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Abstract: This paper presents a novel application of convolutional neural networks to phoneme recognition. The 

phonetic transcription of the TIMIT speech corpus is used to label spectrogram segments for training the 

convolutional neural network. A window of a fixed size slides over the spectrogram of the TIMIT utterances 

and the resulting spectrogram patches are assigned to the appropriate phone class by parsing TIMIT’s phone 

transcription. The convolutional neural network is the standard GoogLeNet implementation trained with 

stochastic gradient descent with mini batches. After training, phonetic rescoring is performed in the usual way 

to map the TIMIT phone set to the smaller standard set. Benchmark results are presented for comparison to 

other state-of-the-art approaches. Finally, conclusions and future directions with regard to extending the 

approach are discussed. 

1 INTRODUCTION 

Traditionally, Automatic Speech Recognition (ASR) 

involves multiple successive layers of feature 

extraction to compress the amount of information 

processed from the raw audio so that the training of 

the ASR does not take an unreasonably long time. 

However, in recent years with increases in 

computational speed, the adoption of parallel 

computation with General Purpose Graphic 

Processing Units (GPGPUs), and advances in neural 

networks (the so-called Deep Learning trend), many 

researchers are replacing traditional ASR algorithms 

with data-driven approaches that simply take the 

audio data in its frequency form (e.g. spectrogram) 

and process it with a Deep Neural Network (DNN), 

or more appropriately, since speech is temporal, a 

Recurrent Neural Network (RNN) that can be trained 

quickly with GPUs. The RNN then converts the 

spectrogram directly to phonetic symbols and in some 

cases directly to text (Hannun et al., 2014). 

Convolutional Neural Networks (CNNs) present 

an interesting alternative to the use of DNNs and 

RNNs for ASR. In this paper, we will demonstrate 

how the CNN, which is known for state of the art 

performance for image processing tasks, can be 

adapted for learning the Acoustic Model (AM) 

component of an ASR system. The AM model is 

responsible for extracting acoustic features from 

speech and classifying them to symbol classes. 

Specifically, in the CNN Acoustic Model (CNN-AM) 

presented in this paper we use spectrograms as input 

and phonemes as output classes for training. We will 

use the phonetic transcription of the TIMIT corpus as 

the ‘ground truth’ for training, validation and testing 

the CNN-AM.  

2 CNN-BASED ACOUSTIC 

MODELLING 

A CNN is usually employed for the classification of 

static images, see for example (Krizhevsky, 

Sutskever and Hinton, 2012). They are inspired by 

receptive fields in the mammalian brains which are 

formed by neurons in the V1 processing centres of our 

cortex responsible for vision; they are also present in 

the cochlear nucleus of the auditory processing areas 

(Shamma, 2001). The receptive field of a sensory 

neuron transforms the firing of that neuron depending 

on its spatial input (Paulin, 1998). Usually there is an 

inhibitory region surrounding a receptive field which 

suppresses any stimulus which is not altered by the 

bounds of the receptive field. In this way, receptive 

fields behave like feature extractors. 



 

Figure 1: Shows the preparation of the images for GoogLeNet training. A sliding window moves over the 16kHz STFT-

based spectrogram. The sliding window is shown in grayscale, the resulting 256*256 pixel spectrogram patches are placed 

into phoneme classes according to the TIMIT transcription for training, validation and testing. 

Inspired by the work of Hubel and Wiesel (Hubel 

and Wiesel, 1962), Fukushima developed the 

Neocognitron network (Fukushima, 1980). Images 

are dissected by image processing operations for the 

automated extraction of features. These image 

processing operations were then formalised by Yann 

LeCun to be convolutions; it was LeCun that coined 

the term CNN. The most notable example of which 

was the LeNet 5 (LeCun et al., 1990) which was used 

to learn the MNIST handwritten character data set. 

LeNet 5 was the first network to use convolutions and 

subsampling or pooling layers.  

