(© 20XX by the authors; licensee RonPub, Liibeck, Germany. This article is an open access article distributed under the terms and conditions of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

Rasearch
online
Publishing

www.ronpub.coim

Open Journal of Internet of Things (OJIOT)

Volume X, Issue X, 20XX

http://www.ronpub.com/ojiot
ISSN 2364-7108

Controlled Components for Internet of Things
as-a-service

Aubonnet Tatiana 1 4, Boubendir Amina 2 Z, Lemoine Frédéric 3 4, Simoni Noémie 4 4

A CEDRIC, Conservatoire National des Arts et Mtiers, 292 rue Saint-Martin, 75003 Paris, France,
{tatiana.aubonnet, frederic.lemoine} @cnam.fr

B Télécom ParisTech, 46 rue Barrault, 75013 Paris, {amina.boubendir, noemie.simoni } @telecom-paristech.fr

ABSTRACT

In order to facilitate developers willing to create the future Internet of Things (IoT) services incorporating the non-
functional aspects, we introduce an approach and an environment based on controlled components. Our approach
allows developers to design an IoT "as-a-service”, to build the service composition and to manage it. This is
important, because the loT allows us to observe and understand the real world in order to have decision-making
information to act on reality. It is important to be sure that all these components work in accordance with their
mission, ie their Quality of Service (QoS) contract. Our environment provides the modelling, generates Architecture
Description Language (ADL) formats, and uses them in the implementation phase on an open-source platform.

TYPE OF PAPER AND KEYWORDS

Regular research paper: controlled IoT service, quality of service, management.

1 INTRODUCTION

The world of Internet of Things (IoT), Smart Object,
Smart Connected products and Cyber Physical System
introduces devices of all kinds which, because of their
ability to observe” the physical world, and to “provide”
decision-making information, should be part of the archi-
tecture of the future Internet [8], [34]. The questions that
arise are the following: How can they be integrated in
this all connected context? Can we have a homogeneous
or standardised architecture?

Among the fundamental characteristics of IoT systems
International Telecommunication Union (ITU-T) [12],
we focus on the following characteristics: (i) things-
related services, (ii) heterogeneity and (iii) interconnec-
tivity.

(i) The IoT must provide things-related services taking
into account the inherent requirements of these services.
The architecture that is emerging is a service oriented

architecture (SOA) in which a semantic consistency is
needed between physical and virtual objects associated
with them. So that such services can be provided in
compliance with these requirements, used technologies
will have to change.

(i) The heterogeneity is located at several levels.
There is in particular ’the provided data” from very
different fields. We need to understand and know the
field in order to qualify the treatment. Then the devices
themselves will be affected, since they do not use the
same hardware platforms or the same network. We need
to make sure that they are reliable and that they behave
properly.

(iii) With regard to the IoT, any object can be con-
nected to the infrastructure of information and commu-
nication. The devices must be managed.

To meet these new challenges for IoT, we need to re-
think the services and ensure their behaviours. With our
proposals for a cloud application to become a services

http://creativecommons.org/licenses/by/4.0/
http://www.ronpub.com/ojiot

Open Journal of Internet of Things (OJIOT), Volume X, Issue X, 20XX

and micro services composition, and in order to reach
maximum flexibility, to compose “as-a-service” with our
connected objects, we propose in this paper:

(a) Service Oriented Architecture allowing the compo-
sition of IoT applications in order to integrate functional
and non-functional (e.g. quality of service) aspects.

(b) Integration of IoT connectivity to its environment.

(c) Management closer to each IoT service during the
operation phase.

The paper is organised as follows. We analyse re-
lated works in Section 2. We propose in section 3
an approach to compose IoT components “as-a-service”
based on self-controlled components called "IoT Self-
Controlled service Component” (IoTSCC). A platform
for components based architecture design is then pre-
sented. Moreover, we show in Section 4, how to add
security functionalities. In Section 5 we present a study
case related to warehouse arrival management. Finally, a
conclusion (Section 6) ends this paper.

2 RELATED WORKS

IoT may open new opportunities to create innovative
applications. The Intelligent Network has introduced
the concept of ”Service Creation Environment” (SCE)
[22]. This concept has been introduced with Intelligent
Networks to ease and speed up the development and
deployment of services [11]. An SCE is generally
a graphical user interface for developing services us-
ing predefined components, also called building blocks
(SIB). This approach has been a precursor in separating
the service components and execution logic. The SIBs
allows construction of telecommunication services as
easy as possible. In the same way, the “as-a-service” in
the IoT should allow a service composition flexibility.

IoT Service Platforms play a fundamental role for
creating and managing IoT applications. It is crucial
to hide the heterogeneity of hardware, software, data
formats, technologies and communication characterising
IoT [31]. It is responsible for abstracting all the features
of objects, network, and services, and for offering a
loose coupling of components. IoT platforms in [16],
[19] focus on cloud computing architecture to meet
the challenges of flexibility, extensibility and economic
viability of IoT.

Some IoT platforms focus on the development of IoT
architectures that ensure interoperability between verti-
cal application solutions and different technologies. For
example, the main goal of iCORE [15] and COMPOSE
[20] is to develop an open network architecture based on
objects virtualisation that encompasses the technological
heterogeneity.

IBM BlueMix [7] is a platform “as-a-service” (PaaS)

cloud, developed by IBM. It supports rapid development
of analytic applications, visualisation dashboard, and
mobile IoT applications. IBM secures the platform and
infrastructure and provides you with the tools to secure
your apps and connect your device data with it. IBM
IoT foundation (IoTF) [21] is the hub where you can set
up and manage your connected devices. A device, to be
connected, will require a device management agent that
is a collection of logic installed on a device that allows it
to connect to the Cloud Internet of Things services as a
managed device.

AWS IoT [2] is a platform that enables you to connect
devices to AWS Services [1] and other devices, secure
data and interactions, process and act upon device data,
and enable applications to interact with devices even
when they are offline. It provides secure, bidirectional
communication between Internet-connected things (such
as sensors, actuators, embedded devices, or smart ap-
pliances) and the Amazon Web Services (AWS) cloud.
This enables you to collect telemetry data from multiple
devices and store and analyse the data. The rules engine
makes it possible to build IoT applications that gather,
process, analyse and act on data generated by connected
devices at global scale without having to manage any
infrastructure.

