
Convolutional Neural Networks for Phoneme Recognition

Cornelius Glackin1, Julie Wall2 , Gérard Chollet1, Nazim Dugan1 and Nigel Cannings1
1Intelligent Voice Ltd., London, UK

2School of Architecture, Computing and Engineering, University of East London, UK

{neil.glackin, gerard.chollet, nazim.dugan, nigel.cannings}@intelligentvoice.com, j.wall@uel.ac.uk

Keywords: Phoneme Recognition, Convolutional Neural Network, TIMIT

Abstract: This paper presents a novel application of convolutional neural networks to phoneme recognition. The

phonetic transcription of the TIMIT speech corpus is used to label spectrogram segments for training the

convolutional neural network. A window of a fixed size slides over the spectrogram of the TIMIT utterances

and the resulting spectrogram patches are assigned to the appropriate phone class by parsing TIMIT’s phone

transcription. The convolutional neural network is the standard GoogLeNet implementation trained with

stochastic gradient descent with mini batches. After training, phonetic rescoring is performed in the usual way

to map the TIMIT phone set to the smaller standard set. Benchmark results are presented for comparison to

other state-of-the-art approaches. Finally, conclusions and future directions with regard to extending the

approach are discussed.

1 INTRODUCTION

Traditionally, Automatic Speech Recognition (ASR)

involves multiple successive layers of feature

extraction to compress the amount of information

processed from the raw audio so that the training of

the ASR does not take an unreasonably long time.

However, in recent years with increases in

computational speed, the adoption of parallel

computation with General Purpose Graphic

Processing Units (GPGPUs), and advances in neural

networks (the so-called Deep Learning trend), many

researchers are replacing traditional ASR algorithms

with data-driven approaches that simply take the

audio data in its frequency form (e.g. spectrogram)

and process it with a Deep Neural Network (DNN),

or more appropriately, since speech is temporal, a

Recurrent Neural Network (RNN) that can be trained

quickly with GPUs. The RNN then converts the

spectrogram directly to phonetic symbols and in some

cases directly to text (Hannun et al., 2014).

Convolutional Neural Networks (CNNs) present

an interesting alternative to the use of DNNs and

RNNs for ASR. In this paper, we will demonstrate

how the CNN, which is known for state of the art

performance for image processing tasks, can be

adapted for learning the Acoustic Model (AM)

component of an ASR system. The AM model is

responsible for extracting acoustic features from

speech and classifying them to symbol classes.

Specifically, in the CNN Acoustic Model (CNN-AM)

presented in this paper we use spectrograms as input

and phonemes as output classes for training. We will

use the phonetic transcription of the TIMIT corpus as

the ‘ground truth’ for training, validation and testing

the CNN-AM.

2 CNN-BASED ACOUSTIC

MODELLING

A CNN is usually employed for the classification of

static images, see for example (Krizhevsky,

Sutskever and Hinton, 2012). They are inspired by

receptive fields in the mammalian brains which are

formed by neurons in the V1 processing centres of our

cortex responsible for vision; they are also present in

the cochlear nucleus of the auditory processing areas

(Shamma, 2001). The receptive field of a sensory

neuron transforms the firing of that neuron depending

on its spatial input (Paulin, 1998). Usually there is an

inhibitory region surrounding a receptive field which

suppresses any stimulus which is not altered by the

bounds of the receptive field. In this way, receptive

fields behave like feature extractors.

Figure 1: Shows the preparation of the images for GoogLeNet training. A sliding window moves over the 16kHz STFT-

based spectrogram. The sliding window is shown in grayscale, the resulting 256*256 pixel spectrogram patches are placed

into phoneme classes according to the TIMIT transcription for training, validation and testing.

Inspired by the work of Hubel and Wiesel (Hubel

and Wiesel, 1962), Fukushima developed the

Neocognitron network (Fukushima, 1980). Images

are dissected by image processing operations for the

automated extraction of features. These image

processing operations were then formalised by Yann

LeCun to be convolutions; it was LeCun that coined

the term CNN. The most notable example of which

was the LeNet 5 (LeCun et al., 1990) which was used

to learn the MNIST handwritten character data set.

LeNet 5 was the first network to use convolutions and

subsampling or pooling layers.

One of the main strengths of the CNN is that since

Ciresan’s seminal GPU implementation (Ciresan et

al., 2011) in 2011 they are now typically trained in

parallel with a GPU, and in fact are now arguably the

most common type of DNN currently being trained.

One subtlety to note is that the larger the size of the

pooling area, the more information is condensed,

which leads to slim networks that fit more easily into

GPU memory (as they are more linear). However, if

the pooling area is too large, too much information is

thrown away and predictive performance decreases.

The state of the art in CNNs is arguably the

GoogLeNet (Szegedy et al., 2015) which was the

architecture that won the ImageNet competition in

2011 (ILSVRC, 2011).

