
1 23

Machine Learning

ISSN 0885-6125

Mach Learn
DOI 10.1007/s10994-014-5479-3

Operator-valued kernel-based vector
autoregressive models for network inference

Néhémy Lim, Florence d’Alché-Buc,
Cédric Auliac & George Michailidis

1 23

Your article is protected by copyright and all

rights are held exclusively by The Author(s).

This e-offprint is for personal use only

and shall not be self-archived in electronic

repositories. If you wish to self-archive your

article, please use the accepted manuscript

version for posting on your own website. You

may further deposit the accepted manuscript

version in any repository, provided it is only

made publicly available 12 months after

official publication or later and provided

acknowledgement is given to the original

source of publication and a link is inserted

to the published article on Springer's

website. The link must be accompanied by

the following text: "The final publication is

available at link.springer.com”.

Mach Learn
DOI 10.1007/s10994-014-5479-3

Operator-valued kernel-based vector autoregressive
models for network inference

Néhémy Lim · Florence d’Alché-Buc · Cédric Auliac ·
George Michailidis

Received: 3 March 2013 / Accepted: 25 November 2014
© The Author(s) 2014

Abstract Reverse-engineering of high-dimensional dynamical systems from time-course
data still remains a challenging and important problem in knowledge discovery. For this
learning task, a number of approaches primarily based on sparse linear models or Granger
causality concepts have been proposed in the literature. However, when a system exhibits
nonlinear dynamics, there does not exist a systematic approach that takes into account the
nature of the underlying system. In this work, we introduce a novel family of vector autore-
gressive models based on different operator-valued kernels to identify the dynamical system
and retrieve the target network that characterizes the interactions of its components. Assum-
ing a sparse underlying structure, a key challenge, also present in the linear case, is to control
the model’s sparsity. This is achieved through the joint learning of the structure of the kernel
and the basis vectors. To solve this learning task, we propose an alternating optimization
algorithm based on proximal gradient procedures that learns both the structure of the ker-

Electronic supplementary material The online version of this article (doi:10.1007/s10994-014-5479-3)
contains supplementary material, which is available to authorized users.

Editors: Toon Calders, Rosa Meo, Floriana Esposito, and Eyke Hullermeier.

N. Lim · C. Auliac
CEA, LIST, 91191 Gif-sur-Yvette Cedex, France
e-mail: nehemy.lim@cea.fr

C. Auliac
e-mail: cedric.auliac@cea.fr

N. Lim · F. d’Alché-Buc (B)
IBISC EA 4526, Université d’Évry-Val d’Essonne, 91000 Évry, France
e-mail: florence.dalche@ibisc.univ-evry.fr; florence.dalche@telecom-paristech.fr

F. d’Alché-Buc
INRIA-Saclay, TAO, LRI umr CNRS 8623, Université Paris Sud, Paris, France

G. Michailidis
Department of Statistics, University of Michigan, Ann Arbor, MI 48109-1107, USA
e-mail: gmichail@umich.edu

123

Author's personal copy

http://dx.doi.org/10.1007/s10994-014-5479-3

Mach Learn

nel and the basis vectors. Results on the DREAM3 competition gene regulatory benchmark
networks of sizes 10 and 100 show the new model outperforms existing methods. Another
application of the model on climate data identifies interesting and interpretable interactions
between natural and human activity factors, thus confirming the ability of the learning scheme
to retrieve dependencies between state-variables.

Keywords Network inference · Operator-valued kernel · Regularization ·
Proximal gradient methods · Vector autoregressive model · Jacobian

1 Introduction

In many scientific problems, high dimensional data with network structure play a key role
in knowledge discovery (Kolaczyk 2009). For example, recent advances in high throughput
technologies have facilitated the simultaneous study of components of complex biological
systems. Hence, molecular biologists are able to measure the expression levels of the entire
genome and a good portion of the proteome and metabolome under different conditions and
thus gain insight on how organisms respond to their environment. For this reason, recon-
struction of gene regulatory networks from expression data has become a canonical problem
in computational systems biology (Lawrence et al. 2010). Similar data structures emerge
in other scientific domains. For instance, political scientists have focused on the analysis
of roll call data of legislative bodies, since they allow them to study party cohesion and
coalition formation through the underlying network reconstruction (Morton and Williams
2010), while economists have focused on understanding companies’ creditworthiness or
contagion (Gilchrist et al. 2009). Understanding climate changes implies to be able to predict
the behavior of climate variables and their dependence relationship (Parry et al. 2007; Liu
et al. 2010). Two classes of network inference problems have emerged simultaneously from
all these fields: the inference of association networks that represent coupling between vari-
ables of interest (Meinshausen and Bühlmann 2006; Kramer et al. 2009) and the inference
of “causal” networks that describe how variables influence each other (Murphy 1998; Perrin
et al. 2003; Auliac et al. 2008; Zou and Feng 2009; Shojaie and Michailidis 2010; Maathuis
et al. 2010; Bolstad et al. 2011; Dondelinger et al. 2013; Chatterjee et al. 2012).

Over the last decade, a number of statistical techniques have been introduced for esti-
mating networks from high-dimensional data in both cases. They divide into model-free and
model-driven approaches. Model-free approaches for association networks directly estimate
information-theoretic measures, such as mutual information to detect edges in the network
(Hartemink 2005; Margolin et al. 2006). Among model-driven approaches, graphical models
have emerged as a powerful class of models and a lot of algorithmic and theoretical advances
have occured for static (independent and identically distributed) data under the assump-
tion of sparsity. For instance, Gaussian graphical models have been thoroughly studied (see
Bühlmann and van de Geer (2011) and references therein) under different regularization
schemes to reinforce sparsity in linear models in an unstructured or a structured way. In order
to infer causal relationship networks, Bayesian networks (Friedman 2004; Lèbre 2009) have
been developed either from static or time-series data within the framework of dynamical
Bayesian networks. In the case of continuous variables, linear multivariate autoregressive
modeling (Michailidis and d’Alché Buc 2013) has been developed with again an important
focus on sparse models. In this latter framework, Granger causality models have attracted an
increasing interest to capture causal relationships.

123

Author's personal copy

Mach Learn

However, to date, few papers in the literature have focused on network inference for contin-
uous variables in the presence of nonlinear dynamics despite the fact that many mechanisms
(e.g. regulatory ones in biology) involve such dynamics. Of special interest are approaches
based on parametric ordinary differential equations (Chou and Voit 2009) that alternatively
learn the structure of the model and its parameters. The most successful approaches are based
on Bayesian Learning (Mazur et al. 2009; Aijo and Lahdesmaki 2009) that allow them to
deal with the stochasticity of biological data, while easily incorporating prior knowledge
and genetic programming (Iba 2008) that provide a population-based algorithm for a sto-
chastic search in the structure space. In this study, we start from a regularization theory
perspective and introduce a general framework for nonlinear multivariate modeling and net-
work inference. Our aim is to extend the framework of sparse linear modeling to that of
sparse nonlinear modeling. In the machine learning community, a powerful tool to extend
linear models to nonlinear ones is based on kernels. The famous “kernel trick” allows one to
deal with nonlinear learning problems by working implicitly in a new feature space, where
inner products can be computed using a symmetric positive semi-definite function of two
variables, called a kernel. In particular, a given kernel allows to build a unique Reproduc-
ing Kernel Hilbert Space (RKHS), e.g. a functional space where regularized models can be
defined from data using representer theorems. The RKHS theory provides a unified frame-
work for many kernel-based models and a principled way to build new (nonlinear) models.
Since multivariate time-series modeling requires defining vector-valued models, we propose
to build on operator-valued kernels and their associated reproducing kernel Hilbert space
theory (Senkene and Tempel’man 1973) that were introduced in machine learning by Mic-
chelli and Pontil (2005) for the multi-task learning problem with vector-valued functions.
This is an active area—see review (Alvarez et al. 2011)—with new applications on vector
field regression (Baldassarre et al. 2010), structured classification (Dinuzzo and Fukumizu
2011), functional regression (Kadri et al. 2011) and link prediction (Brouard et al. 2011).
However, the use of operator-valued kernels in the context of time series is novel.

Building upon our previous work (Lim et al. 2013) that focused on a specific model, we
define a whole family of nonlinear vector autoregressive models based on various operator-
valued kernels. Once an operator-valued kernel-based model is learnt, we compute an empir-
ical estimate of its Jacobian, providing a generic and simple way to extract dependence rela-
tionships among variables. We discuss how a specific operator-valued kernel can produce
not only a good approximation of the system dynamics, but also a flexible and controllable
Jacobian estimate. To obtain sparse networks and get sparse Jacobian estimates, we extend
the sparsity constraint regularly used in linear modeling.

To control smoothness of the model, the definition of the loss function involves an �2-norm
penalty and additionally, may include two different types of penalties, either an �1-norm
penalty or a mixed �1/�2-norm regularization applied to the matrix of parameter vectors,
depending on the nature of the estimation problem. To optimize a loss function that contains
these non-differentiable terms, we develop a general proximal gradient algorithm.

Note that selected operator-valued kernels involve a positive semi-definite matrix as a
hyperparameter. The background knowledge required for its definition is in general not
available, especially in a network inference task. To address this kernel design task together
with learning the other parameters, we introduce an efficient strategy that alternatively learns
the parameter vectors and the positive semi-definite matrix that characterizes the kernel. This
matrix plays an important role regarding the Jacobian sparsity; the estimation procedure for
the matrix parameter also involves an �1 penalty and a positive semi-definiteness constraint.
We show that without prior knowledge on the relationship between variables, the proposed

123

Author's personal copy

Mach Learn

algorithm is able to retrieve the network structure of a given underlying dynamical system
from the observation of its behavior through time.

