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Abstract. The extraction of �bers from dMRI data typically produces a
large number of �bers, it is common to group �bers into bundles. To this
end, many specialized distance measures, such as MCP, have been used
for �ber similarity. However, these distance based approaches require
point-wise correspondence and focus only on the geometry of the �bers.
Recent publications have highlighted that using microstructure measures
along �bers improves tractography analysis. Also, many neurodegenera-
tive diseases impacting white matter require the study of microstructure
measures as well as the white matter geometry. Motivated by these, we
propose to use a novel computational model for �bers, called functional
varifolds, characterized by a metric that considers both the geometry
and microstructure measure (e.g. GFA) along the �ber pathway. We use
it to cluster �bers with a dictionary learning and sparse coding-based
framework, and present a preliminary analysis using HCP data.

1 Introduction

Recent advances in di�usion magnetic resonance imaging (dMRI) analysis have
led to the development of powerful techniques for the non-invasive investigation
of white matter connectivity in the human brain. By measuring the di�usion
of water molecules along white matter �bers, dMRI can help identify connec-
tion pathways in the brain and better understand neurological diseases related
to white matter [6]. Since the extraction of �bers from dMRI data, known as
tractography, typically produces a large number of �bers, it is common to group
these �bers into larger clusters calledbundles. Clustering �bers is also essential
for the creation of white matter atlases, visualization, and statistical analysis of
microstructure measures along tracts [12].

Most �ber clustering methods use specialized distance measures, such as
Mean Closest Points (MCP) distance [4, 11]. However, these distance-based ap-
proaches require point-wise correspondence between �bers and only consider
�ber geometry. Another important aspect for white matter characterization
is the statistical analysis of microstructure measures. As highlighted in recent
publications, using microstructure measures along �bers improves tractographic



analysis [3, 10, 12, 15{17]. Motivated by these, we propose to use a novel compu-
tational model for �bers, called functional varifolds, characterized by a metric
that considers both the geometry and microstructure measure (e.g. generalized
fractional anisotropy) along �ber pathways.

Motivation for this work comes from the fact that the integrity of white
matter is an important factor underlying many cognitive and neurological dis-
orders. In vivo, tissue properties may vary along each tract for several reasons:
di�erent populations of axons enter and exit the tract, and disease can strike at
local positions within the tract. Hence, understanding di�usion measures along
each �ber tract (i.e., tract pro�le) may reveal new insights into white matter
organization, function, and disease that are not obvious from mean measures of
that tract or from the tract geometry alone [3, 17]. Recently, many approaches
have been proposed for tract based morphometry [12], which perform statis-
tical analysis of microstructure measures along major tracts after establishing
�ber correspondences. While studies highlight the importance of microstructure
measures, most approaches either consider the geometry or signal along tracts,
but not both. The intuitive approach would be to consider microstructure signal
during clustering also. However, this has been elusive due to lack of appropriate
framework.

As a potential solution, we explore a novel computational model for �bers,
called functional varifolds [1], which is a generalization of the varifolds framework
[2]. The advantages of using functional varifolds are as follows. First, functional
varifolds can model the �ber geometry as well as signal along the �bers. Also,
it does not require pointwise correspondences between �bers. Lastly, �bers do
not need to have the same orientation as in the framework of currents [5]. We
test the impact of this new computational model on a �ber clustering task, and
compare its performance against existing approaches for this task.

As clustering method, we reformulate the dictionary learning and sparse cod-
ing based framework proposed in [8, 7, 9]. This choice of framework is driven by
its ability to describe the entire data-set of �bers in a compact dictionary of
prototypes. Bundles are encoded as sparse non-negative combinations of mul-
tiple dictionary prototypes. This alleviates the need for explicit representation
of a bundle centroid, which may not be de�ned or may not represent an actual
object. Also, sparse coding allows assigning single �bers to multiple bundles,
thus providing a soft clustering.

The contributions of this paper are threefold: 1) a novel computational model
for modeling both �ber geometry and signal along �bers, 2) a generalized cluster-
ing framework, based on dictionary learning and sparse coding, adapted to the
computational models, and 3) a comprehensive comparison of fully-unsupervised
models for clustering �bers.

