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Abstract—In the services world, the expected benefits are
the fastest time to market, lower costs, greater consistency in
the application, and increased agility. The re-use and sharing
properties of software components are useful to address these
challenges. However, to achieve this, it is necessary to be able to
observe each service and to control the service composition. This
article proposes to rethink the company’s organizational process
of application development and use the power of monitoring
to help the application design. The proposed Monitoring as-a-
service (MaaS), whose properties are detailed, will be used for
the computation of the offered Quality of Service (QoS) and
the services calibration during the service creation phase and to
inform the service QoS Controller during the operational phase.
For effective design, the architect will place MaaS at crucial
points of its architecture according to its decision-making process.
Finally, we present experimental results and a conclusion ends
the paper.

I. INTRODUCTION

Cloud computing and Future Internet promise a new ecosys-
tem where everything is ”as a service”. Architects mutate
to the service oriented architecture (SOA). The reusability
and loose coupling properties facilitate the implementation
of applications. Indeed, applications are built through the
composition of services that exist today in the enterprise or
can be provided by Cloud providers.

No doubt, we are in the era of the services and the service is
at the heart of the architecture. Therefore each component of
service has to be defined, controlled and managed. However,
to manage, it is necessary to know the values and metrics of
the service:

• values allow checking a service status, triggering an
alert and sending a notification related to an abnormal
behaviour (out contract), which implies immediate action.
This is the supervision and control responsibility.

• metrics allow logging and observing each measuring
point. This is the metrology responsibility.

It is important that this monitoring, which regroup these
two concepts of supervision and metrology, is placed at each
service and composition level. Software components provide
means to structure service composition and ensure better
re-usability, adaptability, and scalability of services. In our
preceding works [1], we introduced this vision of the monitor,
by proposing a Self Controlled service Component (SCC).

But, the problems of heterogeneous services, their service
level agreement (SLA) compliance, and service composition
automated management are raised.

For improving the system design and make it more efficient,
we need to adapt existing composition models in order to make
this design and this automated management converge. For this,
we need to answer the following questions:

• What are the properties needed for monitoring services
to adapt to heterogeneous environments?

• Where the measuring points have to be placed to have
the right information for fast reactions?

• How to know the values and metrics of service in general
and of ”re-used” service in particular?

• Can we take these problems into account during the
design phase?

We show in this paper how the adoption of a component
oriented structure helps the service composition to provide a
guaranteed quality of service.

Our main contributions are the following:

• We design a generic monitoring component template that
can be placed in each hierarchical level.

• We define a calibration technique to compute the nomi-
nal/offered QoS and to help their composition.

• We provide a method for the design architect to structure
his application (services composition) by respecting SLA
compliance.

This paper is organized as follows: The related works of
the properties of monitoring systems and their analyses are de-
scribed in Section II. Section III presents the SCC proposed in
the OpenCloudware project, but also extended SOA properties
and autonomic capabilities of these SCC components. Section
IV is devoted to our propositions for efficient driving, i.e. the
advantages of Monitoring as-a-service (MaaS) within SCC
architecture, method for design architect, monitoring as-a-
service for calibration and design. A prototype implementation
of a single SCC, of a SCC components composition, and their
calibrations are proposed in Section V. Finally, in Section VI,
we highlight the advantages of our approach to drive future
system design.



II. RELATED WORKS

Monitoring is needed to perform business analytics for
improving the operation of systems and applications [2] or
for verifying the compliance with an SLA contract.

There are different types of layers to be monitored: Appli-
cation, middleware, OS, network, hardware [3][4][5]. These
layers can be seen as where to put the probes of the monitoring
system. In fact, the layer at which the probes are located has
direct consequences on the phenomena that can be monitored
and observed:

• Application, middleware, and OS: bugs, malfunctions,
vulnerabilities, etc.

• Network: bandwidth, throughput, etc.
• Hardware: CPU, memory, temperature, voltage, etc.

The measured value in the upper layers (e.g. the performance
of the application) may or may not include the values of
the lower layers (e.g. the transfer rates on the network). The
processing time for a task (top layer) depends on the hardware
(lower layer) on which it runs and the load of the virtualized
environment.

We present here our analysis of the properties related to
system monitoring. These properties must be the same as
those of the monitored system (Scalability, Elasticity, Adapt-
ability, and Autonomicity) or system component (Availability
and Resilience). Its integration must be done at lower cost
(Intrusiveness, Comprehensiveness). The Timeliness property
is needed for agility and quick decision making at runtime. We
analyse their issues and discuss how they have been addressed
in literature.