Azure [oT Hub [9] is a fully managed service that en-
ables reliable and secure bidirectional communications
between millions of IoT devices and a solution back
end. Azure IoT Hub can reliably receive process or store
for the analysis of millions of events per second from
devices and provides extensive monitoring for device
connectivity and device identity management events.

The SPRINT project [14] provides a platform to con-
nect the software tools used by the industrial companies
within the project and allows integration of different sub-
systems at the design level. Other platforms as BUTLER
[28] or MobilityFirst [35] aim to develop open archi-
tectures providing secure location and context-aware
services.

All IoT platforms focus on the same problems such
as homogenising and transforming an object so that
it becomes a little smarter and can be managed by
understanding the same device management commands,
securing communications between devices or between
devices to cloud services, obtaining diagnostic informa-
tion, both for connectivity and for the devices themselves
(rich device metadata, status information) and manag-
ing scaleability by sending/receiving bulk operations
on/from many devices at a time.

These platforms provide undeniable help for quick im-
plementation, but all, have they not implicit management
aspects always adapted to a particular context? Are they
not the result of a compromise? The architect has to
be allowed to select, customise and adapt his solutions

Aubonnet, Boubendir, Lemoine, Simoni: RonPub Journal Template

according to behavioural progress. Theoretical models
of the IoT architecture and the definition of an initial
set of key building blocks are indeed key objectives of
[18] and IoT-A [37], respectively. The works [13], [17]
focuses on business services and on the development
of SOA-based architectures and dynamic environments
to semantically integrate services into IoT but without
offering a loose coupling of components allowing re-
composition according to behavioural changes during
the session.

Furthermore, observance and integration of Quality
of Service (QoS) is mandatory for IoT services and
applications. The solutions provided by these platforms,
as well as the standardisation works of the ITU-T,
ETSI oneM2M [5][3][4][6][12] is not sufficient and not
complete, in our view, for the IoT and Cloud Com-
puting. Indeed, service components (’as-a-service”) in
this IoT/Cloud environment must offer to the user, who
will select them, not only a feature but well-defined
behaviour (QoS) too. This led us to propose a control
allowing a component to monitor his compliance with
the contract.

We note that in the mobile context there is a missing
feature, the continuity of service. Our motivation is
to design, manage and control components, reacting
throughout the life cycle and during running time. That
is why we present our approach of IoT “as-a-service”
composition and control mechanisms to satisfy the con-
tinuity of service and the compliance with the contract.

3 PROPOSITIONS FOR AN AS-A-SERVICE 10T
DESIGN

As IoT is about smart objects [33] being first sensed
then controlled and managed remotely across network
infrastructure, there is a need to go towards an effective,
structured and efficient realisation of such a definition.
For that, we propose that IoT devices be introduced in the
”as-a-service” ecosystem of the Cloud. This is a major
direction to acquire a significant role meeting the need
for remote control and management. We present in this
Section the approach to achieve this. We first describe
the advocated approach step-by-step and highlight the
features introduced at each step of the transformation
approach of the smart object into a controllable IoT
service component (Section 3.1). Then, we define more
precisely the proposed solutions within the architectural
dimension (Section 3.2), the organisational dimension
(Section 3.3) and the functional dimension (Section 3.4).

3.1 From smart object to IoT service

In order to make a software component compliant with
the IoT services world, we propose an approach that

allows it to cover progressively the properties required
for this transformation.

Our approach involves six steps.

Step 1: To structure

In an ecosystem where a service is available through
a network, we need to distinguish, and thus structure,
the service according to three planes: the user plane
representing the offered functionality, the control plane
representing the automation and policies serving the user
plane, and the management plane that allows the coher-
ence of the global system. In a fractal approach [27],
a smart object is represented as a business component,
which is the functional aspect of the smart object, with
its usage interface as shown in Figure 1.

martObject

SmartObject
c2 (S|

Mo

IRequept

C icommand (actuator) / mesures (sensor)
= "*-—-:.._

Figure 1: Representation of a Smart Object

The smart object needs to have control and manage-
ment interfaces. That is why we propose to adopt the
Grid Component Model (GCM) [25][30]. The resulting
smart object structure at this step will be transformed
to become a component including a management mem-
brane with two interfaces, one of control and another
one of management. Thus, we have the possibility of
dialogue with the three planes.

Step 2: To integrate

To integrate the smart object into an IoT context,
we propose to add, in the membrane, a management
component named “IoT processing” with management
interfaces to allow the smart object to be invoked and
managed with respect to an IoT profile.

We detail the “IoT processing” component in this
paper and define the micro-services that compose it.
Thus, the smart object can be represented as an IoT
service component as shown in Figure 2 and is integrated
in its IoT environment with:

e Functional content (business) and external client
and server interfaces for the user plane.

e A membrane for the non-functional aspects, with
management and control interfaces to be connected
and to communicate within the IoT environment
(with other objects for example).

Step 3: To self-control
For the control aspect, we propose to embed a QoS
agent in order to introduce the needed autonomic aspect

 IRequest

Open Journal of Internet of Things (OJIOT), Volume X, Issue X, 20XX

register
o TP
Seryice loT olFrocess ’ Y
51 C1
lloTProcess
3 I
SmartObject 52 .
IRequest €2 5
%, C___ sff-{rommand jactuator] / mesures (sensor) C IRequest

Figure 2: Representation of an IoT service

in an environment that is meant to scale and is subject to
become rapidly more complex.

We have defined this auto-control for components in
Cloud services [23] and we propose to extend it to IoT
services. The aim of introducing autonomic control
of components is to enforce monitoring mechanisms
that collect information concerning the behaviour of the
component in order to control the respect of Service level
agreement (SLA) and QoS level and react in case of non-
compliance.

Thus, at this stage, the IoT service becomes a Self-
Controlled IoT service Component, we call it IoT SCC
as we detail later. We rely on a recursive service
architecture, where a service may comprise a set of self-
controlled service components or micro-services. So the
IoT SCC can be integrated within global self-controlled
service architecture.

Step 4: To design as-a-service

This step aims to make sure that the offered service
component can be added, removed or composed with
other services, without crashing the whole organisation,
i.e., the global service architecture.

The “as-a-service” design is meant to allow the
customisation, flexibility in composing service offers,
adaptability of the offered services or solutions as well
as an on-the-fly deployment. For this purpose, a set
of properties need to be verified for designing an IoT
SCC as an IoT SCC as-a-service. The elementary units
constructed as the IoT service need, to rely on the
following main properties of SOA and Cloud services:
statelessness, autonomy and loose coupling.

