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Model-based STFT phase recovery

for audio source separation
Paul Magron, Roland Badeau, Senior Member, IEEE, and Bertrand David, Member, IEEE

Abstract—For audio source separation applications, it is com-
mon to estimate the magnitude of the Time-Frequency (TF)
representation of each source. In order to recover a time-domain
signal from a spectrogram for instance, it then becomes necessary
to recover the phase of the corresponding complex-valued Short-
Time Fourier Transform (STFT). Most authors in this field
choose a Wiener-like filtering approach which boils down to
using the phase of the original mixture. In this paper, a different
standpoint is adopted. Many music events are partially composed
of slowly varying sinusoids and the STFT phase increment of
those frequency components takes a specific form. This allows
phase recovery by an unwrapping technique once a short-term
frequency estimate has been obtained. Herein, a whole iterative
source separation procedure is proposed which builds upon these
results. It is tested on a variety of data, both synthetic and
realistic, and also with different source separation scenarios,
oracle or non oracle. In terms of SIR, SAR and SDR, the method
achieves better performance than consistency-based approaches.
To complete the experimental analysis, sound examples are
provided which allow the reader to assess the interest of the
method regarding the improvement of sound quality.

Index Terms—Phase recovery, sinusoidal modeling, linear un-
wrapping, audio source separation.

I. INTRODUCTION

A
variety of music signal processing techniques acts in

the Time-Frequency (TF) domain, since it provides a

meaningful representation of audio signals. For instance, the

family of techniques based on Nonnegative Matrix Factoriza-

tion (NMF) [1] is often applied to nonnegative TF representa-

tions, such as the magnitude of the STFT. It has been shown

promising for various musical applications, such as automatic

transcription [2] and source separation [3], [4].

However, when it comes to resynthesizing time signals, ob-

taining the phase of the corresponding complex-valued STFT

is necessary. In the source separation framework, a common

practice consists in applying a Wiener-like filtering [3] to the

original mixture: the phase of the mixture is then given to

each extracted component. Alternatively, a consistency-based

approach can be used for phase recovery [5]: a complex-

valued matrix is iteratively computed in order to maximize

its consistency, that is, to bring it as close as possible to

the STFT of a time signal. It has however been pointed

out [6] that consistency-based approaches provide poor results

in terms of audio quality. Besides, Wiener filtering fails to

provide good results when sources overlap in the TF domain.

There were some attempts [7]–[10] to overcome the limitations
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of those two approaches by combining them in a unified

framework. Consistent Wiener filtering [10] has proved to

be the most promising candidate for this task, although it

is computationally costly. Thus, the phase recovery of STFT

components is still a challenging and open issue [11], [12].

Another approach to reconstruct the phase from a spectro-

gram is to use a phase model based on the observation of

fundamental signals that are mixtures of sinusoids [13]. This

family of techniques exploits the natural relationship between

adjacent TF bins that originates from signal modeling. Such an

approach has been used in the phase vocoder algorithm [14],

where it is mainly dedicated to time stretching and pitch

shifting, but requires the phase of the original STFT. More re-

cently, it has been applied to speech signal reconstruction [15],

[16] and source separation [17] based on a Complex NMF

(CNMF) framework, which is dedicated to jointly estimating

both the magnitudes and phases [18]. Although promising,

these techniques are limited to harmonic and stationary signals,

which means that they consider mixtures of sinusoids whose

frequencies are integer multiples of a fundamental frequency

that is constant over time. Besides, the phase-constrained

CNMF approach [17] requires that the fundamental frequen-

cies and numbers of partials are known.

Drawing on a preliminary work [19], we propose in this

paper a generalization of this approach that consists in ex-

ploiting the phase of mixtures of sinusoids. We then obtain

an algorithm which unwraps the phases over time frames,

ensuring the temporal coherence of the signal. Our technique,

called the Phase Unwrapping (PU) algorithm, is suitable

for a variety of pitched music signals, such as piano or

guitar sounds, but percussive signals are outside the scope

of this research. A local estimation (at each time frame) of

frequencies extends the validity of this technique to non-

stationary signals such as cellos and speech. This enables us

to overcome the limitations of the previous approaches [15],

[17] that were restricted to harmonic and stationary signals. We

further introduce a novel source separation procedure which

exploits the prior information about the phase that is provided

by the PU algorithm. Unlike CNMF methods, this technique

assumes that the magnitude spectrograms of the sources are

estimated beforehand (e.g. after a preliminary NMF [1]), and

only tackles the phase recovery issue. This technique is tested

on a variety of realistic music signals, which points out its

potential for an audio source separation task.