Timeliness. A monitoring system is timely if detected
events are available on time for their intended use [6].
The difficulties are:

• The time between the occurrence of an event and its treat-
ment can vary depending on the measurement, analysis,
and the communication delay.

• To obtain up-to-date information, a trade-off between
accuracy and sampling frequency is necessary because
the shorter the sampling interval, the smaller the delay
between the time a monitored condition happens and is
captured.

• Analysis is problematic because it can be complex and
require computing time to be relevant.

• The communication delay can be a problem if it is
necessary to aggregate multiple data sources in order to
process them.

Adaptability. Monitoring requires computing and commu-
nication resources that can be costly. Adaptability should be
used to find the right compromise between accuracy and
invasiveness (environmental disruption).

Autonomicity. A monitoring system is autonomic if it is
able to self-manage its distributed resources by automatically
reacting to unpredictable changes, i.e., if it is able to react to
detected changes, failures, performance degradation without
manual intervention [7].
The difficulties are:

• The control loop receives data from a large number of
sensors and propagates the action to a large number
of actuators which leads to coordination and scaling
difficulties.

• The analytical capacity must be adapted to the complexity
of the infrastructure (Layers)

• It is difficult to implement steering policies that respond
adequately to events detected by the monitoring system.

Elasticity. Elasticity consists in coping with dynamic
changes of monitored entities (created or destroyed by ex-
pansion and contraction) [8].
Types of changes are:

• New assignment of resources for the user.
• Change in the monitoring needs for the user.
• Change of the number of users.
Intrusiveness and Comprehensiveness. A monitoring sys-

tem is intrusive if its adoption requires significant modifica-
tions of the monitored system [9].

A monitoring system is comprehensive if it supports differ-
ent types of resources (physical and virtualized) and is multiple
tenants [10]. The latter requires:

• To adopt a single monitoring API regardless of the
measure that is currently used.

• To deploy and maintain a single monitoring infrastruc-
ture.

Having a low Intrusiveness minimizes cost instrumentation.
The difficulties are:

• Comprehensiveness requires supporting different under-
lying architectures, technology, resources, and multi-
tenancy.

• The heterogeneity of resources and settings of the differ-
ent layers.

Resilience and Availability. A monitoring system is re-
silient if it can support a number of faulty components while
continuing to operate normally.

It is available if it provides services according to the system
design whenever users request them [11].

A system must be resilient and available at least for reasons
of payment, SLA compliance, and resource management.
The difficulties are:

• Services can be migrated from a physical computer to
another, striking down classical monitoring logics and
affecting the reliability of the monitoring system.

• Because of complexity of tracking and managing hetero-
geneous monitored and monitoring resources, we should
take into account possible faults of the monitoring system
itself.

Scalability. The aim for a scalable monitoring system is to
manage a large number of probes [8]. A system is scalable
if it is able to efficiently collect, transfer, and analyse large
amounts of data without affecting the functional part.
The difficulties are the large number of parameters to be
monitored and the large amount of data from multiple
distributed locations to aggregate and filter.
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TABLE I
PLATFORMS COMPARATIVE

Platform Properties Multi-
Layers

AzureWatch [12] Scalability, Adaptability, Autonomicity Yes
Boundary [13] Timeliness, Resilience, Availability Yes
CloudClimate [14] Timeliness, Resilience, Availability No
CloudCruiser [15] Timeliness, Resilience, Availability No
Cloudfloor [16] Timeliness, Resilience, Availability No
CloudHarmony [17] Timeliness, Comprehensiveness No
CloudSleutch [18] Timeliness No
CloudStack
ZenPack [19]

Timeliness No

CloudWatch [20] Elasticity, Timeliness Yes
Cloudyn [21] Timeliness, Resilience, Availability No
Dargos [22] Adaptability, Intrusiveness No
New Relic [23] Timeliness, Resilience, Availability No
Up.time [24] Timeliness, Resilience, Availability Yes
VR. Hyperic [25] Timeliness No

The table I show a comparative of different platforms
according to their properties.

In the following, we present different works, described in
literature, aimed to satisfy or improve preceding properties.

To improve Timeliness, [26] propose a behavioural model
to predict the best measurement time interval. [6] reduce
the time of analysis and communication by assembling and
processing information of near nodes and by adapting the
analysis and communication topology.

