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Abstract—In the field of room acoustics, it is well known that
reverberation can be characterized statistically in a particular
region of the time-frequency domain (after the mixing time
and above Schroeder’s frequency). Since the 1950s, various
formulas have been established, focusing on particular aspects of
reverberation: exponential decay over time, correlations between
frequencies, correlations between sensors at each frequency,
and time-frequency distribution. In this report, we introduce a
new stochastic reverberation model, that permits us to retrieve
all these well-known results within a common mathematical
framework. To the best of our knowledge, this is the first time
that such a unification work is presented. The benefits are
multiple: several new formulas generalizing the classical results
are established, that jointly characterize the spatial, temporal
and spectral properties of late reverberation.

Index Terms—Reverberation, room impulse response, room
frequency response, stochastic models, Poisson processes, station-
ary processes, Wigner distribution.

Résumé—Dans le domaine de l’acoustique des salles, il est
connu que la réverbération peut être caractérisée statistiquement
dans une région particulière du domaine temps-fréquence (après
le temps de mélange et au-dessus de la fréquence de Schroeder).
Depuis les années 50, diverses formules ont été établies, portant
sur des aspects particuliers de la réverbération : la décrois-
sance exponentielle au cours du temps, les corrélations entre
fréquences, les corrélations entre capteurs à chaque fréquence,
et la distribution temps-fréquence.

Dans ce rapport, nous introduisons un nouveau modèle
stochastique de réverbération, qui nous permet de retrouver
tous ces résultats déjà connus dans un cadre mathématique
commun. À notre connaissance, c’est la première fois qu’un tel
travail d’unification est présenté. Les bénéfices en sont multiples :
plusieurs formules nouvelles généralisant les résultats classiques
sont établies, qui caractérisent conjointement les propriétés
spatiales, temporelles et spectrales de la réverbération tardive.

Mots clés—Réverbération, réponse impulsionnelle de salle,
réponse fréquentielle de salle, modèles stochastiques, processus de
Poisson, processus stationnnaires, distribution de Wigner-Ville.

I. INTRODUCTION

When a microphone records a sound produced by an audio
source in a room, the received signal is made of several
contributions [1]: firstly, the direct sound, that corresponds to
the direct propagation of the sound wave from the source to
the microphone, then a few early reflections, that are due to the
sound wave reflections on the various room surfaces (walls,

floor, ceiling. . . ), and finally the late reverberation: after a
time called mixing time [2], [3], reflections are so frequent
that they form a continuum and, because the sound is partially
absorbed by the room surfaces at every reflection, the sound
level decays exponentially over time. This phenomenon is
called reverberation, and it can be modeled as the convolution
between the source signal and a causal room impulse response
(RIR), made of a few isolated impulses before the mixing
time, and of a continuous, exponentially decaying, random
process in late reverberation. The Fourier transform of the
RIR is called room frequency response (RFR), and the modal
theory [4] shows that its profile is qualitatively similar to that
of the RIR: below a frequency called Schroeder’s frequency,
the RFR is made of a few isolated modes, and above this
frequency the modes become so dense that they can be
represented as a continuous random process [5]–[7].

To sum up, reverberation can be modeled as a stochastic
process in a rectangular region of the time-frequency do-
main [8], as depicted in Fig. 1.
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Fig. 1. Time-frequency profile of reverberation (adapted from [8] and [9]).

If in addition the dimensions of the room are much larger
than the wavelength, and the source and the microphones are
located at least a half-wavelength away from the walls, then



in this time-frequency region, the sound field can generally be
approximated as diffuse [10]–[12]. Diffusion is a consequence
of the reflections on the room surfaces not being specular
(i.e. mirror-like), but rather scattered in various directions,
as represented in Fig. 2. After many reflections, the sound
field can be considered as isotropic: the sound waves come
uniformly from all directions.

Historically, the first stochastic reverberation model is due
to Schroeder [5] and Moorer [13]: the RIR at microphone i is

hi(t) = bi(t)e
�↵t1t�0 (1)

where ↵ > 0 and bi(t) is a centered white Gaussian process.
Parameter ↵ is related to the reverberation time Tr in seconds
by the equation Tr = 3 ln(10)

↵ . The Gaussian distribution of
bi(t) arises from the central limit theorem: in late reverbera-
tion, hi(t) is the sum of many independent contributions.

Schroeder [5]–[7] also noticed that the independency of the
samples hi(t) implies that the RFR, defined as their Fourier
transform Fhi(f), is a stationary random process. From (1), he
derived several formulas that can be summarized by expressing
the complex autocorrelation function of Fhi(f):

corr [Fhi(f1), Fhi(f2)] =
1

1 + ı⇡
f1�f2
↵

. (2)

Following a similar approach in the spectral domain, under
the diffuse field assumption, Cook [14] computed the correla-
tion at frequency f between two sensors at distance D:

corr [Fh1(f), Fh2(f)] = sinc

✓
2⇡fD

c

◆
. (3)

Equation (3) was later generalized to combinations of pressure
and velocity sensors [15] and to differential microphones [16].

