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Abstract. This paper introduces a new method for multichannel speech
enhancement based on a versatile modeling of the residual noise spec-
trogram. Such a model has already been presented before in the single
channel case where the noise component is assumed to follow an alpha-
stable distribution for each time-frequency bin, whereas the speech spec-
trogram, supposed to be more regular, is modeled as Gaussian. In this
paper, we describe a multichannel extension of this model, as well as
a Monte Carlo Expectation - Maximisation algorithm for parameter es-
timation. In particular, a multichannel extension of the Itakura-Saito
nonnegative matrix factorization is exploited to estimate the spectral
parameters for speech, and a Metropolis-Hastings algorithm is proposed
to estimate the noise contribution. We evaluate the proposed method in
a challenging multichannel denoising application and compare it to other
state-of-the-art algorithms.

1 Introduction

In many contexts, speech denoising is studied and applied in order to obtain,
among other things, a comfortable listening or broadcast of a talk [3], by exploit-
ing the observed noisy signal, obtained by several microphones. From an audio
source separation perspective, this denoising is achieved through a probabilis-
tic model, where the observed signal is divided into two latent sources: a noise
component and a target source.

Both speech and noise components are usually considered in the time-frequency
(TF) domain where all TF-bins are supposed to be independent and follow a
Gaussian law [8, 17]. A common approach to speech enhancement is the spectral
subtraction method [9, 10]. Its principle is to estimate an a priori signal to noise
ratio (SNR) in order to infer a short-time spectral amplitude (STSA) estimator
of the noise which will be subtracted to the STSA of the observations. Another
popular trend is to decompose the power spectral densities (PSD) of sources
into a product of two matrices. The non-negative matrix factorization (NMF)
model assumes that the PSDs admit low-rank structures and it performs well in
denoising [25].



To the best of our knowledge, NMF models for multichannel speech enhance-
ment have been proposed only in a Gaussian probabilistic context, whereas a
non-Gaussian approach could offer a more flexible model for noise and speech.
Moreover, a good initialization in a Gaussian NMF model is crucial to avoid
staying stuck in a local minimum [4]. Many studies in the single-channel case
have shown a better robustness to initialization when the signal is modeled in
the TF domain with as heavy tail distribution [27, 23].

Among this type of distributions, α-stable distributions preserve interesting
properties satisfied by Gaussian laws, and they can model distributions ranging
from light tails as in the Gaussian case to heavy tails as in the Cauchy case.
Indeed, α-stable distributions are the only ones which admit a central limit
theorem and stability by summation [20]. Various studies have been carried out
on audio modeling using alpha-stable processes [23, 16]. Especially in the TF
domain, a generalization of wide-sense stationary (WSS) processes [17] has been
established in the α−stable case [16] and applied to noise reduction [12]. More
precisely, in [24] it was considered that the target source is Gaussian and the
residual noise is α-stable, in order to get a greater flexibility on noise modeling.

This paper introduces a generalization of [24] to the multichannel case. The
goal is to develop a Gaussian NMF model for speech that assumes a low-rank
structure for speech covariances [8], while the noise part is taken as an α−stable
process. Parameters are estimated through a combination of the multichannel
extension of Itakura Saito NMF (IS-NMF) [21] for speech and a Markov Chain
Monte Carlo (MCMC) strategy for estimating the noise part. The proposed
method is evaluated for multichannel denoising, and compared to other state-
of-the-art algorithms.

2 Probabilistic and Filtering models

2.1 Mixture model

Let x ∈ CF×T×K be the observed data in the short-time Fourier transform
(STFT) domain where F, T and K denote the number of frequency bands, time
frames and microphones, respectively. The observation x will be assumed to be
the sum of two latent audio sources: the first one is written y ∈ CF×T×K and
accounts for the speech signal. The second one is written r ∈ CF×T×K and called
the residual component. We have:

xft = yft + rft, (1)

where each term belongs to CK . The main goal in this paper is to estimate y
and r knowing x, by using a probabilistic model described below.

2.2 Source model

At short time scales, the speech signal may be assumed stationary and does not
feature strong impulsiveness. This motivates modeling it as a locally stationary



Gaussian process [17]. Furthermore, we also assume that the different channels
for yft are correlated, accounting for the spatial characteristics of the signal.
Consequently, we assume that each yft is an isotropic complex Gaussian vector1

of mean 0 and covariance matrix Cyft , Rfvf,t, where the spatial covariance

matrix Rf ∈ CK×K encodes the time-invariant correlations of speech in the
different channels and vft is the PSD of the speech signal [8]. To exploit the
redundancy of speech, we further decompose vft through NMF and obtain:

∀f, t yft ∼ Nc

(
yft; 0,Rfvft , Rf

L∑
l=1

wflhlt

)
. (2)

where , means “equals by definition”and W ∈ RF×L+ ,H ∈ RL×T+ are matrices
which respectively contain all non-negative scalars wfl and hlt. While W is
understood as L spectral bases, H stands for their activations over time. To
make notations simpler, let Θ , {W ,H,R} be the parameters to be estimated
with R , {Rf}f .