2 White matter �ber segmentation using functional
varifolds

2.1 Modeling �bers using functional varifolds

In the framework of functional varifolds [1, 2], a �ber X is assumed to be a
polygonal line ofP segments described by their center pointxp 2 R3 and tangent
vector � p 2 R3 centered at xp and of length cp (respectively, yq 2 R3, 
 q 2 R3

and dq for a �ber Y with Q segments). Let f p and gp be the signal values
at center points xp and yq respectively, and ! the vector �eld belonging to a



reproducing kernel Hilbert space (RKHS) W � . Then the �bers X and Y can be
modeled based on functional varifolds as:V( X;f ) (! ) �

P P
p=1 ! (xp ; � p ; f p )cp and

V( Y;g ) (! ) �
P Q

q=1 ! (yq; 
 q ; gp )dq. More details can be found in [1].
The inner product metric between X and Y is de�ned as:

hV( X;f ) ; V( Y;g ) i W � =
PX

p=1

QX

q=1

� f (f p ; gq)� x (xp ; yq)� � (� p ; 
 q )cpdq (1)

where � f and � x are Gaussian kernels and� � is a Cauchy-Binet kernel. This can
be re-written as:

hV( X;f ) ; V( Y;g ) i W � =
PX

p=1

QX

q=1

exp
� �k f p � gqk2

� 2
M

�
exp

� �k xp � yqk2

� 2
W

�� � p
T 
 q

cp dq

� 2

cp dq

(2)
where � M and � W are kernel bandwidth parameters. For varifolds [2], a com-
putational model using only �ber geometry and used for comparison in the
experiments, we drop the signal values at center points. Thus, the varifolds-
based representation of �bers will be:VX (! ) �

P P
p=1 ! (xp ; � p )cp and VY (! ) �

P Q
q=1 ! (yq; 
 q )dq. Hence, the inner product is de�ned as:

hVX ; VY i W � =
PX

p=1

QX

q=1

exp
� �k xp � yqk2

� 2
W

�� � p
T 
 q

cp dq

� 2

cp dq: (3)

2.2 Fiber Clustering using Dictionary learning and sparse coding

For �ber clustering, we extend the dictionary learning and sparse coding based
framework presented in [8, 7, 9]. LetVT be the set of n �bers modeled using
functional varifolds, A 2 Rn � m

+ be the atom matrix representing the dictionary
coe�cients for each �ber belonging to one of the m bundles, and W 2 Rm � n

+

be the cluster membership matrix containing the sparse codes for each �ber.
Instead of explicitly representing bundle prototypes, each bundle is expressed as
a linear combination of all �bers. The dictionary is then de�ned as D = VT A.
Since this operation is linear, it is de�ned for functional varifolds.

The problem of dictionary learning using sparse coding [8, 7] can be expressed
as �nding the matrix A of m bundle prototypes and the �ber-to-bundle assign-
ment matrix W that minimize the following cost function:

arg min
A;W

1
2

jjVT � VT AW jj 2
W � ; subject to: jjw i jj 0 � Smax : (4)

Parameter Smax de�nes the maximum number of non-zero elements inw i (i.e.,
the sparsity level), and is provided by the user as input to the clustering method.

An important advantage of using the above formulation is that the recon-
struction error term only requires inner product between the varifolds. Let
Q 2 Rn � n be the Gram matrix denoting inner product between all pairs of
training �bers, i.e., Qij = hVX i ;f i ; VX j ;f j i W � . Matrix Q can be calculated once
and stored for further computations. The problem then reduces to linear algebra
operations involving matrix multiplications. The solution of Eq. (4) is obtained
by alternating between sparse coding and dictionary update [8]. The sparse codes



of each �ber can be updated independently by solving the following sub-problem:

arg min
w i 2 Rm

+

1
2

jjVX i � VT Aw i jj 2
W � ; subject to: jjw i jj 0 � Smax : (5)

which can be re-written as:

arg min
w i 2 Rm

+

1
2

�
Q(i; i ) + w >

i A> QAw i � 2Q(i; :)Aw i

�
; s.t.: jjw i jj 0 � Smax : (6)