Statelessness means that the service performs the
same processing to all requests without keeping any
information about their data or their contexts. This
allows a service to always offer the same function to all
clients/requests. The service component should have one
type of interface. And for the service to be stateless, its
operations should be conceived to perform the process-
ing without depending on information received during a

precedent invocation.

Autonomy means that a service is able to achieve its
functionalities without needing another service or human
intervention. In this direction, we propose to conceive a
service as a black box composed of a set of operations
executed in the same manner and in the same order for
all requests.

Loose Coupling means that the bindings or links
between service components in a service composition
are unattached or even rigid, to eliminate all types
of functional coupling between services. Thus, loose
coupling ensures a flexible composition of service com-
ponents. Service composition consists of generating a
global service by composing or chaining a set of ele-
mentary service components. This composition would
thus be customisable and flexible by adding, replacing,
and removing service elements according to users needs.

In addition, for software engineering needs, the prop-
erties of reusing and mutualisation are strongly recom-
mended in this approach.

Reuse is needed to simplify the software development
of services that meets the new needs: IoT SCC service
components would be reusable thanks to the generic
character of their interfaces (usage, control and manage-
ment).

Mutualisation means that the service component is a
multi-tenant service element. This allows different users
to invoke the service component and enforces the loose
coupling property required by SOA service requirements
[32].

Step 5: To describe

For a service component to be correctly visible from
users and for it to be requested, there is a need for
describing it and register used formal processes. That
is what is performed, adopting Description and Registry
properties in a web services mode.

To design application or service, the architect chooses
multi-tenant IoTSCC components in the providers cat-
alogue, based on the specified nominal/offered QoS
and thresholds value. The catalogue is a showcase for
reusable components. If the composition is entirely
[oTSCC-composed then it can be put in a catalogue.

Step 6: To invocate

In order to be agile and not to be static and only
configurable, the IoTSCC component has to be invoked
through an API (Application Programming Interface). It
must be standardised.

10T service includes interfaces dedicated to QoS con-
trol or compliance, IoT service control and program-
ming. These interfaces are classified into three groups:
use, control and management (Figure 3).

This approach allows building the service compo-
nents, but we also need at this stage to build the “global
system structure”. Indeed, the deployment of an IoT

Aubonnet, Boubendir, Lemoine, Simoni: RonPub Journal Template

Management and control interfaces
Non-functional interfaces
A

\(nn&g(}nx IQosStatus

igMonitor register IConfigMonitor

IRequpst 51
L g

] Use interfaces

Functional interfaces

Figure 3: Controlled IoT Service

service application requires an integrated management
approach. To help achieve such management in an
IoT environment, we have proposed in previous papers
conceptual models related to different particular five di-
mensions of management: architectural, organisational,
functional, informational, and relational [36]. The
proposition we present in this article is based on a com-
bined use of these conceptual models in order to deploy
a dynamic management of IoT service components in
an IoT or Cloud system as we present in the following
subsections.

3.2 Proposition for the Architectural Dimen-
sion

As you may know, the architectural dimension is the
definition of the global structure. We rely on a horizontal
architecture, rather than architecture in silos. We have
described above the structure at the component level.
It is an architect, who builds his domain from these
components. For example, he can adapt the emission
mode by introducing a database and a service component
that emits at predefined regular period or in a continuous
way. He can also introduce a gateway that allows
adaptation to networking protocols and plays the role
of intermediary function with Cloud access. There are
two types of view: horizontal and vertical. The hori-
zontal view of the global structure is composed of nodes
(representation of processing capabilities) and links (rep-
resentation of transport capabilities). And there is the
vertical view where IoT objects need service components
(software) at different visibility levels: Physical level
and Network level then components at a Cloud (service
and application) level. The architect will define the
composition based on the global coherence and decisions
to distribute. He will follow the proposed procedure.
The architect structures the “smart objects” and makes
them “’IoT Service” by integrating our ”IoT Processing”
component. Then, based on the service contracts (SLA)
that the architect has to guarantee and for which he has
alternative solutions based on possible malfunctions, he

transforms the “IoT service” in “IoT SCC” in order to
have QoS based decision. He composes an application
based on as-a-service properties.

For the specification, verification and validation of
the architecture of applications built from IoT SCC
components, we use the VerCors platform from IN-
RIA [29]. Components can be connected with other
components within the same membrane or with non-
functional interfaces of other components. Having a
tool-supported methodology is important for the design
phase, when the designer builds his application, using
functional components as basic bricks, and assembling
them into compositions.

VerCors helps the user to specify the architecture
of an application, the interfaces, and the behaviour of
assembled components. Furthermore, the tool can gen-
erate executable code containing the whole architecture
description and the skeleton of the final application. Sev-
eral validations are performed like structural coherency
aspects of the application model for ensuring that the
code generation will terminate correctly, and that the
code will not fail during deployment of the application
components.

A library of components integrating the non-
functional aspects (IoT Processing, monitors and QoS-
Control) is provided. These components would be
instantiated by the application developer to deploy the
architecture. VerCors is then in charge of verifying
the (static) coherence of the architecture and providing
a formal description of the architecture in an ADL
(Architecture Description Language) file, which will be
included in the specification of the application.

3.3 Proposition for the Organisational Dimen-
sion

According to the proposed architecture, different respon-
sibilities need to be defined. Thus, the organisational
dimension defines "who does what”. We propose two
kinds of scenery: With and without IoT gateways (Figure
4).

With IoT gateways: the IoT gateway is in charge
of collecting information from IoT devices and making
some local analysis and transmitting a report to the
Cloud. IoT devices make their own report to the IoT
gateway. A gateway manages a group of IoT devices.
In the same way, the gateway retransmits control com-
mands from the cloud to the IoT devices. The volume of
data exchanged and thus the communication resources
are extremely low since the analysis would be done on
site by the gateway. Only results would be sent. It is a
scenario to promote.

Without IoT gateways: IoT devices are directly con-
nected to the Cloud and assume the same functionalities

Open Journal of Internet of Things (OJIOT), Volume X, Issue X, 20XX

Gateway

loTs

Gateway

Figure 4: Organisation with Gateways

of the previously detailed gateway.

The dynamic management of an IoT system requires:
local capabilities for issues that need rapid reactions,
distributed capabilities for mobility-like issues, and cen-
tralised capabilities for strategic decisions.