Concerning Adaptability, [27], [9], [28], [29], [6] pro-
pose to fine-tune the amount of monitored resources and the
monitoring frequency. [27] propose to predict the resource
consumption for adapting the time interval to push monitoring
information Monalytics [29] configures its agents in real time
depending on the monitoring topology (collect, process, and
transmit) by providing new analysis and monitoring codes or
by changing the methods being used.

For Autonomicity, focusing on bottlenecks, [30] proposes
two methods to detect and resolve them as well as the
identification and reduction of resources if too many have
been provisioned. These methods require a maximum response
time and are useful for the SLA compliance. [31] proposes
a monitoring system based on agents having the ability to
continuously check the status of virtual machines (VM) and to
restore them in case of malfunction. [32] allocates computing
resources to services and deploys them on virtualized infras-
tructures. [32] detects violations of SLAs and offers automatic
dynamic reactions combining low-level resource metrics with
service level objective (SLO) and a knowledge base for the
analysis of monitoring information.

Concerning Elasticity, Most of tools were designed for slow
changes of the physical infrastructure (Ganglia [33], Nagios
[34]) and do not support rapid and dynamic changes. They
use a push strategy (the physical host notifies the tool on
the status and the presence of the running VMs) [35] or
publish-subscribe to decouple communications ends and thus

to support dynamism. An hypervisor controller checks the list
of virtual execution environment (VEE) and add or remove a
monitor according to the detected number [8]. An extension
of Nagios [35] allows the use of active verification method
(pulling) by remote code execution. An extension of Nagios
[9] offers a push-pull model. The monitoring information is
sent by agents to a Manager (push) and information consumers
can obtain data from it (pull). Monalytics [29] was designed
for scalability and efficiency in highly dynamic scenarios:
discovery at runtime of resources to monitor and configuration
at runtime of monitoring agents. Brokers” at different hier-
archical levels, collect process and transmit the monitoring
information.

To improve Intrusiveness and Comprehensiveness, [10]
proposes an architecture based on agents that monitor directly
the flow of information through the same workflow system.
They are connected with adapters which abstract from data of
a specific technology. [36] monitors events at the VM level.

In the literature, several works search for the reasons
impacting Resilience: Resource Volatility [37], [27], virtu-
alization technology [31]. To improve the Availability, [38]
provides a publish-subscribe paradigm for communication and
a set of redundant brokers for events management while
providing tolerance to attacks and malfunctions.

To ensure Scalability, two methods are commonly used to
reduce the amount of data collected by the controller:

• Data aggregation consists in combining multiple metrics
into a single one,

• Filtering avoid spreading unnecessary data to the Con-
troller.

Most of the proposed architectures use a subsystem to prop-
agate event announcements [10], [9], [6], [39] or agents for
collecting, filtering, and aggregate data [10], [9], [28].

Although each property has been addressed in various
studies presented above, no platform includes them all to the
best of our knowledge. We think that a monitoring and an
analysis placed close to each functional component would have
many advantages:

• The volume of data exchanged and thus the communica-
tion resources would be extremely low since the analysis
would be done on site. Only its result would be sent.

• The code would be simplified and hence require less
computing resources (Adaptability).

• The analysis would be faster, more relevant, and reaction
times would be minimized (Timeliness).

• At each addition / removal of a functional component, a
monitoring and controlling component would be therefore
added / removed (Scalability, Elasticity).

• Monitoring and controlling component would be located
at any hierarchical level: At the same place that any
functional component.

We would not be intrusive if monitoring and analysis were ex-
ternal to the functional component. (Intrusiveness). A generic
monitoring and analysis independent of the functional compo-
nent would be comprehensive (Comprehensiveness) and might
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be present at all levels of architecture.
We will show how such a system would also be a valuable

aid to application design for the architect. This one could expe-
rience during the design and before being put into production
if its composition is properly sized i.e. whether resources will
be sufficient to operate and meet the requested QoS.

Our motivation is thus double:
• Show that our MaaS, by its design, responds to most of

the preceding properties.
• Show that it can also be used to help the architect to

choose the best component when designing his applica-
tion.

III. BACKGROUND

In the services era, the service is the center of architecture,
to enjoy all the benefits expected from this concept, we have
proposed in [40] a component called SCC which we recall
the description (Section III-A) with SoA extended properties
(Section III-B) and autonomic capabilities (Section III-C).