The main contribution of GoogLeNet is that it

uses inception modules. Convolutions of different

sizes are used within the module and this gives the

network the ability to cope with different types of

features. There are 1x1, 3x3, and 5x5 pixel

convolutions, they are typically an odd number so that

the kernel can be centred on top of the image pixel in

question. In the inception module there are also 1x1

convolutions which reduce the dimension of the

feature vector, ensuring that the number of

parameters to be optimised remains manageable. In

fact, this reduced number of parameters is probably

the principle contribution of the GoogLeNet CNN, it

contains 4 million parameters, whereas its fore-runner

AlexNet (Krizhevsky, Sutskever and Hinton, 2012)

has 60 million parameters to be optimised. The

pooling layer reduces the number of parameters, but

its primary function is to make the network invariant

to feature translation. The concatenation layer

constructs a feature vector for processing by the next

layer.

3 PHONEME RECOGNITION

WITH TIMIT

We used spectrograms to train a CNN to perform
speech recognition. For this, we decided to use the
TIMIT corpus to train the acoustic model (CNN) as it
has accurate phoneme transcription (Garofolo et al.,
1993). The TIMIT speech corpus was designed in
1993 as a speech data resource for acoustic phonetic
studies and has been used extensively for the
development and evaluation of ASR studies. TIMIT
contains broadband recordings of 630 speakers of

Figure 2: Distribution of phonemes within the TIMIT transcription

eight major dialects of American English, each
reading ten phonetically rich sentences. The corpus
includes time-aligned orthographic, phonetic and
word transcriptions as well as a 16-bit 16 kHz speech
waveform file for each utterance. TIMIT was
designed to further acoustic-phonetic knowledge and
ASR systems. It was commissioned by DARPA and
worked on by many sites, including Texas
Instruments (TI) and Massachusetts Institute of
Technology (MIT), hence the corpus' name. TIMIT is
the most accurately transcribed speech corpus in
existence as it contains not only transcriptions of the
text but also contains accurate timing of phones. This
is impressive given that the average English speaker
utters 14-15 phones a second. Figure 1 shows a
spectrogram and illustrates the accuracy of the word
and phone transcription for one of TIMIT’s core
training set utterances.

Spectrogram images were generated from the

TIMIT corpus and placed in classes according to

TIMIT’s phone transcription. Spectrograms were

produced for every 160 samples which for 16 kHz

encoded audio corresponds to 10 ms which is the

standard resolution to find all the acoustic features the

audio contains. The contents of the phone ground

truth are parsed and each spectrogram is labelled with

the phone to which its centre falls. Alternatively, one

could have used the centre of the ground truth interval

and calculated the Euclidean distance between the

centre of the phone interval and the window length

but it was decided that this would be making

assumptions about where the phone is centred within

the interval. It would also have required an additional

computationally expensive step in the labelling of the

spectrogram windows.

Figure 1 also illustrates the preparation of the

training, validation and testing data. The figure

illustrates how the phonetic transcription is used to

label the 256x256 greyscale spectrogram patches as

the sliding window passes over each of the TIMIT

utterances. The labelled greyscale patches are sorted

into the directory belonging to each of the 61

phoneme classes for each of the training, validation

and testing sets. In the TIMIT corpus we use the

standard core training setup. We use wide-band or

Short-Term Fourier Transform (STFT) spectrograms,

since we want to align acoustic data with phonetic

symbols with timing that is as accurate as possible.

The FFT component of the spectrogram generation

uses NVIDIA’s cuFFT library for speed. Figure 2

shows the distribution of the phones generated

according to the TIMIT phone transcription in the

training set. For readability purposes, please note that

the bars correspond to the alphabetically ordered

phones in the key below.

As can be seen from the figure, the largest class is

‘s’ and the second largest is ‘h#’ (silence). The latter

Figure 3: TIMIT stochastic gradient descent training

occurs at the beginning and end of each TIMIT

utterance. The distribution is unbalanced which of

course makes phoneme recognition by neural

network architectures challenging. The training data

is the standard TIMIT core set, and the standard test

set sub-directories DR1-4 and DR5-8 were used for

validation and testing respectively. This partitioning

resulted in 1,417,588 spectrogram patches in the

training set, as well as 222,789 and 294,101

spectrograms in the validation and testing sets

respectively.

3.1 GoogLeNet Training and
Inferencing

The GoogLeNet implementation was trained with
Stochastic Gradient Descent (SGD). Before the Deep
Learning boom, gradient descent was usually
performed by using the full set of training samples
(full batch) to determine the next update of the
parameters. The problem with this approach is that it
is not parallelizable, and hence cannot by
implemented efficiently on GPU. SGD does away
with this approach by computing the gradient of the
parameters on a single or few (mini batch) training
samples. For large sizes of datasets, such as this one,
SGD performs qualitatively as well as batch methods
but outperforms them in computational time.