Our proposition is that this organisational dimension
relies on the QoS agent by integrating it very accu-
rately in the architecture. It will play the role of an
organisational driver as it acts in real-time during the
execution to verify the SLA QoS level compliance and
reacts dynamically in an autonomous manner in case of
non QoS contract compliance during a user session. The
QoS agent offers control and distributed management
of QoS. It also plays an important role in the dynamic
monitoring of the end-to-end IoT session QoS.

More precisely, through the management interface, we
can assign to a managed component an autonomous role
with a level of intelligence and information to enable the
component to make required decisions [29].

3.4 Proposition for the Functional Dimension:
IoT micro-services

In this Section, we describe in detail the components and
micro-services proposed in our approach:

(A) IoT processing

(B) IoT SCC

(C) Messaging Service

(A) IoT Service integrating ’IoT processing”

The IoT service component we propose is within the
functional dimension. It plays an important role in the
IoT Service Delivery. Thanks to the embedded “ToT
processing” component, the component becomes au-
tonomous and manageable. Managing smart objects this

way requires appropriate non-functional complementary
aspects that we propose to be carried by micro-services.

Micro-services, here, describe a particular way of de-
signing software applications as suites of independently
deployable “micro” services.

We define and propose a set of micro-services to be
introduced according to the needs:

(i) for the management:

e Get capabilities: means to ask for the characteristics
and capabilities of the smart object (screen defini-
tion, screen size, memory size, supported codecs,
etc.).

e Remote configurations:
smart object remotely.

means to configure the

e Register service: allows the smart object to register
with the gateway or the Cloud to be known, to
inform about its presence and to become part of a
trusted community.

(ii) for the control:

e Remote control: act remotely and control the smart
object

e Time synchronisation: synchronise the set of nodes
of a community

Externally communication interfaces are also defined
(see Figure 2):

(i) a server interface (IoTProcess) allowing manage-
ment,

(ii) a client interface allowing control.

In the following, we define the self-controlled
component that we call IoT Self-Controlled service
Component (IoTSCC).

(B) Controlled IoT Service (IoT SCC)

Based on our experience in the Cloud domain, we
have a proposition to share regarding the control of the
functionality or operation provided by the IoT service
component. It appears to us that it is more accurate and
reliable to connect and keep connected only objects that
respect their SLA parameters values when performing
their functionalities, i.e., that ensures SLA compliance.
Initially, components would be chosen according to the
service they offer (functional aspect: usage interface)
and the QoS level they offer (non-functional aspects:
management and control interface), see Figure 3. Then,
once performing the service, the proposed SCC compo-
nent control checks that the same QoS level promised
initially is maintained during the processing of service
requests. This non-functional control is integrated in the

Aubonnet, Boubendir, Lemoine, Simoni: RonPub Journal Template

component membrane. It relies on the triptych (trio): in
monitor, out monitor and a non-functional component
for the control of QoS SLA compliance that translates
the behaviour (and thus the QoS level) expected initially
at design-time and proposed as the offered QoS level
when selecting the components. This enforces us to
propose an additional but required property for this
approach: the offered QoS, which selects a service com-
ponent according to its functionality but also according
to its promised behaviour (QoS level measured at design
time). Thus, we propose an IoT service component
that we call ”IoT SCC” as shown in Figure 3. Itis a
controlled [oT service component that is enabled for self-
monitoring and self-control. As we have demonstrated in
OpenCloudware Project [10], the Self-Controlled service
Component (SCC) controls also functional aspects.

The membrane (non-functional aspects) of the IoT
SCC (controlled IoT service component) is composed of:

e An IoT processing component for the management
of the smart object.

e Two monitoring mechanisms: a monitor at the
entrance of the functional component called “In-
Monitor” and a monitoring at the back of the
functional component called ”OutMonitor”. They
play a role of interceptors. The service requests
arriving to the smart object are intercepted, and
then transmitted (of course without being altered)
for processing to the functional content of the smart
object through the corresponding internal request
interfaces. The OutMonitor intercepts the outgoing
service requests or responses. They provide mea-
surement information about the interfaces of the
functional component.

e A QoS component is added to the smart object
functional component. It is in charge of inspecting
the respect of the service contract.

The sub-components in the membrane (monitors and
QoS control agent) are active in order to perform a mon-
itoring of the QoS level at run time (during processing
of requests) and notify in case of degradation of the
QoS level by comparing the measured QoS parameters
at run time and the QoS parameters at design time
(offered/promised QoS levels). Any detected offset
between the run time QoS and the design time QoS
would mean a non-respect of SLA.

IoT SCC provides the usage interface, which is a
functional interface (in blue on Figure 3). It provides
the processing functions performed by the smart object
and which is the offered service to the users as well as
non-functional interfaces (in green on Figure 3). We
distinguish two types of non-functional interfaces:

e Management interface: a server interface, it con-
tains the necessary mechanisms to manage the con-
figuration of the non-functional components in the
membrane.

e Control interface: a client interface, it contains
the mechanisms controlling the service behaviour.
It verifies if the non-functional behaviour of the
smart object is meeting the service contract. Our
IoTSCC structure makes an IoT service component
homogeneous. But as modelling allows abstraction,
the structure may be applied to different services,
either at a device level or a (cloud) service level.

(C) Messaging Service

In addition to the logical bus acting as a hub, we
propose different possibilities for sending data using a
”Service Messaging” component that can be composed
with the IoT SCC component. Figure 5 represents the
following composition:

e An IoT SCC component (defined above).

e A database component used to store information
(measurements for example) produced by the IoT
SCC component.

e A “message processing” component used to con-
sume information stored in a database component
to send it to a caller in different ways:

— On demand reporting service: the information
is sent when a calling component requests it.

— Periodic reporting Service: the information is
sent recurrently at regular time intervals.

— Scheduled reporting service: the information
sent is planned or scheduled to be sent at
defined times. Each one of these services
may be self-controlled and thus becomes an
SCC with the triptych (InMonitor, OutMon-
itor and QoS control components). If the
service architect wishes to make a whole self-
controlled service composition, he introduces
the previous triptych again in the membrane
of the highest level of the composition.

In order to be designed as-a-service, all service com-
ponents should meet the required properties defined in
Section 3.1. That is: statelessness autonomy, loose
couplings, description, registry, invocations and manage-
ment (with respect of separation of functional and non-
functional aspects of the Grid Component Model). This
composition is called IoTAaS (Figure 5).