In contrast to the speech signal, the model of the residual component should
allow for outliers and impulsiveness. To do so, the residual part is modeled by an
heavy-tailed distribution in the time domain. Recent works proposed a station-
ary model called α−harmonizable process with α ∈ (0, 2] in the single-channel
case. It is shown in [20, 16] that such a model is equivalent to assuming that
the signal at every time-frequency bin f, t follows a complex isotropic symmet-
ric α−stable distribution. With the aim of extending the previous model to a
multichannel one, we take all rft as distributed with respect to an elliptically
contoured multivariate stable distribution (ECMS, denoted EαS) and indepen-
dent of one another. These distributions, which are a particular case of α−stable
distributions, have the particularity of requiring only two parameters [20, 15]:

1. A characteristic exponent α ∈ (0, 2]: the smaller α, the heavier the tails of
the distribution.

2. A positive definite Hermitian scatter matrix in CK×K .

In this article, the scatter matrices for all rft are taken equal to σfIK , where IK ∈
RK×K is the identity matrix and σf > 0 is a positive scalar that does not depend
on time. We have:

∀f, t rft ∼ EαSK (σfIK) . (3)

2.3 Filtering model

As mentioned in subsection 2.1, we aim to reconstruct the sources y and r from
the observed data x. From a signal processing point of view, when parameters
σ,W ,H,R are known, one would like to compute the Minimum Mean Squared

1 The probability density function (PDF) of an isotropic complex Gaussian vector
is NC(x|µ,C) = 1

πK detC
exp

(
− (x− µ)?C−1 (x− µ)

)
.



Error (MMSE) estimates of both sources. In our probabilistic context, these can
be expressed as the posteriori expectations E (yft|xft,Θ,σ).

To compute such estimates, a property specific to ECMS distributions can
be exploited to represent r as a complex normal distribution Nc of dimension K,
whose variance is randomly multiplied by a positive random impulse variable φft

distributed as P α2S
(

2 cos
(
πα
4

)2/α)
, where P α2S is the positive α/2-stable dis-

tribution (see [23] for more details):

∀f, t rft|φft ∼ Nc (rft; 0, φftσfIk) , (4)

If we assume for now that Φ , {φft}f,t are known in (4), we get the distribution
of the mixture as:

∀f, t xft|φft ∼ Nc
(
xft; 0,C

x|φ
ft

)
, (5)

where C
x|φ
ft , Rf

∑L
l=1 wflhlt + φftσfIk. This in turns allows to build a multi-

channel Wiener filter as [3]:

E (yft|xft,Φ,Θ,σ) = Cyft

(
C
x|φ
ft

)−1
xft, (6)

with .−1 standing for matrix inversion.
Now, the strategy we adopt here is to marginalize this expression over Φ | x,

to get:
ŷft = EΦ|x [E [yft|xft,Φ,Θ,σ]] = Gftxft,

where
Gft , C

y
ftΞft (7)

is the marginal Wiener filter, and Ξft , EΦ|x
[(
C
x|φ
ft

)−1]
is the average in-

verse mixture covariance matrix. We will explain how to compute Ξ later in
section 3.3.

3 Parameter Estimation

3.1 Expectation-Maximization (EM) algorithm

Assuming that the observations x and the impulse variable φ are known, we first
aim to estimate the parameters Θ . We choose a maximum likelihood estimator
in order to get the most likely source NMF parameters W ,H:

(W ?,H?,R?) = arg max
W ,H,R

logP (x,Φ |Θ,σ) , (8)

where Φ is a latent variable and logP (x,Φ |Θ,σ) is the log-likelihood. As in [24],
we propose an EM algorithm. This method aims to minimize an upper-bound
of Ln (W ,H,R) = − logP (x,Φ |Θ,σ). This approach is summarized in the
following two steps:



E-Step: Qn (W ,H,R) = −EΦ|x,W (n−1),H(n−1) [Ln (W ,H,R)] , (9)

M-Step:
(
W (n),H(n),R(n)

)
= arg max

W ,H,R
Qn (W ,H,R) . (10)

E-Step: We first introduce a positive function that upper-bounds the negative
log-likelihood Ln (W ,H,R), which is equal to [21]:

Ln (W ,H,R) =
∑
f,t

[
tr

(
X̃ft

(
C
x|φ
ft

)−1)
+ log detC

x|φ
ft

]
(11)

where X̃ft , xftx
?
ft and .? stands for the Hermitian transposition. A positive

auxiliary function L+
n (W ,H,R,U ,V ) =

∑
f,t

[∑
l

tr

(
X̃ftU lft

(
C

x|φ
lft

)−1
U lft

)
wflhlt

+

tr(X̃ftU
2
rft)