This paper is organized as follows. Section II describes

the most commonly used phase reconstruction techniques in

audio. Section III presents the PU algorithm, and Section IV

introduces an audio source separation framework which uses

http://arxiv.org/abs/1608.01953v2
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Time (s)

Fig. 1. The concept of inconsistency, which measures the difference between
X and F(X).

this technique. Section V experimentally validates the potential

of the PU algorithm, notably for an audio source separation

task. Finally, section VI draws some concluding remarks.

II. RELATION TO PRIOR WORK

Much research in audio has focused on the processing

of nonnegative TF representations, such as magnitude or

power spectrograms. Indeed, the phase recovery issue has

been considered of minor importance, especially in the speech

enhancement community [20]. However, some recent studies

pointed out its importance [21], [22]. Thus, it has become a

growing topic of interest [11], [12]. In this section, we describe

the main phase reconstruction approaches that are specifically

used for audio applications. We highlight the limitations of

these techniques, and we show how the proposed approach

can overcome some of their issues.

A. Consistency-based approaches

A common approach for recovering the phase of an esti-

mated complex matrix X ∈ CF×T consists in minimizing its

inconsistency I(X) [23], defined as follows:

I(X) =
∑

f,t

(X −F(X))2(f,t) , (1)

where F = STFT ◦ STFT−1 and STFT−1 denotes

the inverse STFT, computed with a standard overlap-add

method [23]. It is illustrated in Fig. 1.

The Griffin Lim (GL) algorithm [5] consists in iteratively

applying the operator F to a complex matrix, while enforcing

the magnitude to be constant over iterations. Various strategies

have been proposed in order to increase the speed and effi-

ciency of this procedure: explicit consistency constraints [23],

real-time implementation [24], new formulation [25], better

initialization [26], [27] etc. Consistency is an important prop-

erty of the STFT since it is closely related [23] to its redun-

dancy property: indeed, the STFT is generally computed with

overlapping analysis windows. However, it has appeared [6]

that a direct optimization of the inconsistency criterion may

not necessarily be the best way of accounting for it, since it

does not lead to satisfactorily sounding signals.
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Fig. 2. Spectrogram of a synthetic signal composed of two overlapping
sources (left). Real part of several partials in the 430 Hz frequency channel:
original mixture (upper right), original first component (middle right) and
estimated first component with Wiener filtering (lower right). The beating
phenomenon due to the TF overlap is captured in the mixture phase and thus
retrieved in the components when applying Wiener filtering.

B. Time-frequency masking

Alternatively, in a source separation framework, where the

phase of the mixture is known, it is usual to apply a soft mask

to the TF representation of the mixture, which leads to assign-

ing the phase of the mixture to each extracted component. Let

X be the complex-valued STFT of a mixture of K sources. Let

us assume that an estimate Vk of the magnitude spectrogram

(or equivalently of the power spectrum V ⊙2
k , where .⊙ denotes

the element-wise matrix power) is available for each source

k ∈ {1, ...,K}. For instance, such estimate can be obtained

by a preliminary NMF [1]. The Wiener filtering technique

provides the following complex component estimates:

X̂k =
V ⊙2
k

∑K

l=1 V
⊙2
l

⊙X, (2)

where ⊙ (resp. .
.
) denotes the element-wise matrix multipli-

cation (resp. division). Though this technique is optimal in a

least-square sense [28], it fails to provide good results when

the sources overlap in the TF domain [6], as illustrated in

Fig. 2.

C. Consistent Wiener filtering

In order to overcome the limitations of both Wiener filtering

and consistency-based approaches, there were attempts [7]–

[10] to combine them in a source separation framework.

In [7], the error between the mixture and the GL-estimates

X̂k is distributed over the sources in order to enforce the

mixing constraint X =
∑

k X̂k. In [8], [9], the TF domain

is decomposed into regions depending on whether a given

source is dominant (in which case it is assigned the mixture

phase) or if it overlaps with other sources (in which case the

GL algorithm is locally applied). Finally, consistent Wiener

filtering [10] outperforms the previous approaches, although it

is computationally costly.