One of the main strengths of the CNN is that since 

Ciresan’s seminal GPU implementation (Ciresan et 

al., 2011) in 2011 they are now typically trained in 

parallel with a GPU, and in fact are now arguably the 

most common type of DNN currently being trained. 

One subtlety to note is that the larger the size of the 

pooling area, the more information is condensed, 

which leads to slim networks that fit more easily into 

GPU memory (as they are more linear). However, if 

the pooling area is too large, too much information is 

thrown away and predictive performance decreases. 

The state of the art in CNNs is arguably the 

GoogLeNet (Szegedy et al., 2015) which was the 

architecture that won the ImageNet competition in 

2011 (ILSVRC, 2011).  

The main contribution of GoogLeNet is that it 

uses inception modules. Convolutions of different 

sizes are used within the module and this gives the 

network the ability to cope with different types of 

features. There are 1x1, 3x3, and 5x5 pixel 

convolutions, they are typically an odd number so that 

the kernel can be centred on top of the image pixel in 

question. In the inception module there are also 1x1 

convolutions which reduce the dimension of the 

feature vector, ensuring that the number of 

parameters to be optimised remains manageable. In 

fact, this reduced number of parameters is probably 

the principle contribution of the GoogLeNet CNN, it 

contains 4 million parameters, whereas its fore-runner 

AlexNet (Krizhevsky, Sutskever and Hinton, 2012) 

has 60 million parameters to be optimised. The 

pooling layer reduces the number of parameters, but 

its primary function is to make the network invariant 

to feature translation. The concatenation layer 

constructs a feature vector for processing by the next 

layer. 

3 PHONEME RECOGNITION 

WITH TIMIT 

We used spectrograms to train a CNN to perform 
speech recognition. For this, we decided to use the 
TIMIT corpus to train the acoustic model (CNN) as it 
has accurate phoneme transcription (Garofolo et al., 
1993). The TIMIT speech corpus was designed in 
1993 as a speech data resource for acoustic phonetic 
studies and has been used extensively for the 
development and evaluation of ASR studies. TIMIT 
contains broadband recordings of 630 speakers of  



 

Figure 2: Distribution of phonemes within the TIMIT transcription 

eight major dialects of American English, each 
reading ten phonetically rich sentences. The corpus 
includes time-aligned orthographic, phonetic and 
word transcriptions as well as a 16-bit 16 kHz speech 
waveform file for each utterance. TIMIT was 
designed to further acoustic-phonetic knowledge and 
ASR systems. It was commissioned by DARPA and 
worked on by many sites, including Texas 
Instruments (TI) and Massachusetts Institute of 
Technology (MIT), hence the corpus' name. TIMIT is 
the most accurately transcribed speech corpus in 
existence as it contains not only transcriptions of the 
text but also contains accurate timing of phones. This 
is impressive given that the average English speaker 
utters 14-15 phones a second. Figure 1 shows a 
spectrogram and illustrates the accuracy of the word 
and phone transcription for one of TIMIT’s core 
training set utterances. 

Spectrogram images were generated from the 

TIMIT corpus and placed in classes according to 

TIMIT’s phone transcription. Spectrograms were 

produced for every 160 samples which for 16 kHz 

encoded audio corresponds to 10 ms which is the 

standard resolution to find all the acoustic features the 

audio contains. The contents of the phone ground 

truth are parsed and each spectrogram is labelled with 

the phone to which its centre falls. Alternatively, one 

could have used the centre of the ground truth interval 

and calculated the Euclidean distance between the 

centre of the phone interval and the window length 

but it was decided that this would be making 

assumptions about where the phone is centred within 

the interval. It would also have required an additional 

computationally expensive step in the labelling of the 

spectrogram windows. 