Finally, Polack [17] generalized model (1) by assuming that
bi(t) is a centered stationary Gaussian process, whose power
spectral density (PSD) B(f) has slow variations1. Then he
showed that the Wigner distribution2 [18] of the RIR is

Whi,hi(t, f) = B(f)e�2↵t1t�0. (4)

In order to account for the fact that the attenuation coeffi-
cient ↵ actually depends on the frequency f , he also proposed
an empirical generalization of (4):

Whi,hi(t, f) = B(f)e�2↵(f)t1t�0. (5)

In other respects, based on the billiard theory, Polack [2],
[3] also showed that the durations of the various trajectories
in a room, from a given source position to the microphone,
are distributed according to a Poisson process [19].

In this report, we propose a unified stochastic model of
reverberation, that will permit us to retrieve all formulas (1) to
(4) in a common mathematical framework3, to establish a link
with the Poisson distribution proposed by Polack, and to show
how the probability distribution of the RIR, which is impulsive

1Note that in this case, Fhi
(f) is no longer a stationary process.

2The Wigner distribution is defined in equation (11).
3A straightforward generalization of this model also permits to prove (5),

that will be presented in a future paper; a few hints will be given in Section VI.
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in early reverberation, converges to the Gaussian distribution
in late reverberation. In addition, this model will also permit
us to go deeper into the description of the statistical properties
of the RIR over the space, time and frequency domains, and
to prove several new results. Finally, we will explain why this
model can actually be applied in the whole time-frequency
domain in signal processing applications.

This report is structured as follows: Section II presents
important mathematical definitions and notation that will be
used throughout the report. Then our general stochastic re-
verberation model is introduced in Section III. The statistical
properties of this model at one sensor are investigated in
Section IV. The statistical relationships between two sensors
are then analyzed in Section V. Finally, some conclusions and
perspectives are presented in Section VI. Note that this is a
fully theoretical work: our purpose was to unify several results
that have already been validated experimentally. In order to
make the main discussion as clear as possible, all mathematical
proofs were moved to Appendices A to C.

II. MATHEMATICAL DEFINITIONS

• N: set of whole numbers
• R, C: sets of real and complex numbers, respectively
• R+: set of nonnegative real numbers
• ı =

p
�1: imaginary unit

• [a, b]: closed interval, including a and b 2 R
• ]a, b[: open interval, excluding a and b 2 R
• L

2([a, b]): square-integrable functions of support [a, b]
• �: Dirac delta function
• x (bold font), z (regular): vector and scalar, respectively
• k.k2: Euclidean/Hermitian norm of a vector or a function
• z: complex conjugate of z 2 C
• x>: transpose of vector x
• S2: unit sphere in R3 (S2 = {x 2 R3; kxk2 = 1})
• E[X]: expected value of a random variable X

• �X(✓) = E[eı✓X ]: characteristic function of X
• Covariance of two complex random variables X and Y :

cov[X,Y ] = E[(X � E[X])(Y � E[Y ])] (6)

• var[X] = cov[X,X]: variance of a random variable X



• Correlation of two complex random variables X and Y :

corr[X,Y ] =
cov[X,Y ]p
var[X] var[Y ]

(7)

• P(�): Poisson distribution of parameter � > 0:

N ⇠ P(�) , P (N=n) = e
���

n

n!
, �N (✓) = e

�(eı✓�1)

(8)
• sinc(x) = sin(x)

x : cardinal sine function
• 1A: indicator function (1A(x) is 1 if x 2 A or 0 if x /2 A)
• e (t) =  (�t): conjugate and time-reverse of  : R ! C
• Convolution of two functions  1 and  2 : R ! C:

( 1 ⇤  2)(t) =

Z

u2R
 1(u) 2(t� u)du

• Fourier transform of a function  : R ! C:

F (f) =
Z

t2R
 (t)e�2ı⇡ft

dt (f 2 R) (9)

• Two-sided Laplace transform of a function  : R ! C:

L (s) =
Z

t2R
 (t)e�st

dt (s 2 C) (10)

• Wigner distribution (a.k.a. Wigner-Ville distribution) of
two second-order random processes  1(t) and  2(t):

W 1, 2(t, f) =

Z

R
cov[ 1(t+

u
2 ),  2(t� u

2 )]e
�2ı⇡fu

du.

(11)

III. DEFINITION OF THE STOCHASTIC MODEL

The model that we present in this section is based on
the source image principle [1], [20]. As illustrated in Fig. 3
in the case of specular reflections in a rectangular room4,
the trajectory inside the room from the real source to the
microphone is equivalent to a virtual straight trajectory from a
so-called source image which is outside the room. A remark-
able property of this principle is that, regardless of the room
dimensions, the density of the source images is uniform in the
whole space: the number of source images contained in a given
disk, of radius sufficiently larger than the room dimensions, is
approximately invariant under any translation of this disk.