D. Sinusoidal models

Consistency-based approaches rely on properties of the

complex representation itself: it is based on overlapping time

frames, which introduces an amount of redundancies from one

frame to another. Conversely, other techniques take the phase

relationships induced by the characteristics of the signals into
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account. For instance, the sinusoidal model of MacAulay and

Quatiery [13] has been widely used in the literature. It is

exploited in the phase vocoder algorithm [14] and it has also

been popular in the speech enhancement community [15], [22],

[29], where the sinusoids are assumed to be in a harmonic

relationship. The fundamental frequency is estimated by means

of the PEFAC algorithm [30], which is only suitable for

harmonic mixtures. Then the estimation error is propagated

and amplified through partials and time frames.

We proposed in [19] a generalization of this approach

in order to extend its validity to non-stationary and non-

harmonic signals, while avoiding propagating the frequency

estimation error over partials and time frames. Besides, it

did not require any prior knowledge (such as the numbers

of partials) about the components other than a magnitude

estimate. In this paper, we propose a detailed description of

this algorithm and an extensive experimental evaluation that

complete the preliminary work [19]. In particular, we assess

the potential of our method when the magnitude spectrograms

are no longer equal to the ground truth. In addition, a novel

source separation framework is introduced, in which this PU

technique is exploited, and it is compared to the consistent

Wiener filtering [10].

However, this paper does not address the problem of onset

phase reconstruction. Indeed, as it will be shown in the

next Section, the PU algorithm relies on a recursive relation

between adjacent time frames, therefore it must be initialized

within onset frames with another technique. The interested

reader can refer to several other papers (e.g. [19], [31]) that

address this issue.

III. THE PHASE UNWRAPPING ALGORITHM

In this section, we detail the sinusoidal model that leads to

the PU algorithm.

A. Sinusoidal modeling

Let us consider a sinusoid of normalized frequency ν0 ∈
]− 1

2 ;
1
2 ], initial phase φ0 ∈]− π;π] and amplitude A0 > 0:

∀n ∈ Z, x(n) = A0e
2iπν0n+iφ0 . (3)

The expression of the STFT is, for each frequency channel

f ∈ {0, ..., F −1} (with F the number of frequency channels)

and time frame t ∈ Z:

X(f, t) =

Nw−1
∑

n=0

x(n+ tS)w(n)e−2iπ f
F
n, (4)

where w is an Nw sample-long analysis window and S

is the time shift (in samples) between successive frames.

For every normalized frequency ν ∈] − 1
2 ;

1
2 ], let W (ν) =

∑Nw−1
n=0 w(n)e−2iπνn be the discrete time Fourier transform

of the analysis window. Then the STFT of the sinusoid (3) is:

X(f, t) = A0e
2iπν0St+iφ0W

(

f

F
− ν0

)

. (5)

The phase of the STFT is then:

φ(f, t) = ∠X(f, t) = φ0 + 2πSν0t+ ∠W

(

f

F
− ν0

)

, (6)
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Fig. 3. Example of a spectrum (solid line) decomposed into regions of
influence (dashed lines).

where ∠ denotes the complex argument. This leads to a

relationship between two successive time frames:

φ(f, t) = φ(f, t− 1) + 2πSν0. (7)

B. Mixtures of sinusoids

When the signal x is a mixture of P sinusoids, (5) becomes:

X(f, t) =
P
∑

p=1

Ape
2iπνpSt+iφp,0W

(

f

F
− νp

)

. (8)

We now assume that there is at most one active sinusoid

per frequency channel and per source. Drawing on [14], we

propose to decompose the whole frequency range into several

regions called regions of influence. A region of influence

Ip ⊂ {0, ..., F − 1} corresponds to the set of frequency

channels where the STFT X is mainly determined by the

p-th sinusoidal partial (i.e. the contributions of the other

partials are negligible). Within a time frame t, we consider the

magnitude spectrum v(f) = |X(f, t)|. The frequency channels

corresponding to the peaks of v are denoted fp. We define the

boundaries of the regions of influence as follows:

∀p ∈ {2, ..., P}, lp =
v(fp)fp−1 + v(fp−1)fp

v(fp) + v(fp−1)
, (9)

and l1 = 0, lP+1 = F . Thus, the p-th region of influence is:

Ip = {lp, ..., lp+1 − 1}. (10)

Such a definition ensures that the set of regions of influence

forms a partition of the whole frequency range (they are pair-

wise disjoint and they cover the whole interval {0, ..., F−1}),
as illustrated in Fig. 3. Note that other definitions of regions

of influence exist, such as choosing their boundaries as the

channels of lowest energy between the peaks [14].