To compose IoT SCC, the service composition can,
of course, be extended with further components like
security service, presented in the next subsection.

Open Journal of Internet of Things (OJIOT), Volume X, Issue X, 20XX

D 1oTProcess register

IoT as a service

Y 1osstatus

DataBase

periodicl c Y 1osstatus

a 52 0 52

=
L

a3

Figure 5: IoT as a service (IoTAaS)

4 SECURED IOT

Concerning the security of the IoT we note a signifi-
cant upheaval. This open, heterogeneous and mobile
environment is vulnerable. It presents significant risks
in terms of security. Indeed, the borders of the system
are more open since the system is extended: from smart
object to the gateway, then to the cloud. In addition,
application in IoT devices that generate information,
which is accountable and billable, or IoT devices that
require device integrity validation, should provide a
trusted secure execution environment or trusted platform
for executing high security applications. Therefore, in
IoT environment security must be provided at different
levels:

(i) at the smart object that processes the send/receive
message within a trusted environment.

(ii) at the gateway that collects information for the
connected objects (Gather Information) and sends them
within a trusted environment to the Cloud.

Smart object that requires device integrity validation
should provide a trusted execution environment. All data
produced through the execution of functions within the
trusted environment should be unknowable to unautho-
rised external entities. The trusted environment should
perform confidential functions (such as storing secret
keys and providing cryptographic calculations using
those secret keys) needed to perform smart object device
integrity check and device validation.

In our work, we take into account the concept of
security “as-a-service”. Thus, security is provided “as-
a-service” and it is offered as service components in
accordance to the spatial and temporal needs. The
user preferences and security objectives are guaranteed.
To ensure its aims in IoT and Cloud environment the
standard ETSI EG 202 009-2 [24] includes the following
security services: authentication, authorisation, certifi-
cates, encryption, time stamping, and digital signatures.

In IoT trusted environment, the simple security level

can be represented by services such as authentication,
authorisation, certificate or non-repudiation. Authenti-
cation provides the assurance for the claimed identity
of an entity such as a smart object. Authorisation “as-
a-service” adds the process of granting of permission
based on authenticated identification. A certificate is
issued by a certification body in accordance with the
conditions of its accreditation. In IoT environment the
certificate can be associated with identifier metadata for
interoperability. Non-repudiation provides the ability to
prove an action or event has taken place, so that this
event or action cannot be repudiated later. Usually, non-
repudiation is based on digital certificates, electronic
signatures and other similar data stored safely as the
proof of the occurrence of an action or event. These
four security services will form an IoT trust environment
allowing the different degrees of security.

Enhanced security would require the integration of
other security services such as encryption, time stamping
and digital signatures. Encryption ensures the reversible
transformation of data by a cryptographic algorithm to
produce cipher text, i.e. hides the information content
of the data posted by a smart object or a gateway. Time
stamping service allows a security service that attests the
existence of electronic data at a precise instant of time.
Time stamping services are useful and probably indis-
pensable to support long-term validation of signatures.
A digital signature allows a recipient of the data unit to
prove his origin and integrity and protect the sender and
the recipient against forgery by unauthorised person.

An IoT security environment cannot be guaranteed
in a static and centralised manner. Henceforth, in
complex and evolving situations we propose that security
components to be integrated in the applications them-
selves. Figure 6 shows a secured IoT service with an
authentication security service (IoTAaSS).

Advantages of using security services in IoT are mul-
tiple. Considering the security services, IoT providers
have applications that differ by their levels of security as

Aubonnet, Boubendir, Lemoine, Simoni: RonPub Journal Template

uthenticationsCC W IQos5tatus

Inhlonitor Duthonitor

oM .
cl 85
51

s1BH—>-52 .

IRequest 51
v
[gt

8
rc—=cd
cl

IREquest IRequfst

register IQos5tatus

: lloTProcess
10T a5 a service

InMonitor l a OutMonitor

DataBase
a b =)
\._ c1 c2 51 &b

1 Ig|

Figure 6: Secured IoT as a service (IoTAaSS)

well as by the way in which they are built, deployed and
managed.

5 DESIGN AND IMPLEMENTATION OF A
STUDY CASE

This section presents a study case implementing our
IoTAaS component. Section 5.1 describes the study case.
Section 5.2 shows that the proposed service component
architecture can easily be implemented to provide com-
plex services or applications.

5.1 Study case description

We propose to build warehouse arrival management ser-
vices (Figure 7). The goal is to automate and streamline
the handling of trucks that arrive at a warehouse. Each
truck carries dangerous products placed on a different
container that are continuously monitored. The statuses
of the containers are thereby sent to a cloud applica-
tion. The truck is also monitored especially to know
its location in real time. An employee located in the
warehouse can consult the truck arrival board. He knows
the estimated arrival time of each truck and can prepare
its unloading.

Approaching trucks are assigned automatically to a
specific dock number. The dock number is sent to the
driver, together with the expected arrival window. The
driver confirms or corrects the expected arrival time.
Corrections may be necessary due to prescribed driving
breaks. The status of approaching trucks is shown on
display in the arrival hall and on the mobile phone of
all warehouse employees. The display shows expected
arrival time and planned dock. All communications have
to be secured.

The design and implementation of the study case
includes four phases:

e Diagram design on VerCors Component Editor
(VCE) with classes and interfaces

e Checking of the validity of the diagram

e Generation of the ADL file and code template of
classes and interfaces.

e Code implementation and execution.

5.2 Design and implementation phases

In the architect role we used VCE (Figure 8) to begin
designing the architecture. We follow the steps proposed
in Section 3. We have a component with a membrane
separating the usage plan from the control and manage-
ment plans (step 1, Figure 1). The encapsulated Smar-
tObject can be a tilt sensor, level sensor or a force sensor
located in/or each container. We add an IoTProcessing
sub-component (step 2, Figure 2) to transform it in a
Service IoT. We decide to control it, thus we add the
QosControl and the two In and Out monitors (step 3,
Figure 3). The component becomes an [oTSCC.

We wish that this component continuously reports
its measurements. So, we make a composition with a
database in order to store measures and a periodic report-
ing component. We choose to control this composition,
so we add the QosControl and two monitors. The final
composition is called IoT as-a-service (IoTAaS) (step 4,
Figure 5). At this step, the IoTAaS could be placed in
a providers catalogue for reusing (step 5). We cover the
architectural, organisational, and functional dimensions
previously defined.