Since we aim to define a general stochastic reverberation
model, independent of the geometry of the room, we will
consider that the positions of the source images are random
and uniformly distributed (note that this assumption is a
fortiori valid in the case of a diffuse sound field, which is
uniform). More precisely, we will assume that the number
N(V ) of source images contained in any Borel set V ⇢ R3

follows a Poisson distribution5 of parameter �|V |, where |V |
is the Lebesgue measure (volume) of V . Mathematically, this
is formalized by considering a Poisson random measure with
independent increments dN(x) ⇠ P(�dx).

4Fig. 3 illustrates the source image principle in 2D-space for convenience,
but of course our model will be defined in the 3D-space.

5The Poisson distribution is defined in equation (8).

Fig. 3. Positions of microphone (green plus), source (thick blue point) and
source images (black points). The original room walls are drawn with thick
lines. A virtual straight trajectory from one source image to the microphone
is drawn with colors, along with the real trajectory in the original room.

In other respects, we will assume that the sound waves
undergo an exponential attenuation along their trajectories, that
is due to the multiple reflections on the room surfaces and to
the propagation in the air. In this report we focus on the case of
omnidirectional microphones, so we will further assume that
this attenuation is isotropic (in accordance with the diffuse
field approximation) and independent of the frequency. It will
thus only depend on the length of the trajectory, as in [17].

Finally, we suppose that several microphones6 indexed by
an integer i are placed at arbitrary positions xi in the room.

We end up with the following model:

hi(t) =

Z

x2R3

hi(t,x) e
�↵

c kx�xik2 dN(x), (12)

where hi(t) is the RIR at microphone i, ↵ > 0 is the attenu-
ation coefficient (in Hz), and c > 0 is the sound speed in the
air (approximately 340 m/s in usual conditions). The impulse
hi(t,x), propagated from the source image at position x, is
modeled as a coherent sum of monochromatic spherical waves:

hi(t,x) =

Z

f2R
A(f)

e
2ı⇡f

⇣
t� kx�xik2

c

⌘

kx� xik2
df, (13)

where A(f) is a linear-phase frequency response (in order to
ensure coherence). In Appendix A , we show that (12) and (13)
are equivalent to the following model:

Definition 1 (Unified stochastic reverberation model).
Let ↵ > 0, c > 0, and T > 0. Let dN(x) be a uniform Poisson
random measure on R3 with independent increments:

dN(x) ⇠ P(�dx). (14)

Let g(t) 2 L
2([�T, T ]), such that

Fg(0) =
dFg

df
(0) = 0, (15)

8f 2 R, Lg(↵+ 2ı⇡f) � 0. (16)

At any sensor position xi 2 R3, hi(t) is defined as

8t 2 R, hi(t) = e
�↵(t�T )

bi(t), (17)

6For the sake of simplicity, we will focus on the case of two microphones;
the generalization to an arbitrary number of microphones is straightforward.



where

bi(t) =

Z

x2R3

g

✓
t� T � kx� xik2

c

◆
dN(x)

kx� xik2
. (18)

Equivalently, the Fourier transform of hi(t) is

Fhi(f) = Lg(↵+2ı⇡f)e�2ı⇡fT

Z

R3

e
�↵+2ı⇡f

c kx�xik2

kx� xik2
dN(x).

(19)

This definition calls for comments. Firstly, the linear-phase
frequency response A(f) in (13) was parameterized as

A(f) = Lg(↵+ 2ı⇡f)e�2ı⇡fT
. (20)

This technical definition aims to simplify the mathematical
developments in the next sections. Secondly, any function g 2
L
2([�T, T ]) is such that Fg(f) and f 7! Lg(↵ + 2ı⇡f) are

infinitely differentiable, so Fg(0),
dFg

df (0) and Lg(↵ + 2ı⇡f)
are well-defined. The constraints (15) and (16) imposed to g

are required to prove Propositions 2 and 3 in Sections IV
and V. In particular, the support of g is chosen so that hi(t)
in (17) and bi(t) in (18) are causal. Thirdly, the existence
of functions g that satisfy these constraints is guaranteed by
Lemma 1 in Appendix A.

Now it is time to investigate the properties of this model. In
Section IV, we will focus on one sensor at spatial position xi.
Then in Section V, we will analyze the spatial relationships
between two sensors at different positions xi and xj .