Now, if we consider a frequency channel in the p-th region

of influence, (8) becomes:

∀f ∈ Ip, X(f, t) = Ape
2iπνpSt+iφp,0W

(

f

F
− νp

)

, (11)

which leads to:

φ(f, t) = φ(f, t− 1) + 2πSνp. (12)
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Fig. 4. Illustration of the QIFFT technique: a magnitude peak is approximated
by a parabola, whose maximum leads to the frequency estimate.

We can then generalize this so-called phase unwrapping

equation as follows:

φ(f, t) = φ(f, t− 1) + 2πSν(f), (13)

where ∀p ∈ {1, ..., P}, ∀f ∈ Ip, ν(f) = νp.

C. Slowly-varying sinusoids

More generally, we can compute the phase of the STFT of

a frequency-modulated sinusoid. If the frequency variation is

small between two successive time frames, we can generalize

the previous equation, as demonstrated in [15] :

φ(f, t) = φ(f, t− 1) + 2πSν(f, t). (14)

The frequency must then be estimated at each time frame

to encompass variable frequency signals such as vibratos,

which commonly occur in music signals (singing voice or cello

signals for instance).

D. Frequency estimation

In order to apply the PU equation (14), one needs to estimate

the frequencies ν(f, t). Most frequency estimation techniques

in the TF domain require the phase of the STFT. For instance,

the phase vocoder algorithm [14] uses the phase difference

between adjacent TF bins to estimate the frequency. Since our

goal is rather to reconstruct the phase of the STFT, we have

chosen to use a technique that requires only the magnitude: the

Quadratic Interpolated FFT (QIFFT) [32], which is a powerful

tool for estimating the frequency near a magnitude peak in

the spectrum. It consists in approximating the shape of a

spectrum near a magnitude peak by a parabola. This parabolic

approximation is justified theoretically for Gaussian analysis

windows, and used in practical applications for any window

type. The computation of the maximum of the parabola leads

to the frequency estimate, as illustrated in Fig. 4. Note that

this technique is suitable for signals where only one sinusoid

per source is active per frequency channel.

The frequency bias of this method can be reduced by

increasing the zero-padding factor [33]. For a Hann window

without zero-padding, the frequency estimation error is less

Algorithm 1 Phase unwrapping

Inputs:

Magnitude spectrogram V ∈ R
F×T
+ ,

Onset frames tm, ∀m ∈ {0, ...,M},
Onset phases φ(f, tm), ∀m ∈ {0, ...,M − 1}.
for m = 0 to M − 1 do

for t = tm + 1 to tm+1 − 1 do

Compute v(f) = V (f, t).
Peak localization fp from v(f).
Frequencies νp with QIFFT on fp.

Regions of influence Ip from (10),

∀f ∈ Ip, ν(f, t) = νp .

Phase unwrapping φ(f, t) = φ(f, t−1)+2πSν(f, t).
end for

end for

Outputs: φ ∈ RF×T

than 1 %, which is hardly perceptible in most music applica-

tions according to the authors. Note that alternative frequency

estimation techniques exist, such as the harmonic spectral sum

or product, or more sophisticated versions of those methods

(such as the PEFAC algorithm [30]), but these methods are

restricted to harmonic mixtures.

E. The phase unwrapping algorithm

Algorithm 1 describes the PU procedure. Note that the

algorithm only reconstructs the phase within non-onset frames.

The onset frames can be computed with the Tempogram

toolbox [34] for instance, since it estimates the onsets in order

to find the tempo. Then, the phases in onset frames must be

estimated with another approach. For instance, in the source

separation framework, the mixture phase can be given to each

component within onset frames. Finally, we tracked the peaks

fp from the spectra v by using the corresponding MATLAB

function (findpeaks).

IV. SOURCE SEPARATION PROCEDURE

In this section, we introduce a source separation procedure

that exploits the PU algorithm.

A. Problem setting

Source separation consists in extracting the K complex

components Xk that form a mixture X . In this paper, we

consider a linear, instantaneous and monaural mixture model:

X =
∑

k Xk, and we assume that the magnitudes Vk of the

components are fixed (either known or estimated beforehand).

We address this problem by minimizing the cost function

C(θ) =
∑

f,t

|E(f, t)|2, (15)

under the constraint |X̂k| = Vk, with E(f, t) = X(f, t) −
∑

k X̂k(f, t) and θ = {X̂k, k ∈ {1, ...,K}}. Since all TF

bins are treated independently, we remove the indexes (f, t)
in what follows for more clarity.