The remainder of the paper is organized as follows: in Sect. 2, we present the general
network inference scheme. In Sect. 3, we recall elements of RKHS theory devoted to vector-
valued functions and introduce operator-valued kernel-based autoregressive models. Sec-
tion 4 presents the learning algorithm that estimates both the parameters of the model and the
parameters of the kernel. Section 5 illustrates the performance of the model and the algorithm
through extensive numerical work based on both synthetic and real data, and comparison with
state-of-the-art methods.

2 Network inference from nonlinear vector autoregressive models

Let xt ∈ R
d denote the observed state of a dynamical system comprising d state variables.

We are interested in inferring direct influences of a state variable j on other variables i �=
j, (i, j) ∈ {1, . . . , d}2. The set of influences among state variables is encoded by a network
matrix A = (ai j) of size d×d for which a coefficient ai j = 1 if the state variable j influences
the state variable i , and 0 otherwise. Further, we assume that a first-order stationary model
is adequate to capture the temporal evolution of the system under study, which can exhibit
nonlinear dynamics captured by a function h : Rd → R

d :
xt+1 = h(xt)+ ut+1 (1)

where ut+1 is a noise term. Let us call x1, . . . , xN+1 the observed time series of the network
states at regular spaced time points. x1 denotes the initial condition and the whole evolution
of the model depends on it.
Linear models (h(xt) = Bxt) or other parametric models, explicitly involve a matrix that
can be interpreted as a network matrix and its estimation (possibly sparse) can be directly
accomplished. However, for nonlinear models this is a more involved task. Our strategy is to
first learn h from the data and subsequently estimate A using the values of the instantaneous
Jacobian matrix of model h, measured at each time point. The underlying idea is that partial

derivatives ∂h(xt)
i

∂x j
t

reflect the influence of explanatory variable j at time t on the value of the i th

model’s output h(xt)
i . If ∂h(xt)

i

∂x j
t

is high in absolute value, then variable j influences variable

i . Several estimators of A can be built from these partial derivatives. We propose to use the
empirical mean of the instantaneous Jacobian matrix of h using the time series x1, . . . , xN+1.
Then, ∀(i, j) ∈ {1, . . . , d}2, an estimate Ĵ (h) of the Jacobian matrix∇h = J (h) is given by:

Ĵ (h)i j = 1

N

N∑

t=1

∂h(xt)
i

∂x j
t

(2)

In the remainder of the paper, we note Ĵ (h)i j the (i, j) coefficient of the empirical mean of
Jacobian of h and Ĵ (h)i j (t) its value at a given time t . Each coefficient Ĵ (h)i j in absolute
value gives a score to the potential influence of variable j on variable i . To provide a final
estimate of A, these coefficients are sorted and thresholded.

Note that to obtain a high quality estimate of the network, we need a class of functions
h whose Jacobian matrices can be controlled during learning in such a way that they could
provide good continuous approximators of A. In this work, we propose a new class of nonpara-
metric vector autoregressive models that exhibit such properties. Specifically, we introduce
Operator-valued Kernel-based Vector AutoRegressive (OKVAR) models, that constitute a
rich class as discussed in the next section.

123

Author's personal copy

Mach Learn

3 Operator-valued kernels and vector autoregressive models

3.1 From scalar-valued kernel to operator-valued kernel models of autoregresssion

In order to solve the vector autoregression problem set in Eq. (1) with a nonlinear model, one
option is to decompose it into d tasks and use, for each task i , a scalar-valued model hi such as
a kernel-based model. Dataset DN = {(x�, x�+1), � = 1, . . . , N } now reduces into d datasets
of the form D i

N = {(x�, xi
�+1), � = 1, . . . , N }. Each task i is now a regression one that we

can solve by estimating a nonparametric model. For instance, kernel-based regression models
are good candidates for such tasks. A unique feature of these approaches is that they can be
derived from Reproducing Kernel Hilbert Space theory that offers a rigorous background for
regularization. For instance, kernel-ridge regression and Support Vector Regression provide
consistent estimators for the model, as long as the chosen kernel is universal. Then, for each
i = 1, . . . , d , a model based on a positive definite kernel k : Rd×R

d → R can be written as:

x̂ i
t+1 = hi (xt) =

N∑

�=1

wi
�k(x�, xt), (3)

where wi is the parameter vector attached to model i . Although this decomposition is well jus-
tified when the covariance matrix of noise ut is diagonal, in the general case, the d regression
tasks are not independent or even uncorrelated. The purpose of this work is therefore to extend
such approaches to the vector autoregression problem in order to provide (i) a general family of
nonparametric models, and (ii) suitable models for network inference by Jacobian estimation.
We now aim to predict the state vector of a dynamical system xt+1 at time t+1, given its state xt

at time t using kernel-based models appropriate for vectors. As a vector autoregressive model
is a vector-valued function, the RKHS theory based on scalar-valued kernels does not apply.
However, if the kernel is chosen to be operator-valued e.g. matrix-valued in our setting, then
RKHS theory devoted to operator-valued kernels provides a similar framework to build mod-
els and to justify their use. In the following, we introduce the basic building blocks of operator-
valued kernel-based theory and notations to extend (3) into models of the following form:

x̂t+1 = h(xt) =
N∑

�=1

K (xt , x�)w�, (4)

where K is an operator-valued kernel to be defined in next section and w�, � = 1, . . . , N are
parameter vectors of dimension d .

3.2 Basics of operator-valued kernel-based theory

In RKHS theory with operator-valued kernels, we consider functions with input in some
set X and output with vector values in some given Hilbert space Fy . For completeness,
we first describe the general framework and then come back to the case of interest, namely
X = Fy = R

d . Denote by L(Fy), the set of all bounded linear operators from Fy to itself.
Given A ∈ L(Fy), A∗ denotes its adjoint. Then, an operator-valued kernel K is defined as
follows:

Definition 1 (Operator-valued kernel Senkene and Tempel’man 1973; Caponnetto et al.
2008) Let X be a set and Fy a Hilbert space. Then, K : X ×X → L(Fy) is a kernel if:

– ∀(x, z) ∈ X ×X , K (x, z) = K (z, x)∗
– ∀m ∈ N, ∀{(xi , yi), i = 1, . . . , m} ⊆ X ×Fy,

∑m
i, j=1〈yi , K (xi , x j)y j 〉Fy ≥ 0

123

Author's personal copy

Mach Learn

Let us consider the case of regression, we denote by DN = {(x�, y�), � = 1, . . . , N } ⊆
X ×Fy the data set under consideration. We are interested in a new family of models of
the form:

h(·) =
N∑

�=1

K (·, x�)c� (5)

where the coefficients c�, � = {1, . . . , N } are vectors in the Hilbert space Fy . For vector
regression in R

d , the operator-valued kernel (OVK) becomes a matrix-valued one. If this
matrix is diagonal, the model reduces to d independent models with scalar outputs and
there is no need for a matrix-valued kernel. In other cases, when we assume that the different
components of the vector-valued function are not independent and may share some underlying
structure, a non-diagonal matrix-valued kernel allows to take into consideration dependencies
between the components of the input vectors. Initial applications of matrix-valued kernels
deal with structured output regression tasks, such as multi-task learning (Micchelli and Pontil
2005), structured classification (Dinuzzo and Fukumizu 2011) and link prediction (Brouard
et al. 2011). In the following, we propose to apply this framework to autoregression. We
examine different matrix-valued kernels as well as different loss functions and discuss their
relevance for network inference.

3.3 The OKVAR family

Let us now fix X = Fy = R
d . Recall that the objective is to estimate a vector autoregressive

model. Given the observed d−dimensional time series x1, . . . , xN+1 that we use as the
training dataset DN = {(x1, x2), . . . , (xN , xN+1)}, the nonparametric model h is defined as

x̂t+1 = h(xt ;DN) =
N∑

�=1

K (xt , x�)c� (6)

where K (·, ·) is a matrix-valued kernel and each c� (� ∈ {1, . . . , N }) is a vector of dimension
d . In the following, we denote by C ∈M d,N , the matrix composed of the N column vectors
c� of dimension d . We call Operator-valued Kernel Vector Autoregression (OKVAR), the
vector autoregressive models of the form given by Eq. (6). In this study, we focus on nonlinear
kernels by considering three kernel candidates that fulfill the properties of an operator-valued
kernel, one of them being universal.

Let us recall the definition of the scalar-valued Gaussian kernel kGauss : Rd × R
d → R:

kGauss(x, z) = exp(−γ ||x− z||2). Please notice that in the special case d = 1, kGauss(x, z)
reduces to exp(−γ (x − z)2).

As a baseline, we first consider the Gaussian transformable kernel which extends the
standard Gaussian kernel to the matrix-valued case. If x is a vector, we denote xm its mth
coordinate. Then the Gaussian transformable kernel is defined as follows:

Definition 2 (Gaussian (transformable) kernel)

∀(x, z) ∈ R
d × R

d ,∀(i, j) ∈ {1, . . . , d}2, KGauss(x, z)i j = kGauss(xi , z j) (7)

Interestingly, each (i, j)-coefficient of the kernel KGauss compares the i th coordinate of x
to the j th coordinate of z, allowing a richer comparison between x and z. For the sake of
simplicity, we will call this kernel the Gaussian kernel in the remainder of the paper. Note
that the Gaussian kernel depends on only one single hyperparameter γ . It gives rise to the
following Gaussian OKVAR model.

