal images for
layers segmentation. We also compare our image enhancement capabilities to the state-of-the-art denoising
techniques.
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1. INTRODUCTION
Optical coherence tomography (OCT) is one of the most promising imaging techniques to characterize biological
tissues. Recent techniques like spectral-domain optical coherence tomography (SD-OCT)1 and swept source
optical coherence tomography (SS-OCT)2 have improved the overall quality of images, both in terms of signal to
noise ratio (SNR) and real-time performance. OCT images with higher resolution give access to more details on
the morphological and tissue information, broadening the image analysis possibilities in fields like optical biopsy
and virtual histology. However, in some specific applications, such as data transmission and segmentation of
biological tissues, the large data size can affect the efficiency and effectiveness of data analysis. For instance,
a modern ultra-high resolution SD-OCT image over a field of view of 4mm × 4mm may generate up to 2 GB
during data acquisition3 and the data size is even larger using SS-OCT.

In this work we focus on in-vitro SD-OCT images of cardiac and retinal samples, as well as their segmentation.
In both cases, tissues are organized in layers, and a large portion of OCT data is redundant while corrupted by
speckle noise. A data simplification scheme, targeting data size reduction and denoising via image re-sampling
is proposed to make tissue layers extraction simpler and faster, while also enabling data storage reduction. This
constitutes a radically different approach from the trend in retinal OCT imaging to design specialized layer
segmentation methods such as4–6 which might not work on pathological cases, require careful parameter tuning
(e.g. a priori layer thickness information) and sometimes rely on machine-learning.

Inspired by the Compressed Sensing (CS) theory,7 we propose an image simplification method that exploits
the sparsity of structural details in OCT images. Indeed, we are interested in the layer structures of the studied
images, and not in details inside the layers. The concept of exploiting the sparsity of SD-OCT images was
used for denoising in8 and more recently in,9 where segmentation results rely on a dictionary-learning approach,
resulting in a long running time when training on high SNR images. The use of Compressed Sensing in SD-OCT
has been previously investigated in,10,11 where the authors proved that it is possible to reconstruct OCT images



using only a fraction of the CCD camera pixels. Their method exploited 1D-Fourier transforms of the acquisition
samples, but did not exploit the 2D regularity of the layers. In addition, their method aimed at reconstructing
the exact image, and was only tested on noise-free data. Another approach has been proposed by12 , but their
mathematical formulation is not related to Compressed Sensing (CS), as requirements like matrices incoherence13
are not met in their work.

Compressed Sensing was introduced in7 and.13 This theory provides solutions to the ill-posed problem of
recovering a signal of interest x ∈ CN from an observation vector y = Φx + n ∈ CM degraded by an additive
noise n such that ‖n‖2 ≤ ε, in the case where the number M of linear projections is significantly smaller than
the size N of the signal.14 To compensate for the indeterminacy, two assumptions must be made: first, the
observation operator Φ needs to preserve the energy of the signal, up to a controlled error,14 second, the signal
has to be almost sparse in some known dictionary Ψ (called the sparsifying transform). If the constraints are
met, an estimator x̂ of x is defined as the solution of a convex optimization problem.

In this study, our objective is to simplify SD-OCT myocardial images while preserving detailed informa-
tion on the layers interfaces toward tissue segmentation. The approach consists in generating a simplified
estimator x̂ of the true image x, from a noisy observation y = Φx, by enhancing piecewise constant areas in
the image. The sparsity of the estimator is enforced via minimization of the Total-Variation (TV) norm:15
‖x‖TV =

∑
p,q

√
∂hx(p, q)2 + ∂vx(p, q)2 where ∂hx and ∂vx are the partial horizontal and vertical derivatives of

the image x, and p, q are the pixels coordinates.

2. SPARSITY-BASED ADAPTIVE SIMPLIFICATION
Introduced in16 for denoising, our approach uses multiple CS-based estimations of the acquired noisy image,
enforcing TV-sparse piecewise constant layers and horizontal contours via dedicated random sampling patterns
in the Fourier domain.

We generate several measurement vectors yk, (k = 1, . . . , R) by under-sampling the Fourier Transform of the
acquired image y. We then recover partial estimators x̂k that we aggregate, computing their pixelwise mean
map x̂mean and variance map σx. Finally, we adaptively combine the mean estimator and a filtered version of
the noisy image y, along the structures enhanced by the variance map.