The Wiener filtering estimates (2) are not a solution of

this problem since they do not verify |X̂k| = Vk . Thus, we
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Fig. 5. Iterative estimation of two complex numbers of fixed magnitude and
whose sum is known.

introduce an iterative procedure which provides a novel set of

estimates of the sources, as motivated in the supporting docu-

ment [35]. This document also contains all the mathematical

aspects related to this procedure.

B. General procedure

The proposed approach is inspired from the work in [7]. At

iteration (it), we have an estimate of the complex numbers

X̂
(it)
k . The mixing error E(it) = X −

∑

k X̂
(it)
k is distributed

over the estimates:

Y
(it+1)
k = X̂

(it)
k + λkE

(it), with λk =
V 2
k

∑

l V
2
l

. (16)

As explained in [35], this definition of the weights λk is

motivated by the fact that the components of highest energy

have more impact on the estimation error than the components

of lowest energy. Finally, the components Y
(it+1)
k are normal-

ized: their magnitude is set equal to the objective values Vk,

which leads to the new estimates:

X
(it+1)
k =

Y
(it+1)
k

|Y
(it+1)
k |

Vk. (17)

The procedure is illustrated in Fig. 5 for K = 2 sources and

summarized in Algorithm 2. We provide in [35] the proof that

|E| (and by extension the cost function C) is non-increasing

under the corresponding update rules.

Even though the procedure is introduced quite intuitively

here, it can be properly obtained by using the auxiliary

function method. The full derivation of the procedure using

this technique can be found in the supporting document [35].

C. The usefulness of phase unwrapping

The keystone of our approach is that it enables us to in-

corporate some prior phase information about the components

through a properly-chosen initialization, as detailed in [35]. In-

deed, the cost function C has many global minima (for K ≥ 3,

the problem has infinitely many solutions). Thus, our goal is

Algorithm 2 Estimation of complex components from their

mixture
Inputs:

Mixture X ∈ C, magnitudes Vk ∈ R+, weights λk, and

initial values X̂k ∈ C, ∀k ∈ {1, ...,K},
Number of iterations Nit.

Compute initial error E = X −
∑

k X̂k.

for it = 1 to Nit do

for k = 1 to K do

Yk ← X̂k + λkE,

X̂k ←
Yk

|Yk|
Vk.

end for

E ← X −
∑

k X̂k.

end for

Ouputs: ∀k ∈ {1, ...,K}, X̂k ∈ C.

to find a solution which benefits from some prior knowledge

about the phase in order to lead to satisfactorily sounding

results. Intuitively, one could initialize the algorithm by giving

the phase of the mixture to each source. However, those initial

components would not be modified over iterations, as proved

in [35]. Then, we propose to initialize this procedure with

the PU algorithm: the corresponding estimates are expected

to be close to a local minimum and to have some temporal

continuity. Note that this initialization is performed for non-

onset frames only. Indeed, as explained in Section II-D, onset

phase initialization must be performed with another technique.

V. EXPERIMENTAL VALIDATION

We propose here to experimentally assess the potential of

the PU algorithm, notably for a source separation task.

A. Datasets

We use several datasets in our experiments:

A: 30 piano pieces from the Midi Aligned Piano Sounds

(MAPS) database [36];

B: 6 guitar pieces from the IDMT-SMT-GUITAR

database [37];

C: 12 string quartets from the SCore Informed Source Sep-

aration DataBase (SCISSDB) [38];

D: 40 speech excerpts from the Computational Hearing in

Multisource Environments (CHiME) database [39];

E: 50 music songs of various genres from the Demixing

Secrets Database (DSD100), a remastered version of the

database used for the SiSEC 2015 campaign [40].

The signals are sampled at Fs = 44100 Hz and the STFT

is computed with a 92 ms long (4096 samples) Hann window,

75 % overlap and no zero-padding.

B. Protocol

Two scenarios are considered: an Oracle scenario, in which

the magnitude spectrograms are assumed to be known (i.e.

equal to the ground truth), and a more realistic scenario, in

which the spectrograms are estimated from the Oracle values

by means of an NMF with Kullback-Leibler divergence [4],
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Fig. 6. Spectrogram of a synthetic mixture of sinusoids with vibratos (left)
and frequency of the partial oscillating around 3220 Hz (right).

which uses 50 iterations of multiplicative update rules and

a rank of factorization of 10. Note that this is not a fully

blind scenario, since the NMFs are performed on the isolated

spectrograms, but this will inform us about the performance

of the methods when dealing with spectrograms that are not

equal to the ground truth.