Figure 1 also illustrates the preparation of the 

training, validation and testing data. The figure 

illustrates how the phonetic transcription is used to 

label the 256x256 greyscale spectrogram patches as 

the sliding window passes over each of the TIMIT 

utterances. The labelled greyscale patches are sorted 

into the directory belonging to each of the 61 

phoneme classes for each of the training, validation 

and testing sets. In the TIMIT corpus we use the 

standard core training setup. We use wide-band or 

Short-Term Fourier Transform (STFT) spectrograms, 

since we want to align acoustic data with phonetic 

symbols with timing that is as accurate as possible. 

The FFT component of the spectrogram generation 

uses NVIDIA’s cuFFT library for speed. Figure 2 

shows the distribution of the phones generated 

according to the TIMIT phone transcription in the 

training set. For readability purposes, please note that 

the bars correspond to the alphabetically ordered 

phones in the key below. 

As can be seen from the figure, the largest class is 

‘s’ and the second largest is ‘h#’ (silence). The latter  



 

Figure 3: TIMIT stochastic gradient descent training 

occurs at the beginning and end of each TIMIT 

utterance. The distribution is unbalanced which of 

course makes phoneme recognition by neural 

network architectures challenging. The training data 

is the standard TIMIT core set, and the standard test 

set sub-directories DR1-4 and DR5-8 were used for 

validation and testing respectively. This partitioning 

resulted in 1,417,588 spectrogram patches in the 

training set, as well as 222,789 and 294,101 

spectrograms in the validation and testing sets 

respectively. 

3.1 GoogLeNet Training and 
Inferencing 

The GoogLeNet implementation was trained with 
Stochastic Gradient Descent (SGD). Before the Deep 
Learning boom, gradient descent was usually 
performed by using the full set of training samples 
(full batch) to determine the next update of the 
parameters. The problem with this approach is that it 
is not parallelizable, and hence cannot by 
implemented efficiently on GPU. SGD does away 
with this approach by computing the gradient of the 
parameters on a single or few (mini batch) training 
samples. For large sizes of datasets, such as this one, 
SGD performs qualitatively as well as batch methods 
but outperforms them in computational time. 

A stepped learning rate was used with a 256 data 

sample mini batch size, Figure 3 shows the training 

accuracy. The network outputs the phone class 

prediction at three different points in the network 

architecture (loss1, loss2, and loss3). The NVIDIA 

DIGITS implementation employed also reports the 

top-1 and top-5 predictions for each of those loss 

(accuracy) outputs. loss3 (the last network output) 

reports the highest accuracy which is 71.65% for 

classification of the 61 phones. For top-5 the accuracy 

is reported as 96.27%, which means that the correct 

phone was listed in the top five output classifications 

of the network output, this is interesting because as 

mentioned earlier each spectrogram window contains 

4 to 5 phones on average, and preliminary tests 

confirmed that in the majority of cases the other 

phones were indeed correctly being identified. 

The network is trained using the training data (1.4 

million spectrograms) and it uses the validation set 

(approximately 223 thousand spectrograms) to check 

training progress. Once this is done there is a separate 

testing set (approximately 294 thousand images) that 

can be used to test the system, and the standard test 

set sub-directories DR1-4 and DR5-8 were used for 

validation and testing respectively. The validation set 

is used to check the progress of the training of the 

network. After each iteration of the training within 

which training data has been used to learn the network 

weights, the validation data checks that the accuracy 

of this latest iteration of the trained system is still 

improving. The validation data is kept separate from 

the training data and is only used to monitor the 



 

 
Figure 4: All network outputs for a test utterance 

 

progress of the training, and to stop training if 

overfitting occurs. The highest value of the validation 

accuracy is used as the final system. 

As can be seen in Figure 3, this is at epoch 

(iteration) 20, this is the final version of the trained 

system. We then use the trained system and perform 

inferencing over the test set, Figure 4 shows an 

example of the prediction the system makes with a 

single sample of this previously unseen test sample. 

The output of the inferencing process contains many 

duplicates of phones due to the small increments of 

the sliding window position. 