The communication is not secured, so we make a
new composition first by reusing the previously defined
IoTAaS component from the providers catalogue and
second by adding a securing component. The final
composition forms a Secured IoT as-a-service (Figure 6).
We can repeat the same process to make more complex
compositions as needed.

We placed the IoTAaSS previously defined component
at different locations. The chosen architecture is defined
as follows:

Open Journal of Internet of Things (OJIOT), Volume X, Issue X, 20XX

Warehouse
management

Network

Gateway

Container

\}

“ loTAass

Composition

0~

Figure 7: Warehouse arrival management based on IoTAaS

(&) Modeling - p
File Edit Diagram Navigate

il i

B, Model Bxplorer 53 = 8
B% ¥

type filter text

B Project Dependencies ~
&1 defaultuml

3 defaultvce

1 defaultvcetypes

[loTGateway.png

&/loTSCC/rept

Search

[representations.aird
v 1eTscC
=) Project Dependencies
~ @1 defaultuml
B <Model>
~ [defaultvce
~ < Architecture
& Veediagram
v <4 Composite [oTSCC
4 Bdemal Interface IRe
4 Edemal Interface ICc
4 Edemal Interface ICc
4 Bdemal Interface ICc v
< >

= Outline 52 N il

& 1oTsCC

Project Run

airdVce diagram - Obeo Designer Community
Window Help

B Q- QP
& Vee diagram 5

BBl S| O m o] E

Gv D~

& inContract(qosType : IntType] : VoidTypel1]
4 outContract(gosType : IntType) : VoidTypel1]

IConfigMonitor register IContigQos IQosStatus ! IConfighonitor
oTscC p lloTrocess @
leTProcessing
sa
lloTProcess

IRequ¢st ST InMonitor cz
[& [

ommand (sctuator) / mesures (sensor] | ¢ Request

[C] Properties 52

Properties are not available.

Figure 8: Interface of the VerCors Component Editor (VCE)

10

system

- o x

& | (5 Mg |8 e

= B {@Hep 2

(= Interfaces ©
Server
Client
Gathercast
Multicast

(= Components
Composite
Primitive

(> Connections %0
Bindings

(= Attributes ©

< Attributes
Specification

4 Attribute Value

= B8
-

12 Contents

& Search

“3 Related Topics

0 Bookmarks

& Index

About Model Explorer
The Project Explorer
provides a hierarchical
view of the artifacts in
the Workbench.

See also:

Bl Project Explorer
B Views

More results:

9 Search for Model
Explarer view

Aubonnet, Boubendir, Lemoine, Simoni: RonPub Journal Template

(i) An IoTAaSS is located on each container mon-
itoring its movement or its status with the help of
gyroscopes, accelerometers or pressure sensors.

(i) The I0TAaSS performs a periodic and secured
reporting to the IoT Gateway. This latter is responsible
for gathering all the data sent by the [oTAaSS.

(iii) The IoT Gateway performs a periodic and secured
reporting too to the warehouse arrival application located
in the Cloud.

The truck embeds a composition responsible for no-
tifying the dock number to the driver, for allowing the
driver to confirm or correct the expected arrival time and
periodically for sending the truck location to the ware-
house arrival application with the help of an IoTAaSS.
The data are sent securely and directly to warehouse
arrival application bypassing the [oT gateway.

The Warehouse arrival application is a composition
based on SCC located in the Cloud. Its function is to
gather data from the fleet of trucks (containers and truck
statuses), to notify the dock number to the driver, to take
into account his corrections concerning the arrival time,
and to create the arrival board to the intention of the
warehouse employees. Figure 9 shows another example
of composition located on IoT Gateway responsible for
gathering information. The first component (Authenti-
cationProcessSCC) verifies the identity of the IoTAaSS
sending the request. The GatheringSCC component
stores information in a database component.

Note that there are two open sessions. The first one
(blue) takes place between the truck composition and
the warehouse arrival application and the second one
(green) takes place between the IoT Gateway and the
warehouse arrival application. The Warehouse arrival
application is a central unit. Each session is seen herself
as a composition. With our architecture, the architect
can control the whole session if he desires it, like any
composition by adding QoSControl and Monitors.

At any moment of the design, with VCE, we have
the possibility to check the validity of the diagram.
When a diagram is completed, VCE can generate a set
of files allowing the deployment of the application like
code template of classes and interfaces and Architecture
Description Language (ADL) for the architecture de-
scription. An extract of an ADL file is given in Listing 1.
The developer implements the missing service methods
of the components in the java classes created with the
generated skeleton. These files are then used to build an
executable application that can be executed within the
GCM/ProActive [26] execution environment (step 6).

11

6 SUMMARY AND CONCLUSIONS

We have presented an innovative approach to domain
engineering based on IoT as-a-service components, QoS
control and self-management mechanisms. We have
described the whole approach, step by step, in order to
allow developers to design an IoT as-a-service”, to build
the service composition and to manage it.

This approach has been assessed and refined in the
OpenCloudware project. Our IoT service creation envi-
ronment adopted service composition approach. Thus,
IoT service proposed components have the properties
recommended by SOA, namely: statelessness, auton-
omy, and loose coupling, extended with the following
properties: description, registry, reuse, mutualisation,
and self-management. The IoT service component is
QoS based, applicable in all phases of the life cycle to
satisfy the continuity of service. Our approach ensures
that IoT users have QoS control on IoT services in a
dynamic way. Our proposal is backed-up by a design and
verification VCE platform, used to build early models
of the applications, check their properties, and generate
code supported by GCM/proactive open source execu-
tion environment. These environments were used in the
implementation of a study-case scenario that shows the
feasibility of our proposals.

ACKNOWLEDGEMENTS

The authors would like to thank Professor H. Dayan for
his help and relevant remarks.

This work is supported by the OpenCloudware
project. OpenCloudware is funded by the French FSN
(Fond national pour la Société Numérique), and is sup-
ported by Poles Minalogic, Systematic and SCS.

REFERENCES

[1] “Amazon Web Services (AWS).”
Available: https://aws.amazon.com

[2] “AWS IoT.” [Online]. Available:
amazon.com/iot/

“ETSI TR 118 501 - onem2m use case collection.”

“ETSI TR 118 502 - analysis of the architectures
proposed for consideration by onem2m.”

[5] “ETSI TS 118 101 - onem2m functional architec-
ture.”