IV. STATISTICAL PROPERTIES AT ONE SENSOR

Let us first introduce an equivalent model definition:

Proposition 1 (Equivalent model definition at one sensor).
With the same notation as in Definition 1, we have:

bi(t) =

Z

r2R+

g

⇣
t� T � r

c

⌘
dN(r)

r
, (21)

Fhi(f) =Lg(↵+ 2ı⇡f)e�2ı⇡fT

Z

r2R+

e�
↵+2ı⇡f

c
rdN(r)

r (22)

where dN(r) are independent Poisson increments on R+:

dN(r) ⇠ P(4⇡�r2dr). (23)

Proposition 1 is proved in Appendix A. Let us now inves-
tigate the statistical properties of this model:

Proposition 2 (Statistical properties at one sensor position).
The model in Definition 1 has the following properties:

1) First order moments:
• in the spectral domain: 8f 2 R,

E[Fhi(f)] =
4⇡�c2Lg(↵+ 2ı⇡f) e�2ı⇡fT

(↵+ 2ı⇡f)2
, (24)

• in the time domain:

8t � 2T, E[hi(t)] = E[bi(t)] = 0. (25)

2) Second order moments:

• in the spectral domain: 8f, f1, f2 2 R,

var[Fhi(f)] = 2⇡�cLg(↵+ 2ı⇡f)2/↵, (26)

corr[Fhi(f1),Fhi(f2]) =
e
�2ı⇡(f1�f2)T

1 + ı⇡
f1�f2
↵

. (27)

• in time domain: 8t� 2T , bi(t) is a wide sense sta-
tionary (WSS) process, of autocovariance function

8⌧ 2 R,�(⌧) = cov[bi(t+⌧), bi(t)] = 4⇡�c eg⇤g(⌧)
(28)

autocorrelation function

8⌧ 2 R, �(⌧) = corr[bi(t+ ⌧), bi(t)] =
(eg ⇤ g)(⌧)

kgk22
(29)

and power spectral density

8f 2 R, B(f) = F�(f) = 4⇡�c |Fg(f)|2. (30)

Consequently,

8t � 2T, var[hi(t)] = 4⇡�ckgk22 e�2↵(t�T ) (31)
8t1, t2 � 2T, corr[hi(t1), hi(t2)]=�(t1 � t2) (32)

• in the time-frequency domain:

8f 2 R, 8t � 2T, Whi,hi(t, f) = B(f) e�2↵(t�T )
.

(33)
3) Asymptotic normality: when t ! +1 (i.e. t � T ), bi(t)

is distributed as a stationary Gaussian process.

Proposition 2 is proved in Appendix B. Note that (30)
and (15) show that B(f) is very flat at f = 0: B(0) =
dB
df (0) = d2B

df2 (0) = d3B
df3 (0) = 0. The asymptotic normality

is related to the central limit theorem: when r becomes large,
the volume contained between the spheres of radius r and
r + dr increases as r

2
dr, and so does the number of source

images included in this volume as shown in (23), which leads
to the addition of an increasing number of independent and
identically distributed (i.i.d.) random increments dB(x).

This proposition permits us to retrieve most of the classical
results listed in the introduction. Firstly, hi(t) is centered for
t � 2T (the fact that it is not centered for t 2 [0, 2T ]
explains why the expected value of the frequency response
E[Fhi(f)] in (24) is not zero). Secondly, (17) corresponds to
Schroeder and Moorer’s model defined in (1) when T ! 0 (in
this case the process bi(t) becomes white, and it is Gaussian
when t � T ), and in the general case it is equivalent to
Polack’s model [17, chap. 1] (bi(t) is a centered stationary
Gaussian process when t � T ). When T ! 0, (27) reduces
to Schroeder’s formula (2), which was indeed established by
assuming that bi(t) is white. Finally, (33) is equivalent to
Polack’s time-frequency model defined in (4). To the best of
our knowledge, the other formulas in Proposition 2 are novel.

V. STATISTICAL PROPERTIES BETWEEN TWO SENSORS

Let us now focus on the relationships between two sensors:



Proposition 3 (Statistical properties between two sensors).
Let us consider the model in Definition 1 at two positions xi

and xj 2 R3. Let us define the rectangular window

8t 2 R, w(t) =
c

2D
1[�D

c ,Dc ](t), (34)

where D = kxi � xjk2. Then, in addition to the properties
listed in Proposition 2, we also have:

• in the spectral domain: 8f1, f2 2 R,

corr[Fhi(f1),Fhj (f2)] =
e
�
↵D
c �2ı⇡(f1�f2)(T+

D
2c )

sinc(
⇡(f1+f2)D

c )

1+ı⇡
f1�f2

↵

(35)
• in the time domain: 8t � 2T+D

c , b(t) = [bi(t), bj(t)]> is
a centered WSS process, of cross-autocovariance function

8⌧ 2 R,�i,j(⌧) = cov[bi(t+ ⌧), bj(t)] = w ⇤�(⌧) (36)

cross-autocorrelation function

8⌧ 2 R, �i,j(⌧) = corr[bi(t+⌧), bj(t)] = w⇤�(⌧) (37)

and cross-power spectral density

8f 2 R, Bi,j(f) = F�i,j (f) = B(f)sinc(
2⇡fD

c
). (38)

Consequently,

8t1, t2 � 2T + D
c , corr[hi(t1), hj(t2)] = w⇤� (t1 � t2) .