The non-negative weightsw i can be obtained using the kernelized Orthogonal
Matching Pursuit (kOMP) approach proposed in [8], where the most positively
correlated atom is selected at each iteration, and the sparse weightsw s are
obtained by solving a non-negative regression problem. Note that, since the size
of w s is bounded by Smax , it can be otained rapidly. Also, in case of a large
number of �bers, the Nystrom method can be used for approximating the Gram
matrix [7]. For dictionary update, A is recomputed by applying the following
update scheme, until convergence:

A ij  A ij

(QW > ) ij

(QAWW > ) ij

; i = 1 ; : : : ; n; j = 1 ; : : : ; m: (7)

3 Experiments

Data: We evaluate di�erent computational models on the dMRI data of 10 un-
related subjects (6 females and 4 males, age 22-35) from the Human Connectome
Project (HCP) [14]. DSI Studio [18] was used for the signal reconstruction (in
MNI space, 1mm), and streamline tracking employed to generate 50; 000 �bers
per subject (minimum length 50 mm, maximum length 300 mm). Generalized
Fractional Anisotropy (GFA), which extends standard fractional anisotropy to
orientation distribution functions, was considered as along-tract measure of mi-
crostructure. While we report results obtained with GFA, any other along-tract
measure may have been used.

Parameter impact: We performed k-means clustering and manually selected
pairs of �bers from clusters most similar to major bundles. We then modeled
these �bers using di�erent computational models, and analyzed the impact of
varying the kernel bandwidth parameters. The range of these parameters were
estimated by observing the values of distance between centers of �ber segments
and di�erence between along tract GFA values for selected multiple pairs of
�bers. Figure 1 (top left) shows GFA color-coded �bers for 3 pairs corresponding
to a) right Corticospinal tract { CST (R), b) Corpus Callosum { CC, and c) right
Inferior Fronto-Occipital Fasciculus { IFOF (R). Cosine similarity (in degrees) is
reported for the �ber pairs modeled using varifolds (Var) and functional varifolds
(fVar), for � W = 7 mm and � M = 0.01.

Figure 1 (top left) shows GFA color-coded �ber pairs. The color-coded vi-
sualization re
ect the variation of �ber geometry, microstructure measure (i.e.
GFA) along �ber, and di�erence in GFA along �ber for the select �ber pairs.
This visualization of variation and di�erence in GFA values along �bers support
our hypothesis that modeling along tract signal along with geometry provides
additional information. The change in cosine similarity for CC from 45:8 degrees



Fig. 1: Along-�ber GFA visualization and cosine similarity between pairs of �bers
from three prominent bundles: a) CST (R), b) CC, c) IFOF (R), using frame-
work of varifolds (Var) and functional varifolds (fVar) (top left), and Comparing
variation of cosine similarity for the select �ber pairs over kernel bandwidth
parameters � W and � M for the framework of functional varifolds (top right:
CST (R), middle left: CC, middle right: IFOF (R)); Impact of � M on clustering
consistency (measured using Average Silhouette) form = 100; 125; 150 for func-
tional Varifolds vs Varifolds (bottom left), and functional Varifolds vs GFA only
(bottom right)

(using varifolds) to 66:3 degrees (using functional varifolds) while for CST (R)
from 45:6 degrees to 72:4 degrees, re
ect more drop in cosine similarity if along
tract signal pro�les are not similar. This shows that functional varifolds imposes
penalty for di�erent along �ber signal pro�les.

Figure 1 also compares the impact of varying the kernel bandwidth parame-
ters for functional varifolds using similarity angle between pairs of these selected
�bers (top right: CST (R), bottom left: CC, bottom right: IFOF (R)). We show
variation over � W = 3, 5, 7, 9 and 11 (mm) and � M = 0.001, 0.005, 0.01, 0.05,
and 0.1.