The MATLAB Tempogram Toolbox [34] provides a fast

and reliable onset frames detection from spectrograms (it

estimates the onsets before several post-processing operations

to find the tempo). The phases within onset frames can be

initialized by giving the mixture phase ∠X(f, t) to each

component, or alternatively it can be assumed known.

The popular consistency-based Griffin Lim (GL) algo-

rithm [5] is also tested as a reference. We run 200 iterations of

this algorithm (performance is not further improved beyond).

It is initialized with random values, except in onset frames

when it is assumed known.

In order to measure the performance of the methods, we use

the BSS EVAL toolbox [41] which computes various energy

ratios: the Signal to Distortion, Interference and Artifact Ratios

(SDR, SIR and SAR), which are expressed in dB.

Sound excerpts can be found on the companion website for

this paper [42] to illustrate the experiments.

C. Frequencies estimation

This experiment aims at assessing the potential of the

QIFFT technique in the Oracle scenario. We compute the av-

erage frequency error between the phase vocoder [14] estimate

ν∗, used as a reference, and the QIFFT estimate ν:

ǫ =
1

|Υ|

∑

(f,t)∈Υ

|ν∗(f, t)− ν(f, t)|

ν(f, t)
, (18)

where Υ is the set of TF bins corresponding to the detected

magnitude peaks, and |Υ| is the number of elements in Υ. Note

that the phase vocoder estimates are not equal to the ground

truth: the goal of this experiment is to compare estimates that

use either magnitude information only (QIFFT) or magnitude

and phase information (phase vocoder).

Fig. 6 illustrates the frequencies estimated with the phase

vocoder technique and with our algorithm on a signal which

contains some vibratos. The average error is computed on

datasets A to D introduced in section V-A and the results

are presented in Table I. We observe that the two frequency

TABLE I
AVERAGE ERROR BETWEEN QIFFT AND PHASE VOCODER FREQUENCY

ESTIMATES.

Dataset A B C D

Error ǫ (%) 0.48 0.62 0.58 0.35

TABLE II
RECONSTRUCTION PERFORMANCE FOR SEVERAL PHASE

RECONSTRUCTION METHODS (SDR IN DB).

Dataset Oracle Non-Oracle

GL PU GL PU

A 0.4 5.8 −0.2 4.7

B −0.5 2.2 −11.2 −9.7
C −6.5 0.4 −8.9 −4.7
D 1.1 −1.8 −11.8 −11.6

estimates are very similar. It shows that not accounting for

phase information for performing frequency estimation does

not lead to results that significantly differ from a phase-

aware approach. Even if the phase vocoder estimate does not

correspond to the true frequency, it has been shown quite

accurate for this task [43]. We can then consider that the

QIFFT method provides good estimates of the frequencies,

and we will measure its impact on the phase reconstruction in

the next experiment.

D. Griffin Lim vs Phase Unwrapping

The aim of this experiment is to compare the performance

of the GL and PU algorithms. The onset phases are assumed

known. We corrupt the complex STFT of the signals by setting

the phases within non-onset frames at random values taken in

] − π;π]. We then apply the algorithms in both Oracle and

non-Oracle scenarios. The results are presented in Table II.

In the Oracle scenario, our approach significantly out-

performs the traditional GL method on most datasets: both

stationary and variable frequency signals are reconstructed

accurately. In the non-Oracle scenario, the PU algorithm

outperforms the GL algorithm on all datasets. Both algorithms

are sensitive to the accuracy of the magnitude spectrogram,

as suggested by the drop in SDR values when going from

the Oracle to the non-Oracle scenario. However, when the

spectrogram is not longer equal to the ground truth, our

approach still provide better results than the consistency-based

GL algorithm.

For each mixture in dataset B in the Oracle scenario and for

both GL and PU algorithms, we measured the inconsistency

of the estimates as defined by (1). The GL algorithm leads

to an average inconsistency of 2 × 102 vs 1 × 105 for

the PU algorithm. Thus, the STFTs reconstructed with the

GL algorithm are significantly more consistent than the PU

estimates, though they lead to poor results in terms of SDR.

This suggests that the direct optimization of an inconsistency

criterion may not be the most appropriate way of accounting

for this property.