123

Author's personal copy

Mach Learn

Definition 3 (Gaussian OKVAR)

hGauss(xt) =
N∑

�=1

KGauss(xt , x�)c� (8)

An interesting feature of the Gaussian kernel-based OKVAR model is that each coordinate
i of the vector model hGauss(xt)

i can be expressed as a linear combination of nonlinear
functions of variables j = 1, . . . , d: hGauss(xt)

i =∑
�

∑
j exp(−γ (xi

t − x j
�)2)c j

� .
Decomposable kernels are another class of kernels, first defined by Micchelli and Pontil

(2005) to address multi-task regression problems and structured classification. When based
on Gaussian kernels, they are defined as follows:

Definition 4 (Decomposable (Gaussian) kernel) Let B be a positive semi-definite matrix
of size d × d .

∀(x, z) ∈ R
d × R

d , Kdec(x, z) = kGauss(x, z)B (9)

In this kernel, B is related to the structure underlying the outputs: B imposes dependence
amongst selected outputs. This kernel was shown to be universal by Caponnetto et al. (2008),
e.g. the induced RKHS is a family of universal approximators. The decomposable Gaussian
OKVAR model is then defined as follows:

Definition 5 (Decomposable Gaussian OKVAR)

hdec(xt) =
N∑

�=1

exp(−γ ||xt − x�||2)Bc� (10)

Let now Kdec be a decomposable Gaussian kernel with scalar parameter γ1 and matrix
parameter B and KGauss be a Gaussian kernel with scalar parameter γ2. As proposed in Lim et
al. (2013), we combine the Gaussian kernel and the decomposable kernel with the Hadamard
product to get a kernel that involves nonlinear functions of single coordinates of the input
vectors, while imposing some structure to the kernel through a positive semi-definite matrix
B. The resulting kernel is called the Hadamard kernel.

Definition 6 (Hadamard kernel)

∀ (x, z) ∈ R
d × R

d , K Hadamard(x, z) = Kdec(x, z) ◦ KGauss(x, z) (11)

where ◦ denotes the Hadamard product for matrices.

The resulting kernel K Hadamard possesses the kernel property, i.e:

Proposition 1 The kernel defined by (11) is a matrix-valued kernel.

Proof A Hadamard product of two matrix-valued kernels is a matrix-valued kernel [propo-
sition 4 in Caponnetto et al. (2008)]. �

The Hadamard OKVAR model has the following form:

Definition 7 (Hadamard OKVAR)

h Hadamard(xt) =
N∑

�=1

exp(−γ1||xt − x�||2)B ◦ KGauss(xt , x�)c� (12)

123

Author's personal copy

Mach Learn

3.4 Jacobians of the OKVAR models

As mentioned in the introduction, the network structure will be inferred by the empirical
mean of the instantaneous Jacobian matrices Ĵ (h)(t) of h over observed time-points. For
any matrix-valued kernel-based model h, at any given time point t , for a given target state
variable i , we have:

∀ j ∈ {1, . . . , d}, Ĵ (h)i j (t) = ∂h(xt ; x1, . . . , xt , . . . , xN)i

∂x j
t

=
N∑

�=1

∂(K (xt , x�)c�)
i

∂x j
t

(13)

Hence, each component of h should be a function of the state variables in such a way that
the coefficients of the Jacobian reflect the dependence of the output component on some of
the state variables. Due to our assumption of nonlinear dynamics of the underlying system,
the kernel should contain nonlinear functions of the state variables. Moreover, a relevant
matrix-valued kernel-based model should allow the sparsity of the Jacobian to be controlled
through the values of its parameters. The kernels proposed previously in Sect. 3.3 give rise
to the following expressions for instantaneous Jacobian.

Gaussian OKVAR. The (i, j)th entry of the Jacobian at time t for the Gaussian-OKVAR
model (8) is:

Ĵ (hGauss)i j (t) = 2γ (xi
t − x j

t) exp
(
−γ (xi

t − x j
t)2

)
c j

t ,

which implies that the c j
t ’s have the same impact, no matter what the target variable i is.

As a consequence, it becomes impossible to control those parameters for network inference
purposes.

Decomposable OKVAR. If we now consider the decomposable model, hdec, defined in (10),
the corresponding (i, j)th term of the Jacobian is given by:

Ĵ (hdec)i j (t) =
N∑

�=1

∂exp(−γ ||xt − x�||2)
∂x j

t

(Bc�)
i (14)

which implies that the nonlinear term involved in the matrix-valued kernel does not differ
from one pair (i, j) to another. Then, it is impossible to control specific values of the Jacobian
matrix using B or the c�’s.

Hadamard OKVAR. Finally, we obtain a richer class of Jacobians, more suitable for the
inference task at hand, if we use Hadamard OKVAR defined in (12) for which the entries of
its Jacobian at time t Ĵ (h Hadamard)i j (t) = Ĵi j (t) are given by:

Ĵi j (t) =
N∑

�=1

∂exp(−γ1||xt − x�||2)
∂x j

t

(B ◦ KGauss(xt , x�)c�)
i + exp(−γ1||xt − x�||2)

×∂(B ◦ KGauss(xt , x�)c�)
i

∂x j
t

123

Author's personal copy

Mach Learn

which after some calculations reduces to:

Ĵi j (t) = 2γ2bi j (xi
t − x j

t) exp
(
−γ2(xi

t − x j
t)2

)
c j

t

−2γ1

∑

��=t

exp(−γ1||xt − x�||2)(x j
t − x j

�)

d∑

p=1

bip exp
(
−γ2(xi

t − x p
�)2

)
cp
�

(15)

The obtained expression exhibits some interesting characteristics: if we choose γ1 very close
to 0 (for γ1 = 0, kGauss is no more a kernel), then kGauss(xt , x�) is close to one for any pair
(xt , x�) and the second term in (15) is approximatively 0. Then, the value of the Jacobian for
variables (i, j) is controlled by the value of bi j , the (i, j)th entry of B: hence, B is capable of
imposing structure in the model. For example, for a given pair of variables (i, j), if bi j = 0,

then irrespective of the values of c j
� , � = 1, . . . , N , the corresponding Jacobian coefficient

will be approximately zero as well since γ1 is very close to 0; i.e variable j does not influence
variable i . Conversely, a non-zero coefficient bi j does not reflect influence from j to i since
the c� parameters can still set the corresponding coefficient in the Jacobian to zero. Thus,
the parameter B captures some of the structure of the underlying network, together with C .
Note that the vectors c�’s and the cross-difference between coordinates in Eq. (15) allow us
to have non-symmetric Jacobian matrices, suitable for reconstructing directed graphs.

4 Learning OKVAR with proximal gradient algorithms

4.1 Learning C for fixed kernel

In some applications, kernel K may be already specified. For instance, the transformable
Gaussian kernel depends on a parameter γ2 that might be preset. For a decomposable or a
Hadamard kernel, the matrix B may be provided a priori. Thus, learning the resulting OKVAR
model boils down to learning the matrix of model parameters C . We denote the model hC to
highlight that dependence. To estimate C , we employ the following general regularized loss
function:

L (C) =
N∑

t=1

||hC (xt)− xt+1||2 + λh ||hC ||2H +Ω(C) (16)

The squared norm ||hC ||2H =
∑N

i, j=1 cT
i K (xi , x j)c j plays the role of a weighted �2 norm

on C . When Ω(C) = 0, minimizing (16) corresponds to solving the kernel ridge regression
problem. In this case, C can be computed in closed-form:

c = (K + λh I d)−1x2:N+1 (17)

where c is the vectorized form of matrix C , K = (K (x�, xt))�,t ∈ M Nd is the block-
Gram matrix computed on pairs of data (x�, xt), �, t = 1 . . . N and x2:N+1 ∈ R

Nd is the
concatenated vector of data x2, . . . , xN+1. However this solution is usually not sparse. In
order to control the sparsity of the model, necessary for obtaining a sparse Jacobian, one may
introduce an �1-norm constraint on C , that is Ω1(C) = λC‖C‖1 where ‖ · ‖1 denotes both
the �1 norm of a vector and that of the vectorized form of a matrix. Then the loss function
becomes analogous to the one used in elastic-net type regularized models in the scalar case.

123

Author's personal copy

Mach Learn

In nonparametric approaches, one key issue is to control model complexity. A way to
achieve it is to make use of a few parameters c�, which implies that only a few data points are
involved in the model. In analogy to Support Vector Machines, we denote by Support Vectors
data corresponding to a null vector c�. Regularizing by the �1-norm cannot set a whole vector
c� to zero, i.e. exhibit support vectors. To achieve this goal, a structured sparsity strategy
is more appropriate by considering the columns of C , i.e. vectors c�’s, as a partition of the
matrix coefficients. Such a constraint Ωstruct may take the following form:

Ωstruct (C) = λC

N∑

�=1

w�‖c�‖2 (18)

As it is defined in (18), Ωstruct is the so-called mixed �1/�2-norm. First used in Yuan and
Lin (2006) for the group lasso formulation, this norm exhibits some interesting features : it
behaves like an �1-norm on each vector c� while within each vector c�, the coefficients are
subject to an �2-norm constraint. Note that w�’s are positive weights whose values depend
on the application.