A. Self-controlled service Component

To increase the structural decomposition and the reuse of
non-functional QoS components, we have separated its internal
functions and proposed an architecture that separates the mon-
itoring and Qos functions of the remaining functions called
”control”. We have specified this model in the OpenCloudware
project to address the behavioural aspects through QoS.

The membrane of our SCC includes (Figure 1):
• An input monitoring component (InMonitor) and an out-

put monitor (OutMonitor). They play an interceptor role.
Incoming service requests are intercepted and transmitted
(unchanged) to the functional component via the corre-
sponding internal interfaces. The OutMonitor intercepts
outgoing service requests. They provide measurement
information on the flow they intercept.

• A QoS component (QosControl), associated with the
business component.

• A non-functional interface (client) for QoS control
(IQoSStatus), by which it will send the information of
violation of QoS contracts, i.e. ”InContract” notifications
when the behaviour is compliant with the contract or
”OutContract” otherwise.

• A non-functional interface (server) of configuration
(IConfigQoS, IConfigMonitor), whose role is to receive
component configuration commands.

The QoSControl component checks the current behaviour
of the resource and its conformity with the contract. For
this, it triggers a timer and regularly requests to the monitors
(InMonitor and OutMonitor) the parameter values (getVal-
ues method) of the IControlMonitor interface (Figure 2). It
compares each current value to the corresponding threshold
value not to exceed. It sends an OutContract notification if the
current value is less (or more) than the threshold value; in this
case the dynamic management consists in replacing on the fly
the failing component by an ubiquitous service fulfilling the

requirements. Otherwise, it sends an InContract notification.
We define two types of QoS:

1) The requested QoS: client side, SLO.
2) The offered QoS also called nominal QoS is com-

puted under resource conditions of the underlying level:
provider side, SCC components based.

The QoS requested by the customer is provided by cata-
logue components with an offered QoS and/or components
with adaptation mechanisms (SCC+). A SCC+ component is
indeed necessarily a composition. The provider responds to the
client’s request (requested QoS) by establishing a user session
based entirely on SCC and SCC+ components.

We obtain a SCC component, self monitoring and self
controlling Component. The sub-components of the membrane
(monitors and QoS) are activated in order to perform moni-
toring of the quality of service and to notify its degradation.

B. Extended SOA properties
We based on the recommended service SOA with the

properties of description, invocation, autonomy, reuse, and
loose coupling. In [1], we have added the following proper-
ties: stateless, mutualization, ubiquity, and exposability. These
properties, named SOA+, allow exposing components in a
library (catalogue), sharing components for use in different
applications, and assembling them in a personalised session.

In this article we focus on the properties that the archi-
tect/developer must particularly take into account:

• Autonomy which will be presented in Section III-C.
• Reusability: A service has an agnostic logic and thanks

to this can be positioned as a reusable resource.
• Composability: A service has to be designed so that they

can be used in a service composition. This property is
used via system information blocks (SIB) in Intelligent
Network of Telecommunication services ([41]).

C. Autonomic capabilites
GCM/ProActive [42] is the component platform we used for

out experimentation. What motivates this choice is the design
of the component model imposing a strong encapsulation
between components. In GCM/ProActive each component is
seen as an autonomous entity in a much service-oriented
manner. GCM/proactive enforces a strong separation of con-
cerns, well separating the component management from the
functional behaviour of the components [42]. It also revealed
efficient for implementing autonomic services.

In the GCM component model, a structure is defined for the
membrane elements: the non-functional part of the component
can thus be defined as an assembly of components. These
components can then be connected with other components
within the same membrane or with non-functional interfaces
of other components. This structure has been precisely and
formally specified [43], [44].

IV. TOWARDS AN EFFICIENT DRIVING

In cloud computing, services platforms, and Internet of
Things (IoT), the component is the cornerstone. Each com-
ponent is responsible for its action. It can belong to several
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Fig. 1. Self-Controlled service Component (SCC)

providers. It’s chosen according to his contract. Each applica-
tion (service composition) responds to a client request based
on the resources and possibilities of its environment. So, the
questions are: How to help the service provider to calibrate
their service? How to help the application architect designer?

In the next sections, we will present the advantages of our
monitoring service and our SCC architecture (Section IV-A)
and we will show how a calibration technique based on the
SCC (Section IV-C) can help the service provider to create his
catalogue (Section IV-D) and the design architect to compose
his application (Section IV-B and IV-E).