A stepped learning rate was used with a 256 data

sample mini batch size, Figure 3 shows the training

accuracy. The network outputs the phone class

prediction at three different points in the network

architecture (loss1, loss2, and loss3). The NVIDIA

DIGITS implementation employed also reports the

top-1 and top-5 predictions for each of those loss

(accuracy) outputs. loss3 (the last network output)

reports the highest accuracy which is 71.65% for

classification of the 61 phones. For top-5 the accuracy

is reported as 96.27%, which means that the correct

phone was listed in the top five output classifications

of the network output, this is interesting because as

mentioned earlier each spectrogram window contains

4 to 5 phones on average, and preliminary tests

confirmed that in the majority of cases the other

phones were indeed correctly being identified.

The network is trained using the training data (1.4

million spectrograms) and it uses the validation set

(approximately 223 thousand spectrograms) to check

training progress. Once this is done there is a separate

testing set (approximately 294 thousand images) that

can be used to test the system, and the standard test

set sub-directories DR1-4 and DR5-8 were used for

validation and testing respectively. The validation set

is used to check the progress of the training of the

network. After each iteration of the training within

which training data has been used to learn the network

weights, the validation data checks that the accuracy

of this latest iteration of the trained system is still

improving. The validation data is kept separate from

the training data and is only used to monitor the

Figure 4: All network outputs for a test utterance

progress of the training, and to stop training if

overfitting occurs. The highest value of the validation

accuracy is used as the final system.

As can be seen in Figure 3, this is at epoch

(iteration) 20, this is the final version of the trained

system. We then use the trained system and perform

inferencing over the test set, Figure 4 shows an

example of the prediction the system makes with a

single sample of this previously unseen test sample.

The output of the inferencing process contains many

duplicates of phones due to the small increments of

the sliding window position.

3.2 Post-Processing and Rescoring

Hence, an additional post-processing script was

written to remove the duplicates. It is the convention

in the literature when reporting results for the TIMIT

corpus to re-score the results for a smaller set of

phones (Lopes and Perdigao, 2011). The phoneticians

that scored TIMIT used 61 phone symbols. Many of

the phones in TIMIT are not conventionally used by

other speech recognition systems. For example, there

are phone symbols called closures e.g. pcl, kcl, tcl,

bcl, dcl, and gcl which simply refer to the closing of

the mouth before release of closure resulting in the p,

k, t, b, d, or g phones being uttered respectively. Most

acoustic models map these to the silence symbol ‘h#’.

Post-processing code was written to automatically

remap the output of model inferencing with the new

phone set. The results for the test set were then

generated with the new remapping and the accuracy

increased from 71.65% (shown in Figure 3) to

77.44% after rescoring.

Whilst not quite in excess of the 82.3% result

reported by Alex Graves (Graves, Mohamed and

Hinton, 2013) with bidirectional LSTMs, or the DNN

with stochastic depth (Chen, 2016) which achieved a

competitive accuracy of 80.9%, it is still comparable.

Zhang et al., (Zhang, 2016) is a RNN-CNN hybrid

based on MFCC features. This novel approach uses

conventional MFCC feature extraction with an RNN

layer before a deep CNN structure. The hybrid system

achieved an impressive 82.67% accuracy. It is not

surprising to us that the current state of the art is with

a form of CNN (Tóth, 2015) with an 83.5% test

accuracy. Notably, a team from Microsoft recently

presented a fusion system that achieved the state of

the art accuracy for the Switchboard corpus. Each of

the three ensemble members in the fusion system

used some form of CNN architecture, particularly at

the feature extraction part of the networks. It is

becoming clear that CNNs are demonstrating

superiority over RNNs for acoustic modelling.

Each spectrogram window typically contains 4 or

5 phones per 256 ms window since the average

speaker utters 15 phones per second. The pooling

layers in the CNN-AM provide flexibility in where

the feature under question (phones in this case) can be

within the 256*256 image. This is useful for different

orientations and scales of images in image

classification and is also particularly useful for

phoneme recognition where it is likely there will exist

small errors in the training transcription.
During inferencing (testing), the CNN-AM makes

probabilistic predictions of all the phone classes for

each of the 294,101 test spectrograms. This capability
is provided by the use of softmax nodes at three
successive output stages of the network (Loss 1 to 3).
We carried out some simple graphical analysis of the
output confidences of all the phones, employing
colour coding of the outputs for easier readability of
the results. This graphical analysis is presented in
Figure 4, and as can be seen from the loss-3
(accuracy), the network makes crisp classifications of
usually only a single phone at a time. Given that this
is unseen data, and that the comparison with the
ground truth is good, we are confident that this
network is an effective way to train an acoustic
model.