3.2 Post-Processing and Rescoring 

Hence, an additional post-processing script was 

written to remove the duplicates. It is the convention 

in the literature when reporting results for the TIMIT 

corpus to re-score the results for a smaller set of 

phones (Lopes and Perdigao, 2011). The phoneticians 

that scored TIMIT used 61 phone symbols. Many of 

the phones in TIMIT are not conventionally used by 

other speech recognition systems. For example, there 

are phone symbols called closures e.g. pcl, kcl, tcl, 

bcl, dcl, and gcl which simply refer to the closing of 

the mouth before release of closure resulting in the p, 

k, t, b, d, or g phones being uttered respectively. Most 

acoustic models map these to the silence symbol ‘h#’. 

Post-processing code was written to automatically 

remap the output of model inferencing with the new 

phone set. The results for the test set were then 

generated with the new remapping and the accuracy 

increased from 71.65% (shown in Figure 3) to 

77.44% after rescoring.  

Whilst not quite in excess of the 82.3% result 

reported by Alex Graves (Graves, Mohamed and 

Hinton, 2013) with bidirectional LSTMs, or the DNN 

with stochastic depth (Chen, 2016) which achieved a 

competitive accuracy of 80.9%, it is still comparable. 

Zhang et al., (Zhang, 2016) is a RNN-CNN hybrid 

based on MFCC features. This novel approach uses 

conventional MFCC feature extraction with an RNN 

layer before a deep CNN structure. The hybrid system 

achieved an impressive 82.67% accuracy. It is not 

surprising to us that the current state of the art is with 

a form of CNN (Tóth, 2015) with an 83.5% test 

accuracy. Notably, a team from Microsoft recently 

presented a fusion system that achieved the state of 

the art accuracy for the Switchboard corpus. Each of 

the three ensemble members in the fusion system 

used some form of CNN architecture, particularly at 

the feature extraction part of the networks. It is 

becoming clear that CNNs are demonstrating 

superiority over RNNs for acoustic modelling. 

Each spectrogram window typically contains 4 or 

5 phones per 256 ms window since the average 

speaker utters 15 phones per second. The pooling 

layers in the CNN-AM provide flexibility in where 

the feature under question (phones in this case) can be 

within the 256*256 image. This is useful for different 

orientations and scales of images in image 

classification and is also particularly useful for 

phoneme recognition where it is likely there will exist 

small errors in the training transcription. 
During inferencing (testing), the CNN-AM makes 

probabilistic predictions of all the phone classes for 



 

each of the 294,101 test spectrograms. This capability 
is provided by the use of softmax nodes at three 
successive output stages of the network (Loss 1 to 3). 
We carried out some simple graphical analysis of the 
output confidences of all the phones, employing 
colour coding of the outputs for easier readability of 
the results. This graphical analysis is presented in 
Figure 4, and as can be seen from the loss-3 
(accuracy), the network makes crisp classifications of 
usually only a single phone at a time. Given that this 
is unseen data, and that the comparison with the 
ground truth is good, we are confident that this 
network is an effective way to train an acoustic 
model. 

4 CONCLUSIONS 

We have presented a novel application of CNNs to 

phoneme recognition. We have shown how the 

TIMIT speech corpus can be used for labelled 

spectrogram patches for the CNN-AM training. The 

results whilst not surpassing the current state of the 

art are encouraging, and the usability and 

transparency of the output processing have proved 

that CNNs are a very viable way to do speech 

recognition. We have also done some initial 

experiments with NTIMIT which contains noise from 

various telephone networks and as it is telephone 

speech it has a narrower frequency range [0, 3.3kHz]. 

Typically, we have found that NTIMIT results are 

around 10% less than for TIMIT. However, we have 

found that we are within 1% of the TIMIT networks 

performance in our preliminary tests which suggests 

that the CNN approach is much more noise robust. 

In the near future, we plan to develop strategies to 

acquire large volumes of phonetic transcriptions for 

training more robust CNN-AM. We are also in the 

process of training a sequence-to-sequence language 

model to transform the phonetic output to text. 
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