Hence, (16) is a convex loss function that is a sum of two terms: fC which is differentiable
with respect to C and gC which is non-smooth, but nevertheless convex and subdifferentiable
with respect to C :

L (C) =
∑N

t=1

∥∥∥∥
∑N

�=1
K (xt , x�)c� − xt+1

∥∥∥∥
2

+ λh

∑N

t,�=1
cT

t K (xt , x�)c�

︸ ︷︷ ︸
fC (C)

+Ω(C)︸ ︷︷ ︸
gC (C)

This leads us to employ a proximal gradient algorithm, which is appropriate for solving this
problem (see Combettes and Pesquet (2011) and references therein). Its steps are outlined in
Algorithm 1 which relies on the following:

– LC is a Lipschitz constant of ∇C fC , the derivative of fC for variable C
– For s > 0, the proximal operator of a function g applied to some v ∈ R

Nd is given by:
proxs(g)(v) = argminu

{
g(u)+ 1

2s ||u− v||2}
– Intermediary variables t (m) and y(m) in Step 2 and Step 3 respectively are introduced to

accelerate the proximal gradient method (Beck and Teboulle 2010).

Algorithm 1 Minimize (16)

Inputs : C0 ∈M Nd ;M ;εc;LC
Initialize : m = 0; y(1) = c(0); t(1) = 1; STOP=false
while m < M and STOP=false do

Step 0: m ← m + 1

Step 1: c(m) = prox 1
LC

(gC)
(

y(m) − 1
LC
∇y(m) fC (y(m))

)

if ||c(m) − c(m−1)|| ≤ εc then
STOP:=true

else

Step 2: t(m+1) = 1+
√

1+4t(m)2

2

Step 3: y(m) = c(m) + t(m)−1
t(m+1)

(
c(m) − c(m−1)

)

end if
end while

123

Author's personal copy

Mach Learn

Let G be a partition of the indices of v ∈ R
Nd , for a given subset of indices I ∈ G ,

the proximal operator of Ω1 or Ωstruct is the elementwise shrinkage or soft-thresholding
operator Ts : RNd → R

Nd :

Ts(v)I =
(

1− s

‖vI ‖2
)

+
vI

where vI ∈ R
|I | denotes the coefficients of v indexed by I . Then, the proximal gradient term

in the mth iteration is given by:

prox 1
LC

(gC)

(
y(m) − 1

LC
∇y(m) fC (y(m))

)

I�

= Ts�

(
y(m) − 1

LC
∇y(m) fC (y(m))

)

I�

For gC = Ωstruct , s� = λC w�

LC
and I�, � = 1, . . . , N is the subset of indices corresponding

to the �-th column of C , while for gC = Ω1, s� = λC
LC

and I�, � = 1, . . . , Nd is a singleton
corresponding to a single entry of C .

We also need to calculate LC a Lipschitz constant of ∇C f . We can notice that fC (C) can
be rewritten as:

fC (C) = ‖Kc − x2:N+1‖2 + λhcT Kc

Hence,
∇C fC (C) = 2K([K + λh I d]c − x2:N+1)

Using some algebra, we can establish that:
For c1, c2 ∈ R

Nd ,

||∇C fC (c1)−∇C fC (c2)|| ≤ 2ρ
(
K2 + λhK

)
︸ ︷︷ ︸

LC

‖c1 − c2‖

where ρ(K2 + λhK), is the largest eigenvalue of K2 + λhK.

Remark It is of interest to notice that Algorithm 1 is very general and may be used as long
as the loss function can be split into two convex terms, one of which is differentiable.

4.2 Learning C and the kernel

Other applications require learning kernel K . For instance, in order to tackle the network
inference task, one may choose a Gaussian decomposable kernel Kdec or a Hadamard kernel
K Hadamard . When bandwidth parameters γ1 and γ2 are preset, the only kernel hyperparameter
to be learned is the positive semi-definite matrix B that imposes structure in the model. This
leads to the more involved task of simultaneously learning the matrix of the model parameters
C , as well as B. Thus, we aim to minimize the following loss function for the two models
hdec and h Hadamard :

L (B, C) =
N∑

t=1

||h B,C (xt)− xt+1||2 + λh ||h B,C ||2H +Ω(C)+	(B) (19)

with Ω(C) a sparsity-inducing norm (Ω1 or Ωstruct), Ω(B) = λB ||B||1 and subject to the
constraint that B ∈ S +d where S +d denotes the cone of positive semi-definite matrices of

size d × d . For fixed Ĉ , the squared norm of h B,Ĉ imposes a smoothing constraint on B,
while the �1 norm of B aids in controlling the sparsity of the model and its Jacobian.

123

Author's personal copy

Mach Learn

Further, for fixed B̂, the loss function L (B̂, C) is convex in C and conversely, for fixed
C , L (B, Ĉ) is convex in B. We propose an alternating optimization scheme to minimize the
overall loss L (B, C). Since both loss functions L (B̂, C) and L (B, Ĉ) involve a sum of two
terms, one being differentiable and the other being sub-differentiable, we employ proximal
gradient algorithms to achieve the minimization.

For fixed B̂, the loss function becomes:

L (B̂, C) =
N∑

t=1

||h B̂,C (xt)− xt+1||2 + λh ||h B̂,C ||2H +Ω(C), (20)

while for given Ĉ , it is given by:

L (B, Ĉ) =
N∑

t=1

||h B,Ĉ (xt)− xt+1||2 + λh ||h B,Ĉ ||2H + λB ||B||1 (21)

In summary, the general form of the algorithm is given in Algorithm 2.

Algorithm 2 Minimize (19)

Inputs : B0 ∈ S+d ;M; εB ; εC
Initialize : m = 0; STOP=false
while m < M and STOP=false do

Step 1: Given Bm , minimize the loss function (20) and obtain Cm
Step 2: Given Cm , minimize the loss function (21) and obtain Bm+1
if m > 0 then

STOP:=||Bm+1 − Bm || ≤ εB and ||Cm − Cm−1|| ≤ εC
end if
Step 3: m ← m + 1

end while

At iteration m, Bm is fixed, and thus kernel K is defined. Hence, estimation of Cm in Step
1 boils down to applying Algorithm 1 to minimize (20).

4.2.1 Learning the matrix B for fixed C

For given parameter matrix C , the loss function L (B, Ĉ) is minimized subject to the con-
straint that B is positive semi-definite.

L (B, Ĉ) =
∑N

t=1
||h B,Ĉ (xt)− xt+1||2 + λh ||h B,Ĉ ||2H︸ ︷︷ ︸

fB (B)

+ λB ||B||1︸ ︷︷ ︸
gB,1(B)

+ 1S+d
(B)

︸ ︷︷ ︸
gB,2(B)

(22)

where 1S+d
denotes the indicator function : 1S+d

(B) = 0 if B ∈ S +d , +∞ otherwise.
Note that fB is differentiable with respect to B, while both g1,B and g2,B are non-smooth,

but convex and sub-differentiable with respect to B. When there is more than one non-smooth
function involved in the loss function to minimize, we cannot use the same proximal gradient
algorithm as delineated in Algorithm 1. We decide to adopt a strategy proposed by Raguet
et al. (2011), where the authors generalize the classic forward-backward splitting algorithm
to the case of an arbitrary number of non-smooth functions. The method has recently proven
successful for the estimation of matrices with sparsity and low rank constraints (Richard et
al. 2012). Our algorithm is presented below.

123

Author's personal copy

Mach Learn

Algorithm 3 Minimize (21)

Inputs : M; ε; εL ; εB ; Z (0)
1 , Z (0)

2 ∈ S+d ;α ∈ (0, 1); ∀m ∈ N, ηm ∈ (0, 2/L B); ∀m ∈ N, μm ∈ Iμ

Initialize : m = 0; B0 = αZ (0)
1 + (1− α)Z (0)

2 ; STOP=false
while m < M and STOP=false do

Step 1.1: Z (m+1)
1 = Z (m)

1 + μm

(
prox ηm

α
(gB,1)

(
2Bm − Z (m)

1 − ηm∇B fB (Bm)
)
− Bm

)

Step 1.2: Z (m+1)
2 = Z (m)

2 + μm

(
prox(gB,2)

(
2Bm − Z (m)

2 − ηm∇B fB (Bm)
)
− Bm

)

Step 2: Bm+1 = αZ (m+1)
1 + (1− α)Z (m+1)

2
if L (Bm+1, Ĉ) ≤ ε and |L (Bm+1, Ĉ)−L (Bm , Ĉ)| ≤ εL and ||Bm+1 − Bm ||F ≤ εB then

STOP:=true
end if
Step 3: m ← m + 1

end while

Two proximal operators need to be computed. The proximal operator of g1,B is the
soft-thresholding operator while the proximal operator corresponding to the indicator func-
tion 1S+d

is the projection onto the cone of positive semidefinite matrices: for Q ∈
Sd , prox(gB,2)(Q) = argminB∈S+d ||B − Q||F . Sequence (Bm) is guaranteed to converge
under the following assumptions [Theorem 2.1 in Raguet et al. (2011)]:
Set limηm = η,

(A) (i) 0 < limμm ≤ limμm < min
(

3
2 ,

1+2/(L Bη)
2

)

(ii)
∑+∞

m=0 ‖u2,m‖ < +∞, and for i ∈ {1, 2}, ∑+∞
m=0 ‖u1,m,i‖ < +∞

(B) (i) 0 < limηm ≤ η < 2
L B

(ii) Iμ = (0, 1]
where for i ∈ {1, 2}, u1,m,i denotes the error at iteration m when computing the proxi-
mal operator prox(gB,i) and u2,m is the error when applying ∇B fB to its argument. These
conditions are easily met by appropriate selection of α, ηm and μm as we do in the next
section.