(39)
• in the time-frequency domain: 8f 2 R,

8t � 2T+D
2c ,Whi,hj (t, f) = B(f)e�2↵(t�T ) sinc( 2⇡fDc ).

(40)
• asymptotic normality: when t ! +1 (i.e. t � T ), b(t)

is distributed as a stationary Gaussian process.

Proposition 3 is proved in Appendix C. Applying equa-
tion (35) to f1 = f2 = f , we get Cook’s formula (3) when
↵ ! 0 (no exponential decay). This formula was indeed
originally proved by considering plane waves under a far-field
assumption [14]. Besides, equation (39) shows that hi(t) and
hj(t) are correlated on a time interval that corresponds to the
wave propagation from one sensor to the other. To the best of
our knowledge, all formulas in Proposition 3 are novel.

VI. CONCLUSION AND PERSPECTIVES

In this report, we proposed a new stochastic model of
reverberation, that permitted us to retrieve various well-known
results within a common framework. This unification work
resulted in several new results, that jointly characterize the
properties of late reverberation in the space, time, and fre-
quency domains. The most noticeable result in our opinion
is (40), which very simply makes the connection between
Polack’s time-frequency model (4) and Cook’s formula (3).

Although this model was motivated by physical assumptions
that only hold in a particular region of the time-frequency
domain (after the mixing time and above Schroeder’s fre-
quency), from a signal processing perspective however, one of
its most interesting features is that it is also applicable before

the mixing time and below Schroeder’s frequency. Indeed,
since the parameter of the Poisson distribution dN(r) in (23)
increases quadratically with the distance r, the model permits
to describe both the impulsiveness of the RIR before the
mixing time, and its asymptotic normality in late reverberation.
Moreover, the frequency response Lg(↵+2ı⇡f) in (19) is able
to fit both the smooth PSD B(f) at high frequencies, and
sharp resonances due to isolated modes below Schroeder’s
frequency. Therefore we end up with a stochastic model
involving very few parameters (↵, �, filter g, and the distances
between microphones), that is able to accurately describe
reverberation in the whole time-frequency domain. We thus
believe that this model has an interesting potential in a variety
of signal processing applications.

However this reverberation model, as it is presented in this
report, is not yet suitable for modeling real RIRs. Indeed,
one assumption has to be relaxed: the attenuation coefficient
↵ is not constant but rather depends on frequency in prac-
tice, as in Polack’s generalized time-frequency model (5).
In a future paper, we will thus present a generalization of
the proposed model where we will introduce a frequency-
varying attenuation coefficient. Fortunately, a simplification
holds asymptotically (in late reverberation), that makes all
mathematical derivations still analytically tractable. In partic-
ular, we will be able to present a formula that generalizes
both (5) and (40). A second generalization of this model
would be to represent acoustic fields that are not perfectly
diffuse. Apparently, obtaining a mathematical characterization
of such acoustic fields should be feasible, because a similar
simplification holds asymptotically. Finally, the generalization
to directional microphones is straightforward, by using the
same approach as presented in [16].

Our future contributions will also focus on the signal pro-
cessing aspects of this work: we will show how the generalized
model (with a frequency-varying attenuation coefficient) can
be formalized in discrete time, and we will propose a fast
algorithm that permits to estimate the model parameters with
a complexity of O(L log(L)2), where L is the length of the
RIR in samples. Finally, our ultimate goal is to investigate
the potential of this model in applications such as source
separation, dereverberation, and synthetic reverberation.

APPENDIX A
PROOFS FOR THE DEFINITION OF THE STOCHASTIC MODEL

The following lemma aims to prove the existence of func-
tions g that satisfy conditions (15) and (16) in Definition 1.

Lemma 1. Let  (t) 2 L
2([0, T ]) with T > 0, such thatR T

t=0  (t)e
↵t
dt =

R T
t=0  (t)e

�↵t
dt = 0, where ↵ 2 R.

Let g(t) = ( e ⇤  )(t) e↵(t�T ). Then function g satisfies
conditions (15) and (16) in Definition 1.

Proof of Lemma 1. Since  (t) 2 L
2([0, T ]), function

g is continuous and bounded. Firstly, Fg(f) =
e
�↵TL (↵+ 2ı⇡f)L (�↵ + 2ı⇡f). Moreover, since  (t)

has finite support, both functions f 7! L (�↵ + 2ı⇡f) and
f 7! L (↵ + 2ı⇡f) are infinitely differentiable. In addition,



L (�↵) = L (↵) = 0, which finally proves (15). Secondly,
Lg(↵+ 2ı⇡f) = e

�↵T |F (f)|2, which proves (16).