IEEE/ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, VOL. XX, NO. XX, XX 2017 7

Window length (samples)
512 1024 2048 4096 8192 16384

S
D

R
 (

dB
)

-20

-15

-10

-5

0

5

10

Piano pieces
String quartets

Fig. 7. Influence of the analysis window length on reconstruction quality for
datasets A and C. The central marks (resp. the whiskers) represent the mean
value (resp. the standard deviation).

E. Influence of the STFT parameters

We evaluate here the influence of some of the STFT

parameters on the PU algorithm performance in the Oracle

scenario. We have first investigated the influence of the

window type and overlap ratio. A comparison between three

analysis windows (Hann, Hamming and Blackman) showed

no significant difference in terms of SDR over our datasets. In

addition, overlap ratios higher than 75 % did not improve the

results, while they were more time-consuming than this value.

For those reasons, we chose a Hann window with 75 % overlap

in our experiments. We propose to analyze how the analysis

window length Nw impacts the PU algorithm performance

for datasets A and C. The results are presented in Fig. 7.

We observe that the window length has a great impact on the

SDR. Perceptually (sound examples are available in [42]), two

phenomena characterize the reconstructed signals:

• Musical noise, which appears when the analysis window

is short. With such windows, the frequency resolution is

low, thus the frequency is poorly estimated, which leads

to audible artifacts.

• Loss of presence, a phenomenon also known as phasiness

or reverberation, that is a challenging issue in the phase

vocoder algorithm [14]. For long analysis windows, the

temporal resolution is low. Then, the PU algorithm is not

able to retrieve the phase of transients.

Intuitively, one can assume that the observed SDR peak

corresponds to a compromise between those phenomena. How-

ever, it is not obvious that the SDR is able to capture both

the musical noise and the phasiness phenomena. Indeed, some

informal listening tests showed that a value different from this

optimum leads to more satisfactorily sounding results.

One possible way to overcome this issue can be to use zero-

padding with a short analysis window, since the zero-padding

increases the frequency precision (even if the resolution is not

modified). One can expect this could refine the frequency esti-

mation, and then reduce musical noise. We will not detail the

TABLE III
SOURCE SEPARATION PERFORMANCE (SDR, SIR AND SAR IN DB) FOR

VARIOUS INITIALIZATIONS ON DATASET E.

Initialization SDR SIR SAR

Random 10.4 20.6 10.9
Unwrapping 14.0 27.0 14.2

experiment here due to a space constraint, but the conclusion

is that the benefit of this method is not as significant as ex-

pected, while it is computationally demanding. Alternatively,

we could treat differently onset and non-onset frames in order

to preserve transients’ phase coherence, as proposed in some

improved versions of the phase vocoder algorithm [44]. More

generally, a multiple resolution framework could overcome

the issue of looking for a compromise between temporal and

frequency resolution, although those approaches are outside

the scope of this paper.

F. Application to source separation

Lastly, we assess the potential of the source separation

procedure introduced in Section IV. We consider the songs

from the dataset E. They are made up of K = 4 sources:

bass, drums, vocals and other (which may contain

various instruments such as guitar, piano...).

1) Influence of the initialization: Firstly, we investigate the

influence of the initialization in Algorithm 2 on the separation

quality. We consider 10 songs from the dataset E in the Oracle

scenario. The onset phases are assumed to be known for all

sources and the partial phases are estimated by means of 10
iterations of Algorithm 2. It is initialized with random values

or alternatively with the PU algorithm. The results of this

experiment are provided in Table III.

The initialization with the PU algorithm significantly im-

proves the results (approx 3.5 dB in SDR and SAR and 6.5
in SIR) over a random initialization. To illustrate this result,

we consider a mixture composed of two piano notes (C4 and

G4) overlapping in the TF domain. We plot the error |E| in

a TF bin where the sources overlap in Fig. 8. We see that

the PU initialization leads to a better and faster convergence

(in terms of error) than a random initialization. As illustrated

in Fig. 9, this initialization technique also leads to reconstruct

components that better fit the original signal. This confirms the

usefulness of the PU algorithm as motivated in Section IV-C.

2) Comparison to other methods: In this experiment, the

onset phases are estimated by giving the mixture phase to

each component. We compare the following methods: Wiener

filtering [3], consistent Wiener filtering [10]1, the PU algorithm

applied to each separated source without accounting for the

mixture phase, and 10 iterations of Algorithm 2 initialized

with the PU technique. Those methods will be respectively

denoted Wiener, Cons-W, Unwrap and Iter. These methods

are tested on the 50 songs composing the dataset E. The results

are represented with box-plots in Fig. 10.