A. The advantages of MaaS within the SCC architecture

As presented on the section III-A, a SCC component
includes a monitoring and an analysis for each functional
component. Furthermore, the monitors and the QoScontrol
surround it and are close to it. The SCC architecture covers
most of the the properties related to monitoring systems
defined in section II. Indeed it has many advantages:

1) Our SCC component allows self-control and automatic
reacting (Autonomicity).

2) The code is simplified and hence require less computing
resources (Adaptability).

3) The analysis is faster, more relevant, and reaction times
is minimized (Timeliness).

4) Monitoring and controlling component are:
• Generic so they are independent of the func-

tional component (Comprehensiveness) and may be
present at all levels of architecture.

• Not intrusive because they are external to the func-
tional component (Intrusiveness).

5) At each addition/removal of a functional component,
a monitoring and controlling component is therefore
added/removed (Scalability, Elasticity).

6) The volume of data exchanged and thus the commu-
nication resources are extremely low since the analysis
would be done on site. Only its result would be sent.

7) We measure a QoS (Section III-A) whereas most exist-
ing tools monitor network traffic or CPU usage when

they should monitor the functional component perfor-
mance.

In the following section we propose a method compatible with
the objectives of self-control, i.e., dynamic reaction as well as
the management of service composition.

B. System design: Method for design architect

By principle, component oriented programming requires the
programmer to think about the re-use and sharing properties
of software components at the time of their creation. Here,
we push this methodology further and require the application
provider to also consider QoS and monitoring purposes at
design time which modifies the company’s organizational pro-
cess. So, we propose a new method based on SCC components
to help the design architect when choosing the best component
and designing his application.

This method has four steps:
1) We begin with the calibration of SCC components. The

technique, using self-tests, described in Section IV-C,
consist, for a SCC component, to evaluate his nom-
inal/offered QoS and threshold value under resources
conditions of the underlying level.

2) Secondly, the service provider creates his catalogue by
putting into the preceding calibrated SCC components
(Section IV-D).

3) Thirdly, to design application or service, the architect
chooses multi-tenant SCC components in providerss cat-
alogues, based on the specified nominal/offered QoS and
thresholds value. He calibrate the composition (SCC+)
with the same technique described in Section IV-C to
also obtain the nominal QoS and threshold value of
the full composition. If the composition is entirely SCC
composed then it can be put in a catalogue too.

4) Finally, in Section IV-E, we propose SLA management
actions to ensure the adequacy of his nominal QoS to
the requested QoS (SLO).

C. Monitoring as-a-service for calibration

As mentioned in Section IV-B, the calibration concerns a
single SCC that is intended to be placed in the catalogue’s
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provider or a composition of SCC components. The calibra-
tion consists to compute their offered/nominal QoS and their
associated threshold value.

First, we focus on the calibration of a single SCC. Our SCC
component includes 4 membrane localised non-functional sub-
components: InMonitor, OutMonitor, QosControl, and Self-
test (Figure 2). The two monitors surround the business.

The offered/nominal QoS is obtained by a self-test proce-
dure triggered by the QoSControl. The self-test procedure is
performed in a closed loop (in-situ). The InMonitor no longer
receive requests from outside during the self-test phase but
N intelligently chosen queries are generated to compute the
values of QoS. We are no longer dependent on the outside for
obtaining the QoS and the measurements obtained are more
reliable.

In a normal utilisation, each external request is intercepted
by the inMonitor which record it whereas in self-test situation,
each request is generated by the Self-test component which is
recorded too by the InMonitor. The request is then processed
by the business code and the result is intercepted by the
OutMonitor which record it.

We measure a QoS (Section III-A) from raw data. The
number of incoming or outgoing requests (queries, packets,
primitive) and their timestamp are recorded by the two mon-
itors. The QosControl periodically ask the monitor for their
records. It can detect if a request has been processed by the
business component or not and can compute the number of
processed/unprocessed requests and the processing time by
subtracting the out and in timestamp. The QosControl can
compute other metrics like the availably of the component
or the number of processed request by minutes. In a normal
situation, it check the compliance with the SLA by comparing
the result with a reference threshold and send an in or out
contract. In the self-test procedure, it’s used to compute the
offered/nominal QoS and the threshold values from which the
business component stops responding by gradually increasing
the numbers of requests. The obtained QoS are given on
resources conditions because they depend on their environ-
ment. Reference tests can also be processed by modifying the
resources to highlight the effect of the environment on the
measures.