We can now derive equations (17), (18) and (19) in Defini-
tion 1. By substituting (13) and (20) into (12), we get

hi(t) =
R
f2R Lg(↵+ 2ı⇡f)e2ı⇡f(t�T )

R
x2R3

e�
↵+2ı⇡f

c
kx�xik2

kx�xik2
dN(x) df

which shows that hi(t) as defined in (12) is the inverse Fourier
transform of (19) and therefore proves (19). Besides, applying
the Fourier transform (9) to (17) also leads to (19), which
proves the equivalence between (17)-(18), and (12)-(13)-(20).

Finally, let us prove Proposition 1.

Proof of Proposition 1. Let dN(r) =
R
u2S2 dN(ru). Then

(14) implies (23). The change of variables x = xi + ru with
r 2 R+ and u 2 S2 in (18) and (19) leads to (21) and (22).

APPENDIX B
PROOF OF PROPOSITION 2

B.1. First order moments
Firstly, equation (23) shows that

E[dN(r)] = 4⇡�r2dr. (41)

Then equations (22) and (41) imply (24). Moreover, (41) and
the change of variable r = c(t� T � u) in (21) prove that:

E[bi(t)] = 4⇡�c2
 Z t�T

u=�T
(t� T � u)g(u)du

!
. (42)

Finally, substituting (15) into (42) shows that 8t � 2T ,
E[bi(t)] = 0. Then equation (17) implies (25).

B.2. Second order moments
1) In the spectral domain: Firstly, equation (23) shows that

cov[dN(r1), dN(r2)] = 4⇡� �(r2 � r1)r1r2dr1dr2. (43)

Then (22) and (43) prove that

cov[Fhi(f1),Fhi(f2)] = 2⇡�cLg(↵+ 2ı⇡f1)

Lg(↵+ 2ı⇡f2)
e�2ı⇡(f1�f2)T

↵+ı⇡(f1�f2)
.

(44)
Equation (44) implies both (26) and (27).

2) In the time domain: Equations (21) and (43) lead to (28),
which jointly proves both (29) and (30). Besides, (28) and (17)
imply both (31) and (32).

3) In the time-frequency domain: Finally, substituting (17),
(21) and (43) into (11) with  1 =  2 = hi proves that

Whi,hi(t, f) = 4⇡�e�2↵(t�T )

Z

r2R+

I(t�T � r

c
, f)dr (45)

where

I(t, f) =

Z

u2R
g

⇣
t+

u

2

⌘
g

⇣
t� u

2

⌘
e
�2ı⇡fu

du = Wg,g(t, f).

(46)

In order to conclude, we will use two properties of the
Wigner distribution. Firstly, the time support of Wg,g is the
same as that of g. Secondly, the projection property shows
that

R
t2R Wg,g(t, f)dt = |Fg(f)|2. Therefore substituting (46)

and (30) into (45) finally implies (33).

B.3. Asymptotic normality
Equations (21), (23) and (8) prove that the logarithm of the

characteristic function of bi(t) is 8✓ 2 R,

ln(�bi(t)(✓)) = ln(E[eı✓bi(t)])

= 4⇡�
R
r2R+

 
e
ı✓

g(t�T� r
c )

r � 1

!
r
2
dr

=
P+1

n=1
(ı✓)n

n! n(t)
(47)

where n(t) is the n-th order cumulant of bi(t):

n(t) = 4⇡�

Z

r2R+

g

⇣
t� T � r

c

⌘n
r
2�n

dr. (48)

The change of variables r = c(t� T � u) in (48) implies

8t � 2T, n(t) = 4⇡�c3�n

Z T

u=�T
g(u)n (t� T � u)2�n

du.

Therefore, 8n � 2, 8t > 2T ,

|n(t)| 
4⇡�c3�n

R T
u=�T |g(u)|ndu

(t� 2T )n�2
. (49)

Let " > 0. Substituting (49) into (47), we get: 8t � (2+ ")T ,
����ln(�bi(t)(✓))�

✓
ı✓1(t)�

✓
2

2
2(t)

◆���� 
 (✓)

t� 2T
�!

t!+1
0,

where  (✓) = 4⇡�("cT )3
R T
u=�T

✓
e
| ✓g(u)

"cT | �
2P

n=0

| ✓g(u)
"cT |n
n!

◆
du.

Therefore the characteristic function of bi(t) converges
pointwise to that of the normal distribution when t ! +1,
which proves that bi(t) is asymptotically normally distributed.
In the same way, it can be proved7 that the random variables
bi(t1) . . . bi(tK) for all K 2 N and t1 . . . tK 2 R are jointly
normally distributed when t ! +1, which shows that bi(t)
is asymptotically distributed as a stationary Gaussian process.