2.1 Implementation
The proposed simplification method is decomposed into four steps: (See Fig.1)
• Generation of random subsets of measurement vectors yk in the Fourier domain: The OCT images that

we want to simplify have a very specific structure, displaying horizontal and almost parallel layers of tissue.
We exploit this a priori information by using a star-shapped pattern as the sampling operator Φ in the Fourier
domain (see17). To make sure that the principal direction of the layers is recovered, we run a first set of
reconstructions using a uniform random sampling, and compute the Hough transform18 on the resulting variance
map (See eq.(3)). From the Hough accumulator we select the main line direction, independently of its position.
This direction corresponds to a line of the star pattern. In practice, the principal direction of the layers in the
Fourier domain is better recovered by an area slightly thicker than a line. Hence, if we denote by θ the angle
of the principal line direction obtained with the Hough transform, we sample all angle values within the cone
θ ± θε, with θε = π

16 .
To capture additional local details on the layer interfaces, we complete the Fourier sampling mask with

Nb = 16 branches positioned at regular angular intervals in 2π. Randomness between Φk draws on the same
image is added via a set of Np random coefficients uniformly sampled in the Fourier domain, so that the overall
sampling rate is τ%.
• Reconstruction of partial estimators x̂k through convex optimization:
We solve for (k = 1, . . . , R) the classic convex optimization problem based on TV minimization, using NESTA

algorithm,19 as proposed in:7

x̂k = arg min
x

‖x‖TV s.t. ‖Φkx− yk‖2 ≤ ε (1)



Figure 1: Image simplification workflow. From a noisy image y, a given number of low-sampled measure-
ment vectors yk are generated, by taking the Fourier transform of y and selecting a subset of the Fourier
coefficients (Φk). Then, each yk is used to produce an estimator x̂k of the original signal through a convex
optimization reconstruction scheme. Finally, all the x̂k are combined into an estimator x̂.

The parameter ε is defined in19 to be optimal with respect to the original image, with value: ε0 = σn
√
τN + 2

√
2τN

which depends on the estimated noise variance σn and the sampling rate τ . In this work, we want to enforce
TV sparsity, and therefore give more weight to the regularization term than to the data fitting term. The values
chosen for ε depend on the target application, and are detailed in 1. Note that the noise level in the cardiac
images is of higher intensity, requiring larger values of ε.
• Fusion of the x̂k to produce the mean image x̂mean and the variance map σx: We aggregate the partial

estimators via computation of their mean:

x̂mean = 1
R

R∑
k=1

x̂k (2)

The fused estimator x̂mean provides an estimation of the denoised image, where the constant areas represent the
layers of the sample. We also define the variance map of the reconstructions as follows:

σx =

√√√√ 1
R− 1

R∑
k=1

(x̂k − x̂mean)2 (3)

The map σx (illustrated in Fig. 2) reveals edge structures corresponding to dissimilarities between different
partial estimators x̂k. This map highlights very accurately the separations between different tissue layers of the
sample and is less sensitive to local contrast than a standard gradient map.
• Adaptive reconstruction using fusion with a local filter H: We finally define the simplified enhanced image

x̂ as follows:
x̂ = (1− σx) ◦ x̂mean + σx ◦ H(y) (4)
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Figure 2: Simplification of the heart images. For each noisy data, we present the result of our simplification
algorithm, along with one of the 4 tested denoising methods: BM3D, Wavelt soft-thresholding, TV and
NLM. See 3.1 for a detailed comparison of the results.

where ◦ is the Hadamard product, and H represents a local smoothing filter applied on the original image y.
Here we used a simple 3× 3 Gaussian filter with variance σ = 0.06.

2.2 Parameters setting
See16 for a complete study of the parameters used for our method. In the specific case of OCT image simpli-
fication, a main objective is to reconstruct simplified images using very few Fourier coefficients. We set for all
our experiments the sampling rate to τ = 5%, and the number of reconstructions to R = 3. Overall, only 8.7%
of the Fourier coefficients of the noisy image y are exploited to reconstruct a simplified version x̂ of the original
image, since the coefficients of the star Fourier sampling pattern are shared between reconstructions.

3. EXPERIMENTAL RESULTS
3.1 Experimental Setup
3.1.1 Comparison to state of the art denoising
We compared our image enhancement results to four state of the art methods: TV-filtering,15 Non-Local Means,20
Wavelet soft-thresholding21 (commonly used for OCT-image denoising22), and BM3D23 (which is the reference
for most denoising algorithms).

Parameter values for this four methods were empirically set and are listed in Table 1.

3.1.2 OCT data sets
Cardiac OCT images We evaluated our algorithm on a set of 4 human hearts (See Fig.2) with the following
characteristics:



Table 1: Parameter values of the different denoising methods.
Method Reference Parameters
TV 15 Cardiac: ε = 61.12, Retinal: ε = 28.44
NLM 20 Patch size = 4px, α = 0.1
Wavelet thresh. 21 λwav = 0.2, wavelet depth = 10, wavelet type = haar
BM3D 23 σb = 75
Proposed 16 R = 3, Nb = 16, τ = 5%, ε = 13.78
px = pixels.

• Heart 1: One layer of constant thickness. Such configuration is typical for human atrial tissue, where the
regular layer corresponds to dense collagen.
• Heart 2: One layer of non-constant thickness. Such configuration is typical of a diseased human cardiac

tissue. The enlarged dense collagen layer is caused by myocardial scar.
• Heart 3: One thin layer. Such configuration is typical for healthy ventricular septum. The thin layer is the

endothelium, and there is no dense collagen layer.
• Heart 4: Two layers. On some human atrial tissue, we can distinguish deeper layers, beyond the dense

collagen in the first layer. They correspond to loose collagen, smooth muscle, or elastic tissues.