Second, we focus on the calibration of a composition
(SCC+). The same procedure can be used for a composition of
SCC components. A composition includes two surroundings
monitors and QosControl, the self-test procedure computes the
nominal Qos and the threshold value of the composition with
the same method as for a single SCC. We determine the thresh-
old value from which the business component stops responding
by also gradually increasing the numbers of requests.

D. Cataloque

The catalogue is a showcase for reusable components. But
as we mentioned, for re-using, it is better to know the offered
QoS and the needed resources to provide this QoS. Indeed,
for a same functionality, different algorithms and treatments

may be used and therefore different QoS are provided. The
consumed resources are not the same.

That is why, the provider’s catalogue is filled with SCC cali-
brated components. If a composition is entirely SCC composed
then it can be put in a catalogue too. Each component is given
with his offered/nominal Qos and the associated resources
conditions. Each component, located at the layer N, depends
on the QoS of the layer N-1. A component located at the lower
layer depends on hardware resources (CPU, RAM).

E. Monitoring as-a-service for design

Based on SLA, with SCC reusable components selected
from the catalogue, the architect and/or developer build the
desired application by composing services. In a normal utilisa-
tion, each external request (user transaction) is intercepted by
the inMonitor/outMonitor of highest level which record it. The
QosControl check the compliance with the SLA by comparing
the result with a reference threshold and send an in or out
contract. But between the behaviour of the composition from
end to end (application) and that of each SCC component,
there are several subsets which are the responsibility of the
architect.

The recommended method, as the decision process pro-
gresses, is to progressively build SCC composites with a
new membrane containing the InMonitor, OutMonitor, and
QoSControl (Figure 5). So the MaS will be the cornerstone
of the design of the application structure. The analysis of the
composite is complex and is still an open issue, however, some
cases are simplified. Namely, if the OutContract come from
a primitive component, it will be replaced automatically [45],
[46], [47]. If we have only InContracts from primitive compo-
nents and one OutContract from the final composition, then the
composition is faulty. In the literature several solutions have
been proposed to perform autonomic adaptation and take the
adequate adaptation decision, in particular concerning specific
component patterns [48], [49], [50].

We show that we know to locate the problem accurately
and timely (Timeliness properties) and to send the notification,
generating decision making, to the right place.

V. IMPLEMENTATION

In this section, we bring our SCC component on the Proac-
tive Platform. GCM/ProActive is a Java library that includes
a component model and has a strong support for large-scale
distributed execution of programs. It relies on an active-object
pattern for the interaction between the different entities (i.e.
components). According to what has been described in the
method (Section II), we present the experimentation of two
calibrations: Firstly for an single SCC (Section V-A) and
secondly for a SCC composition (Section V-B).

A. From design to configuration (experiments for calibration)

As a reminder, the offered/nominal QoS is obtained by a
self-test procedure triggered by the QoSControl (Figure 2).
The self-test procedure is performed in a closed loop (in-
situ). The InMonitor no longer receive requests from outside
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Fig. 2. Self-test SCC component.

during the self-test phase but N intelligently chosen queries
are generated to compute the values of QoS.

We bring our SCC component on the Proactive Platform
[51].

Each implementation includes five steps:
• Diagram design on VCE with classes and interfaces
• Checking of the validity of the diagram
• Generation of the architecture description language

(ADL) file and code template of classes and interfaces.
• Creation of an proactive project with enriched code
• Execution of the application
First, we focus on calibration of only one SCC (Figure 2).
For simplify this implementation, the business role consist

only to process a very simple task. In self-test situation,
each request is generated by the Self-test component which
is recorded by the InMonitor. The record consists of the

request number and a timestamp. The request is then processed
by the business code and the result is intercepted by the
OutMonitor which record it. The request is based on a generic
Interface: IRequest which includes his number (requestId) and
a list of functional parameters for the business code. The
InMonitor, OutMonitor, and QosControl can be (un)activated
via the IActivate interface (activate(b: boolType) method).
Their records can be erased via the reset() method. The
self-test procedure is triggered/stopped by the call of the
startSelfProcedure()/stopSelfProcedure() method of the ISelf-
test interface. Each non-functional subcomponents receive the
number of his community (setSCC ID() method) via their
IConfigQoS interface.