Comparing the parameter variation images in Figure 1 we observe that the
cosine similarity values over the parameter space show similar trends for all 3
pairs of �bers. This observation allows us to select a single pair of parameter



Model m =100 m =125 m =150

fVar 0.3624 0.3451 0.3314
Var 0.3356 0.3089 0.2905
GFA -0.0579 -0.0584 -0.0610
MCP 0.3240 0.2888 0.2619

Fig. 2: Mean silhouette obtained with Varifolds, Varifolds, GFA, and MCP, com-
puted for varying a number of clusters, over 10 subjects and 3 seed values (left) .
Detailed results obtained for 10 subjects usingm=100 (right ).

values for our experiments. We have used� W = 7 mm and � M = 0 :01 for
our experiments based on the cosine similarity values in Figure 1. The smaller
values for � W (< 7mm) and � M (< 0:01mm) will make the current �ber pairs
orthogonal while for larger values we lose the discriminative power as all �ber
pairs will have very high similarity.

Quantitative analysis: We report a quantitative evaluation of clusterings
obtained using as functional varifolds (fVar), varifolds (var), MCP and GFA
computational model. The same dictionary learning and sparse coding frame-
work is applied for all computational models. For each of the 10 HCP subjects,
we compute the Gramian matrix using 5; 000 �bers randomly sampled over the
full brain for 3 seed values. The MCP distancedij is calculated between each
�ber pair ( i; j ), as described in [4], and the Gramian matrix obtained using a
radial basis function (RBF) kernel: kij = exp

�
� 
 � d2

ij

�
. Parameter 
 was set

empirically to 0:007 in our experiments.
Since our evaluation is performed in an unsupervised setting, we use the

silhouette measure [11, 13] to assess and comparing clustering consistency. Sil-
houette values, which range from� 1 to 1, measure how similar an object is to its
own cluster (cohesion) compared to other clusters (separation). Figure 1 (bot-
tom row) shows impact of � M on clustering consistency for functional Varifolds
w.r.t Varifolds and GFA only. Figure 2 (right) gives the average silhouette for m
= 100, 125, and 150 clusters, computed over 10 subjects and 3 seed values. The
impact of using both geometry and microstructure measures along �bers is eval-
uated quantitatively by comparing clusterings based on functional varifolds with
those obtained using only geometry (i.e., varifolds, MCP), and only along-�ber
signal (i.e., GFA). As can be seen, using GFA alone leads to poor clusterings, as
re
ected by the negative silhouette values. Comparing functional varifolds with
varifolds and GFA, we observe a consistently improved performance for di�erent
numbers of clusters. To further validate this hypothesis, we also report the aver-
age silhouette (over 3 seed values) obtained for 10 subjects usingm = 100. These
results demonstrate that functional varifolds give consistently better clustering,
compared to other computational models using the same framework1.

Qualitative visualization: Figure 3 (top row) shows the dictionary learned for
a single subject (m = 100) using functional varifolds (fVar), varifolds (Var), and
MCP distance. For visualization purposes, each �ber is assigned to a single clus-
ter, which is represented using a unique color. The second and third rows of the
1 Silhouette analyzes only clustering consistency, not the along-�ber signal pro�le.



fVar Var MCP

Fig. 3: Full clustering visualization ( m = 100, top row), single cluster visualiza-
tion (mid row), and GFA based color coded visualization of the selected single
cluster (bottom row). Using following computational models for �bers: functional
varifolds (left column), varifolds (middle column), and MCP distance (right col-
umn). Superior axial views. Note: (top row) each �gure has a unique color code.

�gure depict a speci�c cluster and its corresponding GFA color-coded pro�les.
We observe that all three computational models produce plausible clusterings.
From the GFA pro�les of the selected cluster (with correspondence across com-
putational models), we observe that functional varifolds enforce both geometric
as well asalong-tract signal pro�le similarity. Moreover, the clustering produced
with varifolds or MCP (i.e., using only geometric properties of �bers), are similar
to one another and noticeably di�erent from that of functional varifolds.

4 Conclusion

A novel computational model, called functional varifolds, was proposed to model
both geometry and microstructure measure along �bers. We considered the task
of �ber clustering and integrated our functional varifolds model within frame-
work based on dictionary learning and sparse coding. The driving hypothesis that
combining along-�ber signal with �ber geometry helps tractography analysis was
validated quantitatively and qualitatively using data from Human Connectome
Project. Results show functional varifolds to yield more consistent clusterings
than GFA, varifolds and MCP. While this study considered a fully unsupervised
setting, further investigation would be required to assess whether functional var-
ifolds augment or aid the reproducibility of results.
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