σfφft
+ log detV ft +

detC
x|φ
ft −detV ft
detV ft

]
which satisfies:

L+
n (W ,H,R,U ,V ) ≥ Ln (W ,H,R) (12)

is introduced in [21]. Using (12) and the definition of Qn in (9), we obtain:

EΦ|xLn (.) ≤ EΦ|xL+
n (.) , Q+

n (.) (13)

with:

Q+
n (W ,H,R,U ,V ) =

∑
f,t

[∑
l

EΦ|x
(
tr

[
X̃ftU lft

(
C
x|φ
lft

)−1

U lft

])
wflhlt

+EΦ|x
(
tr
[
X̃ftU

2
rft

])
σ−1
f φ−1

ft + EΦ|x
(

log detV ft + det
(
V −1
ft C

x|φ
lft

)
− 1
)]

(14)

The form in (14) admits partial derivatives that will be useful as part of a
multiplicative update [11] in the M-Step.

M-Step: Solving the M-Step in (10) is equivalent to zeroing the partial deriva-

tives
∂Q+

n

∂wfl
and

∂Q+
n

∂hlt
and to set U ,V such that the equality in (13) is verified. A

multiplicative update approach yields:

wfl ← wfl

√∑
t hlttr (RfP ft)∑
t hlttr (RfΞft)

(15)

hlt ← hlt

√∑
f wfltr (RfP ft)∑
f wfltr (RfΞft)

(16)



where the quantity Ξft = EΦ|x
[(
C
x|ϕi
ft

)−1]
has been used above in (7) and

P ft = EΦ|x
[(
C
x|ϕi
ft

)−1

X̃ft

(
C
x|ϕi
ft

)−1
]
. We will explain how to compute these

expectations in subsection 3.3.

3.2 Estimation of spatial covariance matrices and noise gains σ

We update the spatial covariance matrix R in the M-step as in [8], further using
the trick proposed in [18] to use a weighted update, resulting in:

Rf ←

(∑
t

vft

)−1
×
∑
t

(
C
yy?|x
ft

)
, (17)

where: C
yy?|x
ft , GftX̃ftGft +Cyft−GftC

y
ft is the total posterior variance for

the speech source.
Concerning the estimation of the noise gain σ in (3), we exploit a result

in [5] that if z ∼ EαS (σ) , then E [‖z‖p]
α
p ∝ σ, for p < α, with ∝ standing for

proportionality. The strategy we adopt is to apply this estimation only once at
the beginning of the algorithm to the mixture itself, by taking a robust estimation
like the median M instead of the average, to account for the fact that not all TF
bins pertain to the noise, but that a small portion also pertain to speech. We
thus pick p = α/2 and take:

σf ←M

(
‖
∑
t

x (f, t) ‖α/2
)2

. (18)

3.3 Expectation estimation using Metropolis-Hastings algorithm

We still have to calculate the expectations Ξft and P ft. Unfortunately, they
cannot be calculated analytically. To address this issue, we set up a Markov
Chain Monte Carlo (MCMC) algorithm in order to approximate the expectations
for each iteration. We are focusing on the Metropolis-Hastings algorithm through
an empirical estimation of Ξft and P ft as follows:

Ξft '
1

I

I∑
i=1

(
C
x|ϕi
ft

)−1
(19)

P ft '
1

I

I∑
i=1

((
C
x|ϕi
ft

)−1
X̃ft

(
C
x|ϕi
ft

)−1)
(20)

with
(
C
x|ϕi
ft

)−1
= [
∑
l (Rflwflhlt) + ϕft, iσfIk]

−1
and ϕft, i are sampled as

follows:



First Step (Sampling process): Generate a sampling via the prior distribu-

tion ϕ′ft ∼ P α2S
(

2 cos
(
πα
4

)2/α)
.

Second Step (Acceptance):

– Draw u ∼ U ([0, 1]) where U denotes the uniform distribution.

– Compute the following acceptance probability:

acc (ϕft → ϕ′ft) = min

1,
Nc
(
xft; 0, ϕ′ftσfIK +Cyft

)
Nc
(
xft; 0, ϕftσfIK +Cyft

)


– Test the acceptance:

• if u < acc (ϕft, i−1 → ϕ′ft), then ϕft, i = ϕ′ft (acceptance)

• otherwise, ϕft, i = ϕft, i−1 (rejection)

4 Single-Channel Speech Signal Reconstruction

Let ŷ be the multichannel signal obtained after Wiener filtering (7). In the
context of speech enhancement, the desired speech is rather a single-channel
signal, that we write ŝ ∈ CF×T . In this study, we take ŝ as a linear combination
of ŷ with a time-invariant beamformer Bf ∈ CK [26]:

ŝft , B
?
f ŷft,

Where .?denotes the Hermitian transposition. There are many ways to devise the
beamformer Bf . In this study, we choose to maximize the energy of B?

fyft | x,
which means maximizing:

1

T

∑
t

E
(∣∣B?

fyft
∣∣2 |xft) = B?

fE
(
yfty

?
ft|x

)
Bf .