“ETSI TS 118 102 - onem2m requirements.”

“IBM Bluemix.” [Online]. Available: http://www.
ibm.com/Bluemix

[Online].

https://aws.

(3]
(4]

(6]
(71

https://aws.amazon.com
https://aws.amazon.com/iot/
https://aws.amazon.com/iot/
http://www.ibm.com/Bluemix
http://www.ibm.com/Bluemix

Open Journal of Internet of Things (OJIOT), Volume X, Issue X, 20XX

IQosStatus

Gatheringscc Y !Qosstatus
InMonitor OutMonitor \nMonito Outhi
Is4 =Y eporting 3] IR¢quest
IRequeft S.W €1 |Re¢quest L i s1 s2 a arc
. i ' ol 1t L. e, > {\;:'\.-SZ . l
o = S
L]
Figure 9: Composition located on IoT Gateway responsible of gathering information

[8] “Internet of Things: Science fiction SErvice,” 2012. [Online]. Available: http:

or business fact?” [Online]. Avail- /Iwww.compose-project.eu/

able: https://hbr.org/resources/pdfs/comm/verizon/
18980_HBR _Verizon_IoT_Nov_14.pdf

[9] “Microsoft Azure IoT Hub.” [Online]. Available:
https://azure.microsoft.com/en/services/iot-hub/

[10] “The OpenCloudware project.” [Online]. Avail-
able: http://www.opencloudware.org/

[11] “Y.2001 : General overview of NGN.” [Online].
Available: https://www.itu.int/rec/T-REC-Y.2001/
en

[12] “Y.2060 Overview of the Internet of
things.” [Online]. Available: https://www.itu.int/
rec/T-REC-Y.2060-201206-1/en

[13] “FP7-ICT 257852, ebbits Enabling the Business-
Based Internet of Things and Services,” 2010.
[Online]. Available: http://www.ebbits-project.eu

[14] “FP7-ICT 257909, SPRINT Software Platform
for Integration of Engineering and Things,” 2010.
[Online]. Available: http://www.sprint-iot.eu/

[15] “FP7-ICT 287708, iCORE Internet Connected
Objects for Reconfigurable Ecosystem,” 2010.
[Online]. Available: http://www.iot-icore.eu/

“Nsf, FIA CNS-1040672, NEBULA a trustworthy,
secure and evolvable Future Internet Architecture,”
2010. [Online]. Available: http://nebula-fia.org/

“FP7-ICT 288385, IoT.est Internet of Things
Environment for Service Creation and Testing,”
2011. [Online]. Available: http://ict-iotest.eu

[16]

[17]

[18] “National Basic Research 973 Program of China
under Grant No. 2011¢cb302701, Basic Research on

the Architecture of Internet of Things,” 2011.

[19] “FP7-ICT 317674, BETaaS Building the
Environment for the Things as a Service,” 2012.
[Online]. Available: http://www.betaas.eu/

[20] “FP7-ICT 317862, COMPOSE Collaborative
Open Market to Place Objects at your

[21] “IBM Watson IoT Platform,” Sep. 2015. [Online].

Auvailable: https://internetofthings.ibmcloud.com

T. Aubonnet and N. Simoni, “PILOTE: a service
creation environment in next generation networks,”
in 2001 IEEE Intelligent Network Workshop, May
2001, pp. 36-40.

T. Aubonnet and N. m. Simoni, “Service Cre-
ation and Self-management Mechanisms for Mo-
bile Cloud Computing,” in Wired/Wireless Internet
Communication, ser. Lecture Notes in Computer
Science, V. Tsaoussidis, A. J. Kassler, Y. Kouch-
eryavy, and A. Mellouk, Eds. Springer Berlin
Heidelberg, Jun. 2013, no. 7889, pp. 43-55, dOI:
10.1007/978-3-642-38401-1_4.

T. Aubonnet, N. m. Simoni, and P.-Y. Hebert,
“ETSI EG 202 009-2: User Group; Quality of
telecom services; Part 2: User related parameters
on a service specific basis V0.0.7,” Aug. 0030,
working paper or preprint. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-01126482

[25] F. o. Baude, D. Caromel, C. Dalmasso,
M. Danelutto, V. Getov, L. Henrio, and
C. Prez, “GCM: A Grid Extension to
Fractal for Autonomous Distributed Components,”
annals of telecommunications - annales des
tlcommunications, 2008. [Online]. Available:
https://hal.inria.fr/inria-00323919

F. o. Baude, L. Henrio, and C. Ruz, “Programming
distributed and adaptable autonomous compo-
nentsthe GCM/ProActive framework,” Software:
Practice and Experience, vol. 45, no. 9, pp.
1189-1227, 2015. [Online]. Available: http://
onlinelibrary.wiley.com/doi/10.1002/spe.2270/full

E. Bruneton, T. Coupaye, M. Leclercq, V. Quma,
and J.-B. Stefani, “The FRACTAL component
model and its support in Java,” Software: Practice

[22]

(23]

[24]

[26]

[27]

12

https://hbr.org/resources/pdfs/comm/verizon/18980_HBR_Verizon_IoT_Nov_14.pdf
https://hbr.org/resources/pdfs/comm/verizon/18980_HBR_Verizon_IoT_Nov_14.pdf
https://azure.microsoft.com/en/services/iot-hub/
http://www.opencloudware.org/
https://www.itu.int/rec/T-REC-Y.2001/en
https://www.itu.int/rec/T-REC-Y.2001/en
https://www.itu.int/rec/T-REC-Y.2060-201206-I/en
https://www.itu.int/rec/T-REC-Y.2060-201206-I/en
http://www.ebbits-project.eu
http://www.sprint-iot.eu/
http://www.iot-icore.eu/
http://nebula-fia.org/
http://ict-iotest.eu
http://www.betaas.eu/
http://www.compose-project.eu/
http://www.compose-project.eu/
https://internetofthings.ibmcloud.com
https://hal.archives-ouvertes.fr/hal-01126482
https://hal.inria.fr/inria-00323919
http://onlinelibrary.wiley.com/doi/10.1002/spe.2270/full
http://onlinelibrary.wiley.com/doi/10.1002/spe.2270/full

Aubonnet, Boubendir, Lemoine, Simoni: RonPub Journal Template

(28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

and Experience, vol. 36, no. 11-12, pp. 12571284,
Sep. 2006.