1Note that the consistent Wiener filtering technique depends on a weight
parameter that promotes the consistency constraint, which is learned before-
hand on 50 other songs from dataset E.
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Fig. 9. Real part of a C4 piano note STFT in the 796 Hz frequency channel,
when the sources (C4 and G4) overlap, for random and PU initializations of
Algorithm 2.

In the Oracle scenario, Iter leads to a similar performance

than Cons-W in terms of SDR and SAR, and better results in

terms of interference rejection. This method, however, leads

to worse results than Wiener and Cons-W in terms of SDR

and SAR in the non-Oracle case. This is explained by the fact

that this method imposes the magnitude of the reconstructed

components to be equal to a target value that is no longer

the ground truth. The isolated unwrapping Unwrap tends to

decrease the performance over the traditional methods in both

scenarios: since this technique does not use the mixture phase,

the PU errors are propagated over time frames, while Iter uses

the phase of the mixture, which reduces this error. We illustrate

these results on a simple example. Let us consider a mixture

composed of two piano notes (C4 and G4) overlapping in the

TF domain. In Fig. 11, we plot the real part of a partial of

the C4 note reconstructed with various methods. In particular,

TABLE IV
IMPACT OF THE ONSET PHASE ESTIMATION ON THE ITER PERFORMANCE

ON DATASET E.

Onset phase SDR SIR SAR

Mixture 11.2 22.3 11.7
Known 13.2 25.4 13.6

the Iter estimate better fits the ground truth than the other

methods. We noted that property on a variety of songs from

dataset E in both Oracle and non-Oracle settings. In addition,

we perceptually observed (sounds excerpts available in [42])

that the Iter method tends to reduce the artifacts in the bass

track compared to the Cons-W technique.

Finally, it is important to note that Cons-W is computa-

tionally costly: for a 10 seconds excerpt, the separation is

performed in 26 seconds with Cons-W vs 4 seconds with

our method. The proposed approach then appears appealing

for an efficient audio source separation task, notably in terms

of interference rejection.

3) Onset phase: Finally, we propose to evaluate the room

for improvement of onset phase recovery. We run the Iter

procedure (which uses 10 iterations) in the Oracle scenario

considering two different settings: onset phases can be either

assumed known or estimated by giving the mixture phase to

each component (as in the previous experiment). From the

results in Table IV we remark that there is a gap in terms of

both SDR and SAR (≈ 2 dB) and SIR (≈ 3 dB) between

the two considered settings. This means that onset phase

reconstruction needs to be improved in order to fully exploit

the potential of the PU technique. Though giving the mixture

phase to each component is fast and easy to implement, there is

a significant room for further enhancement of the onset phase

estimation method.

VI. CONCLUSION

The PU technique introduced in this paper is a promis-

ing and efficient method for recovering the STFT phase of

audio signals. The analysis of mixtures of sinusoids leads

to a relationship between the phases of successive TF bins.

Frequencies are estimated on a frame-by-frame basis, encom-

passing a variety of signals such as piano and cello sounds.

The phase is then unwrapped over time frames, ensuring some

form of temporal continuity. Experiments have demonstrated

the accuracy of this method and investigated the impact of

several parameters on the reconstruction quality, which allows

us to propose an optimal tuning of the STFT parameters.

The PU algorithm has also been integrated into a source

separation framework. The experimental results show that

such a procedure yields better results than state-of-the-art

approaches in a scenario in which the magnitude spectra are

known. In a more realistic scenario, it reached a performance

similar to other methods, with a significant improvement in

terms of computational cost.

As suggested by the last experiment, the reconstruction

of onset frames can be an interesting research direction for

an improved sounding quality. For instance, onsets can be
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Fig. 11. Real part of a C4 piano note STFT in the 796 Hz frequency channel,
when the sources (C4 and G4) overlap. Several reconstruction methods are
compared in the Oracle scenario.

represented by an impulse model, which has applications in

transient detection [45] and phase reconstruction [19]. One

can also use a model of repeated audio event for modeling the

phase within onset frames [31]. Alternatively, time-invariant

parameters such as phase offsets between partials [46] can

be used. In addition, frequency estimation from magnitude

spectra can be refined, as the STFT inherently comes with a

limited frequency resolution. Finally, future work can focus

on exploiting known phase data for reconstruction: missing

bins can be inferred from observed phase values, exploiting

structured models such as Markov chains or autoregressive

modeling in the TF domain [47].
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