The QosControl is a thread which periodically ask the
monitor for their records. It can detect if a request has been
processed by the business component and can compute the
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Fig. 3. QosControl logs.

processing time by subtracting the out and in timestamp. In the
self-test procedure, QoSControl computes the offered/nominal
QoS and the threshold values from which the business com-
ponent stops responding.

Then, we explain the logs of the self-test experiment. As
already mentioned, we consider firstly a single SCC compo-
nent. The business role consist only to process a very simple
task. The logs highlights the following events in order:

• The thread of the QosControl starts.
• The Self-test component send 5 requests to the business

component via the InMonitor.
• The business receives 5 requests having the identifier

0,1,2,3, and 4 to process.
• The OutMonitor see 5 results coming from the business

component.
• The QosControl ask the two monitors their tables of

recordings.
• It hears that 5 requests has been recorded. They have

successfully been processed by the business.
• The QosControl get the records from the InMonitor and

OutMonitor (timestamp and requestId).
• The QosControl compute the processing time (Figure 3).

Note that ProActive supports multi-active objects that allow
a single active object to execute several requests in parallel if
they do not conflict. This is particularly useful here to ensure
that the main flow of requests is handled efficiently while not
conflicting with the rest of the behaviour of the monitor.

By repeating the operation and by increasing at each time
the number of requests, we can compute the average process-
ing time for a given physical resources level (Figure 4 Single
SCC)

Sample:

• Number of request: 220
• Total processing time: 26814 ms
• Average processing time per request: 121.8 ms

Given physical resources:

• Memory: 681616 bytes
• CPU: Intel Core i5 3.6 GHz

By still increasing the number of requests we determine the
threshold value from which the business component stops re-
sponding. Here for 250 requests. The service provider choose
a nominal value which may be defined, for example, at 70
% of the threshold value: 71.2 ms for 175 requests. This
experiment show how to use the self-test procedure to compute
the offered QoS and the threshold value from which the
business component stops responding.

B. Towards the desired architecture (experiments for control)

Second, we focus on the calibration of a composition
(SCC+).

The same procedure can be used for a composition of SCC
components. An example of composition is given at the figure
5. Two chained SCC components are included in an SCC
component called ”Composition”. This composition includes
6 monitors and 3 QoSControl. Thanks to the two surroundings
monitors and QosControl, the self-test procedure computes
the nominal Qos and the threshold value of the composition
(Figure 5 - Composition).

We determine the threshold value from which the business
component stops responding. Here for 250 requests. The ser-
vice provider choose a nominal value which may be defined,
for example, at 70 % of the threshold value: 146.6 ms for 175
requests. This experiment show that the self-test procedure is
useful too to compute the nominal QoS and the threshold value
for a SCC component composition.

VI. CONCLUSION

In this article, we stood from the point of view of an
architect or developer in the new ecosystems that refer to
paradigms of Cloud, SOA or IoT and are based on the
properties of the ”service”. We started from the reuse property
by advocating the SCC component. Thus, during the design
of an application or a composite service, the architect and/or
the developer will be able to select from a catalogue, for
example that of the cloud supplier, the desired(s) service(s)
according to the exposed features and associated QoS. The
SCC component integrates, during operation, the control of
the contract compliance. Furthermore, the most significant
proposed help is the use of MaaS to drive more efficiently
the design process. Our MaaS as specified allows designers
to: (i) assess the offered QoS during the service creation, (ii)
test the offered QoS through the catalogue in its deployment
environment, (iii) structure, in terms of decisional process, the
composite services by placing MaaS at the crucial points of
the architecture of the application and allow the control of the
SLA contract. All these elements are integrated within a new
method for the design architect.

VII. LIST OF ABBREVIATIONS

• ADL: Architecture description language (Section V-A)
• GCM: Grid component model (Section III-C)
• IoT: Internet of Things (Section IV)
• MaaS: Monitoring as-a-service (Section I)
• MAPE: Monitor-analyse-planning-execute (Section I)
• SCC: Self Controlled service Component (Section I)
• SIB: System information blocks (Section III-B)
• SLA: Service level agreement (Section I)
• SLO: Service level objective (Section II)
• SOA: Service oriented architecture (Section I)
• VM: Virtual machines (Section II)
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Fig. 4. Number of requests and processing time for the composition.

Fig. 5. Example of composition (SCC+).
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