5 Results

5.1 Implementation

The performance of the developed OKVAR model family and the proposed optimization
algorithms were assessed on two tracks: using simulated data from a biological system
(DREAM3 challenge data set) and real climate data (Climate data set). These algorithms
include a number of tuning parameters. Specifically, in Algorithm 3, we set Z (0)

1 = Z (0)
2 =

B0 ∈ S +d , α = 0.5 and μm = 1. Parameters of the kernels were also fixed a priori:
specifically, parameter γ was set to 0.2 for a transformable Gaussian kernel and to 0.1 for a
decomposable Gaussian kernel. In the case of a Hadamard kernel, two parameters need to be
chosen: parameter γ2 of the transformable Gaussian kernel remains unchanged (γ2 = 0.2).
On the other hand, as discussed in Sect. 3.4, parameter γ1 of the decomposable Gaussian
kernel is fixed to a low value (γ1 = 10−5) since it does not play a key role in the network
inference task.

123

Author's personal copy

Mach Learn

5.2 DREAM3 dataset

We start our investigation by considering data sets obtained from the DREAM3 challenge
(Prill et al. 2010). DREAM stands for Dialogue for Reverse Engineering Assessments and
Methods (http://wiki.c2b2.columbia.edu/dream/index.php/The_DREAM_Project) and is a
scientific consortium that organizes challenges in computational biology and especially for
gene regulatory network inference. In a gene regulatory network, a gene i is said to reg-
ulate another gene j if the expression of gene i at time t influences the expression of
gene j at time t + 1. The DREAM3 project provides realistic simulated data for sev-
eral networks corresponding to different organisms (e.g. E. coli, Yeast, etc.) of different
sizes and topological complexity. We focus here on size-10, size-50 and size-100 networks
generated for the DREAM3 in silico challenges. Each of these networks corresponds to
a subgraph of the currently accepted E. coli and S. cerevisiae gene regulatory networks
and exhibits varying patterns of sparsity and topological structure. They are referred to
as E1, E2, Y1, Y2 and Y3 with an indication of their size. The data were generated by
imbuing the networks with dynamics from a thermodynamic model of gene expression and
Gaussian noise. Specifically, 4, 23 and 46 time series consisting of 21 points were avail-
able respectively for size-10, size-50 and size-100 networks. We generated additional time
series and extended their lengths up to 50 time points to study the behavior of the algorithm
in various conditions. For that purpose, we used the same tool that generated the previ-
ously obtained time series, an open-source software called GeneNetWeaver (Schaffter et al.
2011), the generator that provided the DREAM3 competition with the network inference
challenges.

In all the conducted experiments, we assess the performance of our model using the area
under the ROC curve (AUROC) and under the Precision-Recall curve (AUPR) for regulation
ignoring the sign (positive vs negative influence). The interested reader may however refer
to the Supplementary Material where we provide additional results regarding this particular
feature. The selected values for the hyperparameters for the penalty components λh, λC and
λB are displayed in Table 1. For the DREAM3 data sets we also show the best results obtained
from other competing teams using only time course data. The challenge made available other
data sets, including ones obtained from perturbation (knock-out/knock-down) experiments,
as well as observing the organism in steady state, but these were not considered in the results
shown in the ensuing tables.

Further, several time series may also be available, because of multiple related initial
conditions and/or technical replicates. In this case, the procedure is repeated accordingly.
Hence, the predictions of each run on each time series are combined to build a consensus
network. Specifically, for each run, we compute a rank matrix as described in Sect. 2. Then
the coefficients of these matrices are averaged and eventually thresholded to obtain a final
estimate of the adjacency matrix.

Table 1 Selected hyperparameters of OKVAR for DREAM3 size-10 and size-100 data sets

Size-10 Size-100

E1 E2 Y1 Y2 Y3 E1 E2 Y1 Y2 Y3

λh 1 1 1 1 1 10 1 1 1 1

λC 0.01 1 1 1 1 10 0.01 100 100 100

λB 0.1 1 10 0.01 0.01 10 1 1 1 1

123

Author's personal copy

http://wiki.c2b2.columbia.edu/dream/index.php/The_DREAM_Project

Mach Learn

Table 2 Synthetic table of studied OKVAR models

OKVAR models

h Ridge
Gauss h

�1
Gauss h

�1/�2
Gauss h

�1
dec h

�1/�2
dec h

�1
Hadamard h

�1/�2
Hadamard

Kernel Transformable Gaussian Decomposable Gaussian Hadamard

Loss Eq. (16) Eq. (19)

Ω(C) 0 Ω1 Ωstruct Ω1 Ωstruct Ω1 Ωstruct

Table 3 Consensus AUROC and AUPR (given in %) for the DREAM3 size-10 networks using the DREAM3
original data sets (4 time series of 21 points)

OKVAR models AUROC AUPR

E1 E2 Y1 Y2 Y3 E1 E2 Y1 Y2 Y3

h Ridge
Gauss 68.8 37.7 62.1 68.6 66.7 15.6 11.2 15.5 46.9 32.9

h
�1
Gauss 69.3 38.0 61.9 69.3 66.7 15.7 11.3 15.2 47.4 32.8

h
�1/�2
Gauss 68.7 37.1 62.4 68.6 66.7 15.5 11.1 15.6 47.5 32.6

h
�1
dec 67.0 68.5 38.2 45.4 38.3 23.6 20.8 7.4 21.1 16.8

h
�1/�2
dec 65.9 47.8 45.3 56.6 38.5 23.1 14.0 8.3 28.5 16.8

h
�1
Hadamard 81.2 46.2 47.7 76.2 70.5 23.5 12.7 8.7 50.1 39.5

h
�1/�2
Hadamard 81.5 78.7 76.5 70.3 75.1 32.1 50.1 35.4 37.4 39.7

Studied OKVAR models refer to Table 2. The numbers in boldface are the maximum values of each column

5.2.1 Comparison between OKVAR models

Next, we propose to compare the OKVAR models outlined in Table 2 and investigate how
relevant these models are regarding the network inference task.

For the mixed �1/�2-norm regularization, we need to define coefficients w�. As the
observed time-course data correspond to the response of a dynamical system to some given
initial condition, w� should increase with �, meaning that we put more emphasis on the first
time-points. We thus propose to define w� as follows : w� = 1− exp(−(�− 1)).

Table 3 shows that the transformable Gaussian and the decomposable Gaussian kernels
can achieve good performance on selected DREAM3 size-10 datasets, although none of these
two kernels alone can faithfully recover all of the networks, no matter the type of sparsity-
inducing norms employed. On the other hand, the Hadamard kernel-based model learnt with
a mixed �1/�2-norm regularization term, consistently outranks other OKVAR models. On
the whole, these results tend to corroborate the discussion presented in Sect. 3.4. In the
remainder of the paper, we focus on Hadamard kernel-based models that will be referred to
as OKVAR-Prox.

5.2.2 Effects of hyperparameters, noise, sample size and network size

Next, we study the impact of different combinations of parameters including the sample
size of the dataset (number of time points), the number of time series, the noise level and
hyperparameters λC and λB .

123

Author's personal copy

Mach Learn

Noise

T
im

e
P

oi
nt

s

0 0.05 0.1 0.15 0.2 0.25 0.3

6

8

10

12

14

16

18

20

22 0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

(a)
Noise

T
im

e
P

oi
nt

s

0 0.05 0.1 0.15 0.2 0.25 0.3

6

8

10

12

14

16

18

20

22
0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

(b)

Fig. 1 Average consensus AUROC (a) and AUPR (b) on the 5 DREAM3 size-10 networks using the 4
DREAM3 original time series for different numbers of time points (N = 7, 11, 14, 17 and 21) and different
noise levels (standard deviations σ = 0, 0.05, 0.1, 0.15, 0.2 and 0.3)

Sample Size and Noise. We investigate the effect of both the noise and the length of time series
on the algorithm’s capability to reconstruct DREAM3 size-10 networks. For that purpose,
we applied OKVAR-Prox on truncated time series consisting of N = 7, 11, 14, 17 and
21 time points, to which we added a zero-mean Gaussian noise with standard deviations
σ = 0, 0.05, 0.1, 0.15, 0.2 and 0.3. As expected, performance gets worse with increasing
levels of noise and decreasing number of time points (Fig. 1).

Sample Size for DREAM3 size-100 networks. We next study the way OKVAR is impacted
in the less favorable case of large networks. The algorithm’s performance for DREAM3
size-100 networks drops substantially with the very limited amount of data (21 time points)
provided by the DREAM3 challenge, compared to size-10 networks’ results. For this more
involved task, we used the GeneNetWeaver software to extend the original time series with
additional time points. Supplying the model with longer time series helps to slightly improve
the network inference task, especially in terms of AUROC (Fig. 2). However as the dynamical
systems under study (generated by DREAM3 consortium) are stable, a larger number of time
points does not have a great impact here, especially on AUPR.

Network size and Noise. In order to assess the robustness of our method, we evaluate OKVAR-
Prox for different network sizes and various levels of noise and compare its performance with
a LASSO-based approach (Table 4), which relies on an �1-regularized linear least squares
regression model of the form xi

t+1 = βT xt , applied to each dimension (gene i). An edge is
assigned for each nonzero β coefficient.