Retinal OCT images We exploited the data set of retinal OCT images shared by the authors of24 on
the link http://people.duke.edu/~sf59/Srinivasan_BOE_2014_dataset.htm. This data set was obtained
with Institutional Review Board-approved protocols using a Spectralis SD-OCT (Heidelberg Engineering Inc.)
imaging system at Duke University. The following population of 45 subjects was screened: 15 healthy subjects,
15 patients with dry age-related macular degeneration (AMD), and 15 patients with diabetic macular edema
(DME). In this paper, we focus on the healthy subjects, as they encompass the most challenging cases.

3.2 Qualitative evaluation
Regarding the myocardial OCT images, we can observe on Fig.2 that the four state of the art methods lead to
visual degradation of image content for at least one case: over-smoothing of one layer (Heart 1, wavelet soft-
thresholding; Heart 3, TV filtering), introducing strong visual artifacts such as oscillations (Heart 2 with BM3D;
Heart 4 with NLM), patch effects (NLM) and staircasing (TV). Regarding visual quality on fine structural details
on individual cases, we can make the following remarks: For the Heart 1 image, wavelet soft-thresholding fails to
detect the lower border of the layer, which impact the segmentation of the dense collagen layer. The image Heart
2 has a high level of noise which greatly degrades the performance of BM3D. The image Heart 3 is over-smoothed
by TV regularization which leads to disaperance of the thin endothelium layer. The image Heart 4 is poorly
denoised by NLM, with a patchy appearance and the introduction of outliers in the upper part of the image.

Regarding the retinal OCT images, visual illustrations of image enhancement with our proposed method and
with BM3D are reported in Fig.3. We can see that the two methods generate quite distinct types of images:
BM3D enhances thin contrasted structures but removes all texture while our method preserves some texture.

3.3 Segmentation of SD-OCT layers
In the field of OCT image segmentation, the problem of intra-retinal layer extraction has been widely studied
in the literature. Either performing a graph-search method,4 a gradient-based approach5 or a kernel-based
optimization algorithm,6 efficient segmentation solutions are now used in ophthalmology. In this study, we
tested the retinal layer segmentation method from24 which consists in a first step of denoising with a Gaussian
filter, followed by a hierarchical graph-based segmentation of the several layers of tissues, to isolate the different
compartments of the retina. In the case of strong noise, the segmentation is prone to errors, especially on healthy
subjects. In this study, we tested the segmentation method on the original noisy image with Gaussian denoising
and on our enhanced images, without additional denoising. Visual illustrations of the results are displayed on
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Figure 3: Simplification of the retinal images. For each noisy data, we present the result of our simplifi-
cation algorithm, along with the result given by the BM3D method.
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Figure 4: Simplification and segmentation of the retinal images. For each noisy data, we present the result
of our simplification algorithm, along with the results obtained using the BM3D method. We also display
the segmentation result obtained in each case.

Fig. 4. We can see that the segmentation results obtained with our method are comparable to those obtained
with the direct method, and after BM3D denoising. Hence, our proposed method only exploiting up to 10% of
the measured samples is able to accurately quantify layers which opens a path for efficient image compression.

For the cardiac OCT images, we implemented a sparsity-based segmentation method as follows. The proposed
simplification method generates two outputs: the simplified image with layers preserved (in terms of positions
and average intensity), and the variance map, with precise delineation of layers interfaces, corresponding to local
disagreements between the reconstructions. Segmentation of layers could be performed on either one and we
show in Fig. 5 some results exploiting local peak detection on vertical profiles of the variance map. The variance
map σx of an image y is the result of the pixelwise variance of the different sparsity-based reconstructions.
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Figure 5: Segmentation of the heart images. Variance maps of each heart samples are displayed, along
with Manual and Automated segmentation results overlaid on the raw SD-OCT images.

Then, it gives a global information of the local disagreements between the reconstructions. In other words, the
variance map is a map of the regions that are not well reconstructed by the TV-based reconstructions methods.
These regions are exactly the intersection between the layers of the image (See Fig. 2). We also compared our
segmentation results with the manual segmentation from an expert.

4. CONCLUSION
We presented a CS-type Fourier-based image simplification method well suited for the study of layers of tissues
on OCT images, and evaluated on retinal or myocardial applications. The proposed method is able to remove
noise, preserve tissue layers intensities and positions, and generates a variance map which is directly exploitable
for segmentation. A strong benefit of our approach is that it uses less than 10% of the samples in Fourier
domain which bears great potentials for data compression. The next step will focus on implementing such image
simplification directly at the sensing stage, using multiple CS acquisitions. Such implementation is still not
trivial, requiring open OCT systems to modify the sampling scheme and hardware implementation of pseudo-
random sampling patterns. In addition a priori information such as layer orientations and noise level will need
to be inferred prior to acquisition.
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