APPENDIX C
PROOF OF PROPOSITION 3

C.1. Geometry with two microphones
Let xi, xj 2 R3. Let ⇠1, ⇠2 : R+ ! C. In the next sections,

we will have to compute several integrals of the form:

I⇠1,⇠2 =

Z

x2R3

⇠1(kx� xik2)
kx� xik2

⇠2(kx� xjk2)
kx� xjk2

dx. (50)

To compute such an integral, we will use the spherical
coordinates (r, ✓,'), as illustrated in Fig. 4, where ✓ = 0
corresponds to the direction of vector xj � xi. We thus
get x = [r cos(✓) cos', r cos(✓) sin', r sin(✓)]> and dx =

7The proof is the same and it is omitted here for the sake of conciseness.
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Fig. 4. Geometry with two microphones at xi, xj and a source image at x.

r
2
dr sin(✓)d✓d', with r 2 R+, ✓ 2 [0,⇡] and ' 2 [0, 2⇡].

Moreover, as can be seen in Fig. 4, we have

• kx� xik2 =
q

r2 + D2

4 + rD cos(✓),

• kx� xjk2 =
q
r2 + D2

4 � rD cos(✓).
By substitution into (50), we get

I⇠1,⇠2 = 2⇡
R +1
r=0

R ⇡
✓=0

⇠1

 r
r2+

D2

4 +rD cos(✓)

!

r
r2+

D2

4 +rD cos(✓)

⇠2

 r
r2+

D2

4 �rD cos(✓)

!

r
r2+

D2

4 �rD cos(✓)

r
2
dr sin(✓)d✓.

(51)

Finally, we make a last change of variables, that is also
illustrated in Fig. 4:

⇢ = kx�xik2+kx�xjk2

2

=

q
r2+D2

4 +rD cos(✓)+
q

r2+D2
4 �rD cos(✓)

2 ,

v = kx� xik2 � kx� xjk2
=

q
r2 + D2

4 + rD cos(✓)�
q
r2 + D2

4 � rD cos(✓),

which is such that ⇢ 2
⇥
D
2 ,+1

⇥
, v 2 [�D,D], and

r
2
dr sin(✓)d✓q

r2 + D2

4 + rD cos(✓)
q
r2 + D2

4 � rD cos(✓)
=

d⇢dv

D
.

Equation (51) thus becomes

I⇠1,⇠2 =
2⇡

D

Z +1

⇢=D
2

Z D

v=�D
⇠1

⇣
⇢+

v

2

⌘
⇠2

⇣
⇢� v

2

⌘
d⇢dv.

(52)

C.2. In the spectral domain

Firstly, equation (14) shows that

cov[dN(x1), dN(x2)] = � �(x2 � x1)dx1dx2. (53)

Then (19) and (53) show that

cov[Fhi(f1),Fhj (f2)] = �Lg(↵+ 2ı⇡f1)Lg(↵+ 2ı⇡f2)
e
�2ı⇡(f1�f2)T I⇠1,⇠2 ,

(54)

where ⇠1(r) = e
�↵+2ı⇡f1

c r, ⇠2(r) = e
�↵+2ı⇡f2

c r, and I⇠1,⇠2

was defined in (50). Then equation (52) shows that

I⇠1,⇠2 = 2⇡
D

+1R

⇢=
D
2

e
�2

↵+ı⇡(f1�f2)
c ⇢

d⇢

DR

v=�D

e
�2ı⇡

f1+f2
2c v

dv

= 2⇡c e
�
↵+ı⇡(f1�f2)

c D

↵+ı⇡(f1�f2)
sinc

⇣
2⇡ f1+f2

2c D

⌘
.

(55)
By substituting (55) and (26) into (54), we finally get (35).

C.3. In the time domain
Equations (18) and (53) imply

cov[bi(t1), bj(t2)] = �I⇠1,⇠2 (56)

where ⇠1(r) = g
�
t1 � T � r

c

�
, ⇠2(r) = g

�
t2 � T � r

c

�
, and

I⇠1,⇠2 was defined in (50). Then substituting (52) into (56)
shows that

cov[bi(t1), bj(t2)] = 4⇡�

+1Z

⇢=D
2

I(t1 � T � ⇢
c , t2 � T � ⇢

c )d⇢

(57)
where

I(t1, t2) =
1

2D

Z D

v=�D
g
�
t1 � v

2c

�
g
�
t2 +

v
2c

�
dv. (58)

With v = cu, substituting (34) into (58) proves that

I(t1, t2) =

Z

u2R
g

⇣
t1 �

u

2

⌘
g

⇣
t2 +

u

2

⌘
w(u)du. (59)

Substituting (59) into (57) proves (36), which with (29)
implies (37). Moreover, applying the Fourier transform (9)
to (36) and substituting (30) leads to (38).