Table 4 first indicates that both algorithms’ performances deteriorate with increasing
network sizes. Second, OKVAR-Prox clearly outranks the LASSO both in terms of AUROC
and AUPR for any configuration of level noises and network sizes. Indeed, for a given size,
OKVAR-Prox performs quite well in the presence of high levels of noise while the LASSO
is strongly impacted by the noise, which advocates for OKVAR’s robustness.

Network size and Number of time series. Figure 3a, b show that the network inference task
is better performed when the algorithm is supplied with an increasing number of time series.
The improvement is remarkably significant for size-10 networks.

123

Author's personal copy

Mach Learn

10 15 20 25 30 35 40 45 50

0.5

0.52

0.54

0.56

0.58

0.6
A

U
R

O
C

Number of time points
10 15 20 25 30 35 40 45 50

0.028
0.03
0.032
0.034
0.036
0.038

A
U

P
R

Fig. 2 Average consensus AUROC (blue line) and AUPR (green line) on the 5 DREAM3 size-100 networks
using the data sets generated by GeneNetWeaver (20 time series) for different numbers of time points (N =
11, 21, 30, 40 and 50)

Table 4 Consensus AUROC and AUPR (given in %) obtained by OKVAR-Prox and the LASSO for DREAM3
E1 networks using the DREAM3 original data sets (4, 23 and 46 time series of 21 points for size-10, size-50,
and size-100 E1 respectively) and different noise levels (standard deviations σ = 0, 0.05, 0.1, 0.15, 0.2 and
0.3)

AUROC AUPR

Size-10 E1

Noise (σ) 0 0.05 0.1 0.15 0.2 0.3 0 0.05 0.1 0.15 0.2 0.3

OKVAR-Prox 81.5 67.9 72.0 75.2 72.4 74.4 32.1 20.7 21.2 24.3 22.7 21.4

LASSO 69.5 64.2 61.7 43.0 50.7 48.8 17.0 13.9 17.8 9.0 10.1 10.7

Size-50 E1

Noise (σ) 0 0.05 0.1 0.15 0.2 0.3 0 0.05 0.1 0.15 0.2 0.3

OKVAR-Prox 66.4 67.3 68.6 69.2 69.8 70.9 4.1 4.3 5.0 5.9 6.6 6.9

LASSO 52.8 54.5 46.0 54.9 45.9 50.7 2.9 2.8 2.1 3.5 2.2 2.6

Size-100 E1

Noise (σ) 0 0.05 0.1 0.15 0.2 0.3 0 0.05 0.1 0.15 0.2 0.3

OKVAR-Prox 65.4 56.1 56.5 56.4 57.2 58.0 4.6 1.7 1.7 1.7 1.7 1.8

LASSO 52.2 54.3 53.3 47.2 51.3 51.5 1.4 1.6 1.4 1.2 1.3 1.3

The numbers in boldface are the maximum values of each column

Hyperparameters. We also studied the impact of the hyperparameters. We notice that both
AUROC and AUPR values are not that sensitive to small changes in the hyperparameters
(Table 5), which strongly indicates that it is sufficient to pick them within a reasonable range
of values.

123

Author's personal copy

Mach Learn

0 10 20 30 40 50
0.65

0.7

0.75

0.8

0.85

0.9
A

U
R

O
C

size−10 E1

0 10 20 30 40 50
0.54

0.56

0.58

0.6

0.62

Number of time series

A
U

R
O

C

size−50 E1
size−100E1

(a)

0 10 20 30 40 50

0.2

0.25

0.3

0.35

0.4

0.45

0.5

A
U

P
R

size−10 E1

0 10 20 30 40 50
0.01

0.015

0.02

0.025

0.03

0.035

Number of time series
A

U
P

R

size−50 E1
size−100E1

(b)
Fig. 3 Consensus AUROC (a) and AUPR (b) for size-10 (blue line), size-50 (red line) and size-100 (green
line) DREAM3 E1 network using 1 up to 50 time series of 50 points respectively. Standard deviations (error
bars) correspond to different combinations of time series

Table 5 Consensus AUROC and AUPR (given in %) for the DREAM3 size-10 E1 network using the DREAM3
original data sets (4 time series of 21 points) for different combinations of hyperparameters (λC , λB)

λB

10−2 10−1 1

λC 10−2 79.1/31.5 81.5/32.1 73.5/21.2

10−1 79.7/36.5 76.9/21.6 66.7/25.9

1 78.1/25.9 71.0/20.7 61.4/16.0

λh = 1

5.2.3 Choice of penalty component

In order to study the impact of the type of regularization employed, we assessed OKVAR’s
performance on the following three network tasks: size-10, size-50 and size-100 E1 networks.

Figure 4a–c highlight that the choice of the regularization depends on the size of the
problem. Specifically, a mixed �1/�2-norm regularization helps in the inference task when
the ratio between the number of measurements and the network size is favorable, which is
the case for DREAM3 size-10 networks while it remains unclear whether a mixed-norm
or a pure �1-norm penalty is more appropriate for large networks when very few data are
available, e.g. DREAM3 size-50 and size-100 networks.

5.2.4 Comparison with state-of-the-art methods

The performance of the OKVAR approach for prediction of the network structure is assessed
on DREAM3 size-10 and size-100 datasets.

Results are presented in Tables 6 and 7 for size-10 and size-100 data sets, respectively. The
entries of these tables correspond to the following methods: (i) OKVAR + True B corresponds

123

Author's personal copy

Mach Learn

10
−4

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ
C

A
U

C

AUROC L1
AUPR L1
AUROC L1/L2
AUPR L1/L2

(a)

10
−3

10
−2

10
−1

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ
C

A
U

C

AUROC L1
AUPR L1
AUROC L1/L2
AUPR L1/L2

(b)

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ
C

A
U

C

AUROC L1
AUPR L1
AUROC L1/L2
AUPR L1/L2

(c)
Fig. 4 Consensus AUROC and AUPR for a size-10, b size-50 and c size-100 DREAM3 E1 networks using
the DREAM3 original data sets (4, 23 and 46 time series of 21 points for size-10, size-50 and size-100 E1
respectively) for an �1-norm (blue line) or a mixed �1/�2-norm (red line) regularization

to an OKVAR model with the true adjacency matrix given, and projected onto the positive
semidefinite cone. The obtained results for this row provide an upper bound on the expected
performance of the model. (ii) OKVAR-Prox was learnt using a mixed �1/�2-norm constraint
on model parameters for size-10 datasets and an �1-norm for size-100 datasets. (iii) The
LASSO. (iv) G1DBN is an algorithm that performs Dynamic Bayesian Network inference
using first-order conditional dependencies (Lèbre 2009). (v) GPODE is a structure inference
method based on non-parametric Gaussian process modeling and parameter estimation of
ordinary differential equations (Aijo and Lahdesmaki 2009). (vi, vii) Finally, the two last
rows present the results from two competing teams that exhibited a very good performance
based only on similar time-series data. Although there is no information on the structure
of Team 236’s algorithm, its authors responded to the post-competition DREAM3 survey
stating that their method employs Bayesian models with an in-degree constraint (Prill et al.

123

Author's personal copy

Mach Learn

Table 6 Consensus AUROC and AUPR (given in %) for OKVAR-Prox, LASSO, GPODE, G1DBN, Team
236 and Team 190 (DREAM3 competing teams) run on DREAM3 size-10 networks using the DREAM3
original data sets (4 time series of 21 points)

Size-10 AUROC AUPR

E1 E2 Y1 Y2 Y3 E1 E2 Y1 Y2 Y3

OKVAR + True B 96.2 86.9 89.2 75.6 86.6 75.2 67.7 47.3 52.3 58.6

OKVAR-Prox 81.5 78.7 76.5 70.3 75.1 32.1 50.1 35.4 37.4 39.7

LASSO 69.5 57.2 46.6 62.0 54.5 17.0 16.9 8.5 32.9 23.2

GPODE 60.7 51.6 49.4 61.3 57.1 18.0 14.6 8.9 37.7 34.1

G1DBN 63.4 77.4 60.9 50.3 62.4 16.5 36.4 11.6 23.2 26.3

Team 236 62.1 65.0 64.6 43.8 48.8 19.7 37.8 19.4 23.6 23.9

Team 190 57.3 51.5 63.1 57.7 60.3 15.2 18.1 16.7 37.1 37.3

The numbers in boldface are the maximum values of each column

Table 7 Consensus AUROC and AUPR (given in %) for OKVAR-Prox, LASSO, G1DBN, Team 236
(DREAM3 competing team) run on DREAM3 size-100 networks using the DREAM3 original data sets
(46 time series of 21 points)

Size-100 AUROC AUPR

E1 E2 Y1 Y2 Y3 E1 E2 Y1 Y2 Y3

OKVAR + True B 96.2 97.1 95.8 90.6 89.7 43.2 51.6 27.9 40.7 36.4

OKVAR-Prox 65.4 64.0 54.9 56.8 53.5 4.6 2.6 2.3 5.0 6.3

LASSO 52.2 55.0 53.2 52.4 52.3 1.4 1.3 1.8 4.3 6.1

G1DBN 53.4 55.8 47.0 58.1 43.4 1.6 6.3 2.2 4.6 4.4

Team 236 52.7 54.6 53.2 50.8 50.8 1.9 4.2 3.5 4.6 6.5

The numbers in boldface are the maximum values of each column

2010). Team 190 (Table 6) reported in the same survey that their method is also Bayesian
with a focus on nonlinear dynamics and local optimization.