4 CONCLUSIONS

We have presented a novel application of CNNs to

phoneme recognition. We have shown how the

TIMIT speech corpus can be used for labelled

spectrogram patches for the CNN-AM training. The

results whilst not surpassing the current state of the

art are encouraging, and the usability and

transparency of the output processing have proved

that CNNs are a very viable way to do speech

recognition. We have also done some initial

experiments with NTIMIT which contains noise from

various telephone networks and as it is telephone

speech it has a narrower frequency range [0, 3.3kHz].

Typically, we have found that NTIMIT results are

around 10% less than for TIMIT. However, we have

found that we are within 1% of the TIMIT networks

performance in our preliminary tests which suggests

that the CNN approach is much more noise robust.

In the near future, we plan to develop strategies to

acquire large volumes of phonetic transcriptions for

training more robust CNN-AM. We are also in the

process of training a sequence-to-sequence language

model to transform the phonetic output to text.

REFERENCES

Chen, D., Zhang, W., Xu, X., & Xing, X., 2016. Deep

networks with stochastic depth for acoustic modelling.

In Signal and Information Processing Association

Annual Summit and Conference (APSIPA), pp. 1-4.

Ciresan, D.C., Meier, U., Masci, J., Gambardella, L.,

Schmidhuber, J., 2011. Flexible, high performance

convolutional neural networks for image

classification. In Int Joint Conf Artificial Intelligence

(IJCAI), vol. 22, no. 1, pp. 1237-1242.

Fukushima, K., 1980. Neocognitron: A self-organizing

neural network model for a mechanism of pattern

recognition unaffected by shift in position. In Biol

Cybern, vol. 36, no. 4, pp. 193-202.

Garofolo, J., Lamel, L., Fisher, W., Fiscus, J., Pallett, D.,

Dahlgren, N., Zue, V., 1993. TIMIT Acoustic-

Phonetic Continuous Speech Corpus LDC93S1. Web

Download, Philadelphia: Linguistic Data Consortium.

Graves, A., Mohamed, A., Hinton, G., 2013. Speech

recognition with deep recurrent neural networks. In

IEEE Int Conf Acoust Speech Signal Process

(ICASSP), pp. 6645-6649.

Hannun, A., Case, C., Casper, J., Catanzaro, B., Diamos,

G., Elsen, E., Prenger, R. et al., 2014. Deep speech:

Scaling up end-to-end speech recognition. In arXiv

preprint arXiv:1412.5567.

Hubel, D.H., Wiesel, T.N., 1962. Receptive fields,

binocular interaction and functional architecture in

cat's visual cortex. In J Physiol (London), vol. 160, pp.

106-154.

ImageNet Large Scale Visual Recognition Challenge

(ILSVRC), 2011, http://image-

net.org/challenges/LSVRC/2011/index

Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012.

Imagenet classification with deep convolutional neural

networks. In Adv Neural Inf Process Syst (NIPS), pp.

1097-1105.

LeCun, Y., Boser, B., Denker, J.S., Henderson, D.,

Howard, R.E., Hubbard, W., Jackel, L.D., 1990.

Handwritten digit recognition with a back-propagation

network. In Adv Neural Inf Process Syst (NIPS), pp.

396-404.

Lopes, C., Perdigao, F., 2011. Phone recognition on the

TIMIT database. In Speech Technologies/Book 1, pp.

285-302.

NVIDIA DIGITS Interactive Deep Learning GPU

Training System, https://developer.nvidia.com/digits

Paulin, M.G., 1998. A method for analysing neural

computation using receptive fields in state space. In

Neural Networks, vol. 11, no. 7, pp. 1219-1228.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,

Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich,

A., 2015. Going deeper with convolutions. In IEEE

Conf Computer Vision Pattern Recognition (CVPR),

pp. 1-9.

Shamma, S., 2001. On the role of space and time in

auditory processing. In Trends in Cognitive Sciences,

vol. 5, no. 8, pp. 340–348.

Tóth, L., 2015. Phone recognition with hierarchical

convolutional deep maxout networks. In EURASIP

Journal on Audio, Speech, and Music Processing, vol.

1 , pp.1-13.

Xiong, W., Droppo, J., Huang, X., Seide, F., Seltzer, M.,

Stolcke, A., Yu, D. and Zweig, G., 2017. The

Microsoft 2016 conversational speech recognition

system. In IEEE Int. Conf. on Acoustics, Speech and

Signal Processing (ICASSP), pp. 5255-5259.

Zhang, Z., Sun, Z., Liu, J., Chen, J., Huo, Z., Zhang, X.,

2016. Deep Recurrent Convolutional Neural Network:

Improving Performance For Speech Recognition,

arXiv 1611.07174.