Then (17) and (36) prove that

cov[hi(t1), hj(t2)] = 4⇡�ce�2↵(
t1+t2

2 �T )
w ⇤ eg ⇤ g (t1 � t2) .

(60)
Finally, substituting (31) and (29) into (60) implies (39).

C.4. In the time-frequency domain
Substituting (17), (18) and (53) into (11) with  1 = hi and

 2 = hj implies

Whi,hj (t, f) = �e
�2↵(t�T )

Z

R
I⇠1,⇠2e

�2ı⇡fu
du. (61)

where ⇠1(r) = g
�
t+ u

2 � T � r
c

�
, ⇠2(r) =

g
�
t� u

2 � T � r
c

�
, and I⇠1,⇠2 was defined in (50).

Then substituting (52) into (61) shows that

Whi,hj (t, f) =
4⇡�e�2↵(t�T )

2D

+1Z

⇢=D
2

DZ

v=�D

I(t�T� ⇢
c , f, v)d⇢dv

(62)
with
I(t, f, v) =

R
u2R g

�
t+ u

2 � v
2c

�
g
�
t� u

2 + v
2c

�
e
�2ı⇡fu

du

= e
�2ı⇡f

v
cWg,g (t, f) ,

(63)



where Wg,g(t, f) was expressed in (46), and we have used the
change of variable u

0 = u� v
c .

In order to conclude, we will use the two properties of the
Wigner distribution that we already used in Section B.2.3).
Firstly, the time support of Wg,g is the same as that of g.
Secondly,

R
t2R Wg,g(t, f)dt = |Fg(f)|2. Substituting (63)

and (30) into (62) finally implies (40).

C.5. Asymptotic normality
Let b(t) = [bi(t), bj(t)]> and ✓ = [✓1, ✓2]>. Equations (18),

(14) and (8) prove that the logarithm of the characteristic
function of b(t) is

ln(�b(t)(✓))
= ln(E[eı(✓1bi(t)+✓2bj(t))])

= �
R
x2R3(e

ı(✓1
g(t�T�kx�xik2

c
)

kx�xik2
+✓2

g(t�T�
kx�xjk2

c
)

kx�xjk2
) � 1)dx

=
P+1

n=1
ın

n!

Pn
k=0

�n
k

�
✓
k
1✓

n�k
2 k,n�k(t)

(64)
where n1,n2(t) is the (n1, n2)-th order cumulant of b(t):

n1,n2(t) = �I⇠1,⇠2 , (65)

where ⇠1(r) =
(g(t�T� r

c ))
n1

rn1�1 , ⇠2(r) =
(g(t�T� r

c ))
n2

rn2�1 , and
I⇠1,⇠2 was defined in (50).

Then substituting (52) into (65) shows that

n1,n2(t) =
2⇡�
D

R +1
⇢=D

2

RD
v=�D

✓
g

✓
t�T�

⇢+ v
2

c

◆◆n1

(⇢+ v
2 )

n1�1
✓
g

✓
t�T�

⇢� v
2

c

◆◆n2

(⇢� v
2 )

n2�1 d⇢dv.

(66)

The change of variables ⇢ = c(t�T �u) and v = cw in (66)
implies that 8t � 2T + D

c ,

n1,n2(t) =
2⇡�c4�n1�n2

D

R
u2R

R D
c

w=�D
c

(g(u�w
2 ))

n1

(t�T�u+w
2 )n1�1

(g(u+w
2 ))

n2

(t�T�u�w
2 )n2�1 dudw.

Therefore 8n1 + n2 � 2, 8t � 2T + D
c ,

|n1,n2(t)|  2⇡�c4�n1�n2

D
R
u2R

R D
c

w=�D
c
|g(u�w

2 )|n1 |g(u+w
2 )|n2dudw

(t�2T )n1+n2�2 .

(67)
Substituting (67) into (64), we get 8t � 2T + D

c ,

���ln(�b(t)(✓))�
P2

n=1
ın

n!

Pn
k=0

�n
k

�
✓
k
1✓

n�k
2 k,n�k(t)

���
 1

(t�2T ) (✓1, ✓2) �!
t!+1

0,

where

 (✓1, ✓2) = 2⇡�cD2
R
u2R

R D
c

w=�D
c

e
|✓1g(u�w

2 )|+|✓2g(u+w
2 )|

D

�
P2

n=0
1
n!

✓
|✓1g(u�w

2 )|+|✓2g(u+w
2 )|

D

◆n

dudw.

Therefore the characteristic function of b(t) converges
pointwise to that of the normal distribution when t ! +1,
which proves that b(t) is asymptotically normally distributed.

In the same way, it can be proved8 that the random variables
b(t1) . . . b(tK) for all K 2 N and t1 . . . tK 2 R are jointly
normally distributed when t ! +1, which proves that b(t)
is asymptotically distributed as a stationary Gaussian process.
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