The AUROC and AUPR values obtained for size-10 networks (Table 6) strongly indicate
that OKVAR-Prox outperforms state-of-the-art models and the teams that exclusively used
the same set of time series data in the DREAM3 competition, except for size-10 Y2 (nearly
equivalent AUPR). In particular, we note that the OKVAR consensus runs exhibited excellent
AUPR values compared to those obtained by other approaches.

A comparison of competing algorithms for size-100 networks (Table 7) shows that the
OKVAR method again achieves superior AUROC results compared to Team 236, although
it only lags behind by a slight margin for size-100 Y1 and Y3 in terms of AUPR. Team 236
was the only team that exclusively used time series data for the size-100 network challenge,
since Team 190 did not submit any results. No results are provided for the GPODE method
on size-100 networks either since the algorithm requires a full combinatorial search when no
prior knowledge is available, which is computationally intractable for large networks. The
OKVAR method is outranked by G1DBN for size-100 E2 in terms of AUPR and for size-100
Y2 with quite comparable AUROC values. It is noticeable that the AUPR values in all rows
are rather small (lower than 10 %) compared to their size-10 counterparts. Such difficult tasks
require longer time-series (more time points) and much more available time-series to achieve

123

Author's personal copy

Mach Learn

Table 8 Consensus AUROC and AUPR (given in %) for OKVAR-Prox and OKVAR-Boost run on DREAM3
size-10 and size-100 networks using the DREAM3 original data sets (4 and 46 time series of 21 points for
size-10 and size-100 networks respectively)

AUROC AUPR

E1 E2 Y1 Y2 Y3 E1 E2 Y1 Y2 Y3

Size-10

OKVAR-Prox 81.5 78.7 76.5 70.3 75.1 32.1 50.1 35.4 37.4 39.7

OKVAR-Boost 85.3 74.9 68.9 65.3 69.5 58.3 53.6 28.3 26.8 44.3

Size-100

OKVAR-Prox 65.4 64.0 54.9 56.8 53.5 4.6 2.6 2.3 5.0 6.3

OKVAR-Boost 71.8 77.2 72.9 65.0 64.3 3.6 10.7 4.2 7.3 6.9

The numbers in boldface are the maximum values of each column

better results in terms of AUROC and AUPR. Therefore, for size-100 datasets, we applied
a pure �1-norm constraint on model parameters, allowing any C coefficients to be set to 0
rather than a mixed �1/�2-norm regularization that would have been too stringent in terms
of data parsimony.

Finally, it is worth noting that OKVAR-Prox would have ranked in the top five and ten,
respectively for size-10 and size-100 challenges, while the best results employed knock-
out/knock-down data in addition to time-series data, the latter being rich in information
content (Michailidis 2012).

5.2.5 Comparison with OKVAR-Boost

In previous work (Lim et al. 2013), a boosting algorithm (OKVAR-Boost) combining fea-
tures from L2-boosting and randomization-based algorithms was designed. At each boosting
iteration, a Hadamard kernel-based OKVAR model was learnt on a random subspace. One
main difference between OKVAR-Boost and OKVAR-Prox concerns the learning strategy.
While B and C are learnt jointly for the latter, the learning of B and C is decoupled in
OKVAR-Boost, meaning that B is firstly estimated by means of a statistical independence
test and then C is learnt using an elastic-net regularized loss. A comparison of the two related
algorithms is given in Table 8.

OKVAR-Prox achieves better AUROC values than OKVAR-Boost for size-10 networks,
except for the E1 network, while there is no clear winner in terms of AUPR. On size-
100 inference tasks, OKVAR-Boost which benefits from projections on random subspaces
patently outperforms OKVAR-Prox which operates directly in the 100-dimensional space
with a limited amount of time points.

5.3 Climate dataset

Our second example examines climate data, originally presented in Liu et al. (2010). It
contains measurements on climate forcing factors and feedback mechanisms obtained from
different databases. We extracted monthly measurements for 12 variables for the year 2002
(i.e. 12 time-points) that include temperature (TMP), precipitation (PRE), vapor (VAP),
cloud cover (CLD), wet days (WET), frost days (FRS), Methane (CH4), Carbon Dioxide
(CO2), Hydrogen (H2), carbon monoxide (CO), solar radiation (SOL) and aerosols (AER).

123

Author's personal copy

Mach Learn

Table 9 Average ± standard deviation BIC for the climate data set on one location (Northern Texas)

λB

10−2 10−1 1

λC 10−2 279.89 ± 8.20 224.09 ± 5.76 129.76 ± 4.23

10−1 311.24 ± 305.32 115.52 ± 8.66 60.66 ± 0.38

1 5.63× 105 ± 1.78× 106 5.89× 106 ± 1.86× 107 51.70 ± 0.79

The OKVAR algorithm was run 10 times for each couple of (λC , λB) hyperparameters. λh = 1

The measurements were obtained from 125 equally spaced meteorological stations located
throughout the United States.

We used an �1-norm regularized OKVAR-Prox model to identify and explore depen-
dencies between natural and anthropogenic (linked to human activity) factors. We learn a
separate causal model for each of the multivariate time series for a specific area in the United
States. Therefore, for the sake of exposition clarity, we first consider only a single location
in northern Texas.

Similarly to our previous experimental work in Sect. 5.2, we used a grid search in order
to set up the hyperparameters of the model. We looked for a combination of λC and λB

values that minimize the mean of the Bayesian Information Criterion (BIC) computed over
ten independent runs corresponding to ten random initializations of the matrix B0, using the
data of the northern Texas location. As can be seen in Table 9, we selected the value 1 for
both λC and λB . With this set up, we subsequently applied Algorithm 2 to the data sets for the
remaining 124 locations. A consensus graph was constructed for each location by retaining
only a predefined number of edges amongst the best ranked over multiple runs. Given the
extreme complexity of the system under study, dependencies may be found between most
variables. Therefore, we considered a stringent selection of edges to ease the interpretation of
the extracted graph. The level of parsimony (15 edges out of 132) was fixed with the experts
in climate data.

For our first experiment focusing on the north Texas dataset, this resulted in a parsimonious
directed graph depicted in Fig. 5a.

Most of the edges that OKVAR-Prox identifies are reasonable and supported by external
knowledge about the interactions of the underlying variables: specifically, VAP influences
CLD since the likelihood of clouds (CLD) appearing increases with vapor concentration
(VAP). Vapor (VAP) is also the main natural greenhouse gas on earth, thus corroborating
its impact on temperature (TMP). Aerosols (AER) interact with Hydrogen (H2) through
atmospheric chemistry and lower the presence of vapor (VAP) by favoring water condensa-
tion. Of course, some likely causal links are missing in our final model and one would expect
an impact of the concentration of Carbon Dioxide (CO2) or Methane (CH4) on temperature
(TMP). However, note that most of these edges appear in the initial consensus graph and
would have been recovered if we set a lower selection threshold.

Since the physical and chemical processes at work in the atmosphere do not change
drastically in neighboring locations, the causal graphs learned across the US should exhibit
a certain degree of similarity. On the other hand, causal graphs corresponding to distant
locations are likely to show topological differences due to regional specificities regarding
both climate and human activity. We define the structured similarity s between two graphs
G1 and G2 based on the Hamming Distance between the corresponding adjacency matrices
A1 and A2: s(G1, G2) = 1 − 1

d2

∑
i, j |A1i j − A2i j |. A spectral clustering algorithm using

123

Author's personal copy

Mach Learn

Fig. 5 a Consensus graph extracted from the climate causal model applied to the north Texas data set, based
on 10 independent runs of the OKVAR algorithm. Variables WET and CH4 do not appear since no edges
connected them to the rest of the graph. b Partitioning of the causal models learned by OKVAR-Prox, over
the United States. All extracted causal graphs have been clustered and labeled using spectral clustering

this similarity matrix with the number of classes set to three was applied; the number of
clusters selected a priori was based on the number of hidden variables considered in Liu et
al. (2010) for their latent variable model focusing on spatial interactions. Figure 5b shows
the labels of the resulting graphs and their corresponding location on a map of the United
States. A very clear segmentation of geographical locations emerges, exhibiting the same
network structure: the first area (black) includes western and mid-northern locations that
have a humid continental climate, another zone (blue) covers developed regions in the South
and East, where high levels of CO2 concentration play a role, while red locations that mostly
stretch in the center of the US correspond to less populated areas where human activity factors
are less dominant in our model.

6 Conclusion

Network inference from multivariate time series represents a key problem in numerous sci-
entific domains. In this paper, we addressed it by introducing and learning a new family of
nonlinear vector autoregressive models based on operator-valued kernels. The new models
generalize linear vector autoregressive models and benefit from the framework of regular-
ization. To obtain a sparse network estimate, we define appropriate non-smooth penalties on
the model parameters and a proximal gradient algorithm to deal with them. Some of the pro-
posed operator-valued kernels are characterized by a positive semi-definite matrix that also
plays a role in the network estimation. In this case, an alternating optimization scheme based
on two proximal gradient procedures is proposed to learn both kinds of parameters. Results
obtained from benchmark size-10 and size-100 biological networks as well as from real cli-
mate datasets show very good performance of the OKVAR model. Future extensions include
applications of OKVAR to other scientific fields, the use of the model in ensemble methods,
and the application of proximal gradient algorithms to other structured output prediction tasks.

Acknowledgments FA-B’s work was supported in part by ANR (call SYSCOM-2009, ODESSA project).
GM’s work was supported in part by NSF Grants DMS-1161838 and DMS-1228164 and NIH Grant 1-R21-
GM-101719-01-A1.