BUTLER, “FP7-ICT 287901, BUTLER uBiqui-
tous, secUre internet-of-things with Location and
contExt-awaReness,” 2011. [Online]. Available:
http://www.iot-butler.eu/

A. Cansado and E. Madelaine, “Specification and
Verification for Grid Component-Based Applica-
tions: From Models to Tools,” in Formal Methods
for Components and Objects, ser. Lecture Notes
in Computer Science, F. S. d. Boer, M. M. Bon-
sangue, and E. Madelaine, Eds. Springer Berlin
Heidelberg, Oct. 2008, no. 5751, pp. 180-203, dOI:
10.1007/978-3-642-04167-9_10.

A. Cansado, E. Madelaine, and P. Valenzuela,
“VCE: A Graphical Tool for Architectural Defini-
tions of GCM Components,” Spain, 2008.

M. Chen, V. C. M. Leung, R. Hjelsvold, and
X. Huang, “Smart and interactive ubiquitous
multimedia services,” Computer Communications,
vol. 35, no. 15, pp. 1769-1771, Sep. 2012.

D. Guinard, V. Trifa, S. Karnouskos, P. Spiess,
and D. Savio, “Interacting with the SOA-Based
Internet of Things: Discovery, Query, Selection,
and On-Demand Provisioning of Web Services,”

IEEE Transactions on Services Computing, vol. 3,
no. 3, pp. 223-235, 2010.

F. Mattern, “From smart devices to smart
everyday objects,” in Proceedings of smart
objects conference, 2003, pp. 15-16. [Online].
Available: http://www.vs.inf.ethz.ch/publ/papers/
Generic_106.pdf

F. Mattern and C. Floerkemeier, “From the Internet
of Computers to the Internet of Things,” in From
Active Data Management to Event-Based Systems
and More, ser. Lecture Notes in Computer Science,
K. Sachs, I. Petrov, and P. Guerrero, Eds. Springer
Berlin Heidelberg, 2010, no. 6462, pp. 242-259,
dOI: 10.1007/978-3-642-17226-7_15.

D. Raychaudhuri, K. Nagaraja, and A. Venkatara-
mani, “MobilityFirst: A Robust and Trustworthy
Mobility-centric Architecture for the Future Inter-
net,” SIGMOBILE Mob. Comput. Commun. Rev.,
vol. 16, no. 3, pp. 2-13, Dec. 2012.

N. Simoni, S. Znaty, N. Perdigues, and S. Arsenis,
Gestion de rseau et de service: similitude des
concepts, spcificit des solutions. Paris, France:
Interditions : Masson, 1997.

slange, “FP7-ICT 257521, iot-a - Internet of
Things Architecture,” 2010. [Online]. Available:
http://www.iot-a.eu

13

AUTHOR BIOGRAPHIES

Tatiana Aubonnet is assistant
professor at computer science
department of CNAM (Paris).
She holds a PhD in computer
and network science from Tele-
com ParisTech and an Habil-
itation from Pierre and Marie
Curie University (University of
Paris VI). Her research interests
cover service creation and man-
agement in Next Generation Networks.

Amina Boubendir is a PhD Stu-
dent at Orange Labs Networks
France and at Tlcom Paris Tech
in the Department of Network-
ing and Computer Science. Her
main research interests focus on
management of network opera-
tions and services as well as the
application of service-oriented
and model-driven engineering to
Telco Cloud and Network Functions Virtualization.

Frédéric Lemoine has an engi-
neering degree in computer sci-
ence, microelectronics and au-
tomatics. He is a research en-
gineer and development project
manager at the computer science
department of CNAM (Paris).
His expertise includes program-
ming and modelling languages,
heterogeneous parallel systems
programming, embedded systems and mobile devices
programming.

Noémie Simoni is an Emeritus
Professor of Telecom-Paristech.
She was Head of Architecture
and Engineering of Networks
and Services (AIRS) research
group at the Department of
Computer Science and Network.
Her research interests include
QoS management and modelling
of complex systems. Her ex-
pertise, gained through many academic projects and
industrial contracts, covers wide range of management
topics. Today, her main work is focused on network
convergence and service convergence, network virtual-
isation and cloud computing.

http://www.iot-butler.eu/
http://www.vs.inf.ethz.ch/publ/papers/Generic_106.pdf
http://www.vs.inf.ethz.ch/publ/papers/Generic_106.pdf
http://www.iot-a.eu

Open Journal of Internet of Things (OJIOT), Volume X, Issue X, 20XX

Listing 1: Extract of ADL code

<?xml version="1.0" encoding="UTF-8" 7>

<IDOCTYPE definition PUBLIC ”—//objectweb.org//DID Fractal ADL 2.0//EN”
“classpath ://org/objectweb/proactive/core/component/adl/xml/proactive .dtd”>
<!—— Automatically generated by Vercors, INRIA Sophia—Antipolis —>

<definition name="10TSCC”>

<interface name="IRequest” role="server” signature="interfaces.IRequest”/>
<interface name="IRequest” role="client” signature="interfaces.IRequest”
contingency="optional” interceptors="OutMonitor.Interceptor”/>

<component name="SmartObject”>

<interface name="command (actuator) / mesures (sensor)” role="server”
signature=".interfaces . AutoGeneratedInterface”/>

<content class="classes.Business”/>
<controller desc="primitive”/>
</component>

<binding client="SmartObject.Cl” server="this.IRequest”/>

<content class=".classes.CompositeDefaultClass”/>

<controller desc="composite”™

<interface name="IConfigMonitor—controller”

signature="interfaces .IConfigMonitor”/>
<component name="InMonitor”>

<content class="classes.Monitor”/>
<controller desc="primitive”/>
</component>
<component name="OutMonitor”>

<content class="classes.Monitor”/>
<controller desc="primitive”/>
</component>
<component name="QoSControl”>

<content class="classes.QoSControl”/>

<controller desc="primitive”/>

</component>
<component name="IoTProcessing”>

<controller desc="primitive”/>
</component>

role="server”

<binding client="this.IConfigMonitor—controller” server="InMonitor.S2”/>

</controller >
</definitio >

14

	Introduction
	Related works
	Propositions for an as-a-service IoT design
	From smart object to IoT service
	Proposition for the Architectural Dimension
	Proposition for the Organisational Dimension
	Proposition for the Functional Dimension: IoT micro-services

	Secured IoT
	Design and implementation of a study case
	Study case description
	Design and implementation phases

	Summary and conclusions