123

Author's personal copy

Mach Learn

References

Aijo, T., & Lahdesmaki, H. (2009). Learning gene regulatory networks from gene expression measurements
using non-parametric molecular kinetics. Bioinformatics, 25(22), 2937–2944.

Alvarez, M. A., Rosasco, L., & Lawrence, D. N. (2011). Kernels for vector-valued functions: A review.
Technical report, MIT_CSAIL-TR-2011-033.

Auliac, C., Frouin, V., & Gidrol, X. (2008). Evolutionary approaches for the reverse-engineering of gene
regulatory networks: A study on a biologically realistic dataset. BMC Bioinformatics, 9(1), 91.

Baldassarre, L., Rosasco, L., Barla, A., & Verri, A. (2010). Vector field learning via spectral filtering. In
J. Balczar, F. Bonchi, A. Gionis, & M. Sebag (Eds.), Machine learning and knowledge discovery in
databases. Lecture notes in computer science (Vol. 6321, pp. 56–71). Berlin/Heidelberg: Springer.

Beck, A., & Teboulle, M. (2010). Gradient-based algorithms with applications to signal recovery problems.
In D. Palomar & Y. Eldar (Eds.), Convex optimization in signal processing and communications (pp.
42–88). Cambridge: Cambridge press.

Bolstad, A., Van Veen, B., & Nowak, R. (2011). Causal network inference via group sparsity regularization.
IEEE Trans Signal Process, 59(6), 2628–2641.

Brouard, C., d’Alché Buc, F., & Szafranski, M. (2011). Semi-supervised penalized output kernel regression
for link prediction. In ICML-2011 (pp. 593–600).

Bühlmann, P., & van de Geer, S. (2011). Statistics for high-dimensional data: Methods, theory and applications.
Berlin: Springer.

Caponnetto, A., Micchelli, C. A., Pontil, M., & Ying, Y. (2008). Universal multitask kernels. The Journal of
Machine Learning Research, 9, 1615–1646.

Chatterjee, S., Steinhaeuser, K., Banerjee, A., Chatterjee, S., & Ganguly, A. R. (2012). Sparse group lasso:
Consistency and climate applications. In SDM (pp. 47–58). SIAM/Omnipress

Chou, I., & Voit, E. O. (2009). Recent developments in parameter estimation and structure identification of
biochemical and genomic systems. Mathematical Biosciences, 219(2), 57–83.

Combettes, P. L., & Pesquet, J. C. (2011). Proximal splitting methods in signal processing. In Fixed-point
algorithms for inverse problems in science and engineering. Springer Optimization and Its Applications,
Vol. 49, pp. 185–212.

Dinuzzo, F., & Fukumizu, K. (2011). Learning low-rank output kernels. In Proceedings of the 3rd Asian
conference on machine learning, JMLR: Workshop and conference proceedings, Vol. 20.

Dondelinger, F., Lèbre, S., & Husmeier, D. (2013). Non-homogeneous dynamic bayesian networks with
bayesian regularization for inferring gene regulatory networks with gradually time-varying structure.
Machine Learning Journal, 90(2), 191–230.

Friedman, N. (2004). Inferring cellular networks using probabilistic graphical models. Science, 303(5659),
799–805.

Gilchrist, S., Yankov, V., & Zakrajšek, E. (2009). Credit market shocks and economic fluctuations: Evidence
from corporate bond and stock markets. Journal of Monetary Economics, 56(4), 471–493.

Hartemink, A. (2005). Reverse engineering gene regulatory networks. Nat Biotechnol, 23(5), 554–555.
Iba, H. (2008). Inference of differential equation models by genetic programming. Information Sciences,

178(23), 4453–4468.
Kadri, H., Rabaoui, A., Preux, P., Duflos, E., & Rakotomamonjy, A. (2011). Functional regularized least

squares classication with operator-valued kernels. In ICML-2011 (pp 993–1000).
Kolaczyk, E. D. (2009). Statistical analysis of network data: Methods and models: Series in Statistics. Berlin:

Springer.
Kramer, M. A., Eden, U. T., Cash, S. S., & Kolaczyk, E. D. (2009). Network inference with confidence from

multivariate time series. Physical Review E, 79(6), 061,916+.
Lawrence, N., Girolami, M., Rattray, M., & Sanguinetti, G. (Eds.) (2010). Learning and inference in compu-

tational systems biology. Cambridge: MIT Press.
Lèbre, S. (2009). Inferring dynamic genetic networks with low order independencies. Statistical Applications

in Genetics and Molecular Biology, 8(1), 1–38.
Lim, N., Senbabaoglu, Y., & Michailidis, G. (2013). OKVAR-Boost: A novel boosting algorithm to infer

nonlinear dynamics and interactions in gene regulatory networks. Bioinformatics, 29(11), 1416–1423.
Liu, Y., Niculescu-Mizil, A., & Lozano, A. (2010). Learning temporal causal graphs for relational time-series

analysis. In J. Fürnkranz, & T. Joachims (Eds.), ICML-2010.
Maathuis, M., Colombo, D., Kalish, M., & Bühlmann, P. (2010). Predicting causal effects in large-scale

systems from observational data. Nature Methods, 7, 247–248.
Margolin, I., & Nemenman, Aand. (2006). Aracne: An algorithm for the reconstruction of gene regulatory

networks in a mammalian cellular context. BMC Bioinformatics, 7(Suppl 1), S7.

123

Author's personal copy

Mach Learn

Mazur, J., Ritter, D., Reinelt, G., & Kaderali, L. (2009). Reconstructing nonlinear dynamic models of gene
regulation using stochastic sampling. BMC Bioinformatics, 10(1), 448.

Meinshausen, N., & Bühlmann, P. (2006). High dimensional graphs and variable selection with the lasso.
Annals of Statistics, 34, 1436–1462.

Micchelli, C. A., & Pontil, M. A. (2005). On learning vector-valued functions. Neural Computation, 17,
177–204.

Michailidis, G. (2012). Statistical challenges in biological networks. Journal of Computational and Graphical
Statistics, 21(4), 840–855.

Michailidis, G., & d’Alché Buc, F. (2013). Autoregressive models for gene regulatory network inference:
Sparsity, stability and causality issues. Mathematical Biosciences, 246(2), 326–334.

Morton, R., & Williams, K. C. (2010). Experimental political science and the study of causality. Cambridge:
Cambridge University Press.

Murphy, K. P. (1998). Dynamic bayesian networks: Representation, inference and learning. PhD thesis, Com-
puter Science, University of Berkeley, CA, USA.

Parry, M., Canziani, O., Palutikof, J., van der Linden, P., Hanson, C., et al. (2007). Climate change 2007:
Impacts, adaptation and vulnerability. Intergovernmental Panel on Climate Change.

Perrin, B. E., Ralaivola, L., & Mazurie, A., Bottani, S., Mallet, J., d’Alché-Buc, F. (2003). Gene networks
inference using dynamic bayesian networks. Bioinformatics, 19(S2), 38–48.

Prill, R., Marbach, D., Saez-Rodriguez, J., Sorger, P., Alexopoulos, L., Xue, X., et al. (2010). Towards a
rigorous assessment of systems biology models: The DREAM3 challenges. PLoS ONE, 5(2), e9202.

Raguet, H., Fadili, & J., Peyré, G. (2011). Generalized forward-backward splitting. arXiv preprint
arXiv:1108.4404.

Richard, E., Savalle, P. A., & Vayatis, N. (2012). Estimation of simultaneously sparse and low rank matrices.
In J. Langford & J. Pineau (Eds.), ICML-2012 (pp. 1351–1358). New York, NY, USA: Omnipress.

Schaffter, T., Marbach, D., & Floreano, D. (2011). Genenetweaver: In silico benchmark generation and per-
formance profiling of network inference methods. Bioinformatics, 27(16), 2263–2270.

Senkene, E., & Tempel’man, A. (1973). Hilbert spaces of operator-valued functions. Lithuanian Mathematical
Journal, 13(4), 665–670.

Shojaie, A., & Michailidis, G. (2010). Discovering graphical granger causality using a truncating lasso penalty.
Bioinformatics, 26(18), i517–i523.

Yuan, M., & Lin, Y. (2006). Model selection and estimation in regression with grouped variables. Journal of
the Royal Statistical Society: Series B, 68(1), 49–67.

Zou, C., & Feng, J. (2009). Granger causality vs. dynamic bayesian network inference: A comparative study.
BMC Bioinformatics, 10(1), 122.

123

Author's personal copy

http://arxiv.org/abs/1108.4404

	Operator-valued kernel-based vector autoregressive models for network inference
	Abstract
	1 Introduction
	2 Network inference from nonlinear vector autoregressive models
	3 Operator-valued kernels and vector autoregressive models
	3.1 From scalar-valued kernel to operator-valued kernel models of autoregresssion
	3.2 Basics of operator-valued kernel-based theory
	3.3 The OKVAR family
	3.4 Jacobians of the OKVAR models

	4 Learning OKVAR with proximal gradient algorithms
	4.1 Learning C for fixed kernel
	4.2 Learning C and the kernel
	4.2.1 Learning the matrix B for fixed C

	5 Results
	5.1 Implementation
	5.2 DREAM3 dataset
	5.2.1 Comparison between OKVAR models
	5.2.2 Effects of hyperparameters, noise, sample size and network size
	5.2.3 Choice of penalty component
	5.2.4 Comparison with state-of-the-art methods
	5.2.5 Comparison with OKVAR-Boost

	5.3 Climate dataset

	6 Conclusion
	Acknowledgments
	References