= B?
f

1

T

∑
t

(
C
yy?|x
ft

)
Bf .

The solution of this optimization problem is to choose Bf as the eigenvector

associated to the largest eigenvalue of the Hermitian matrix 1
T

∑
t

(
C
yy?|x
ft

)
[8].

The Algorithm 1 summarizes all the steps of our proposed method for denoising.



Algorithm 1 Denoising Algorithm

1. Inputs :
– mixture x
– number of components L
– numbers N of EM iterations.

2. Initialization
– Compute σ as in (18)
– Initialize W and H randomly
– Rf ← IK

– φft ∼ P α2 S
(

2 cos
(
πα
4

)2/α)
3. EM algorithm, for n = 1...N

– MH algorithm:
(a) Draw ϕift via Metropolis-Hastings algorithm (subsection 3.3)
(b) Compute Ξ (19) and P (20)

– Update W (15), H (16) and R (17)
4. Image Source reconstruction

compute ŷ as in (7)
5. Beamforming

– Set Bf as the principal eigenvector of 1
T

∑
tC

yy?|x
ft

– Compute ŝft = B?
f ŷft

5 Evaluation

We investigate both the quality of speech enhancement and the audio source sep-
aration performance. Our proposed approach will be compared to two baseline
methods:

ARC Our proposed method: alpha residual component (ARC) which mixes
a Gaussian component and an α−stable noise. We will run N = 10
iterations for the EM part and select α = 1.9.

MWF The classic multi-channel Wiener filter (MWF) [2, 6] which assumes
that both noise and speech are Gaussian in the time-frequency do-
main. The multichannel Wiener filter is defined as the best estimator
minimizing the mean squared error (MSE) between the estimated
and the ground truth source.

GEVD Introduced in [22], the generalized eigenvalue decomposition (GEVD)
multichannel Wiener filter is based on a low-rank approximation of
the autocorrelation matrix of the speech signal in order to provide a
more robust noise reduction.

5.1 Experimental setup

The corpus for evaluation is made up of mono speech excerpts from Librispeech [19]
with a sample rate of 16 kHz. They are placed end-to-end with several silence



periods for a total length of 3 minutes and assembled with three different en-
vironmental noises taken from Aurora [14]: babble noise, restaurant and train.
We apply on both signals an STFT using a Hann window with an FFT length
of 1024 and 50% overlap. A ‘perfect’ voice activity detection (VAD), in the sense
that the VAD is estimated on the clean speech, is used on all three methods.

Those excerpts are further convolved with different room impulse responses
(RIR) provided by Roomsimove in order to get reverberant stereophonic signals.
The room dimensions are 5 × 4 × 3 meters and reverberation times, based on
a 60dB decay (RT60), are 0 and 500ms. The distance between the microphones
is 15 cm and the center of the microphone array is located at the center of the
room at 1.5m height. The sources are 1m from the center of the microphone
array. For more challenges, two spatial settings and 4 signal-to-noise (SNR) ratios
will be proposed. The different SNR values are −5, 0, 5, 10 dB and the spatial
configurations are an angular difference of 30◦or 90◦ between both sources (the
speech source is always facing the microphone array). In short, a total of 48
noisy sources have been denoised by the three proposed methods.

Regarding the MWF-based algorithms, the autocorrelation matrices are esti-
mated over the full audio segments and the filters computed from these matrices
are then constant over time.

5.2 Performance measures

For the evaluation, two scores will be measured: the first one is a speech intelli-
gibility weighted spectral distortion (SIW-SD) measure and the second one is a
speech intelligibility-weighted SNR (SIW-SNR) [13].

The SIW-SD measure is defined as:

SIW − SD =
∑
i

IiSDi (21)

where Ii is the band importance function [1] and SDi the average SD (in dB) in
the i -th one third octave band,

SDi =
1

(21/6 − 2−1/6)f ci

∫ 21/6fci

2−1/6fci

|10 log10G
y(f)|df (22)

with center frequencies f ci and Gy(f) is given by:

Gy(f) =
P y(f)

Pŷ(f)
(23)

where P y(f) and Pŷ(f) are the power, for the frequency f , of the speech com-
ponent of the input signal y and the speech component output signal ŷ, respec-
tively.

The SIW-SNR [13] is used here to compute the SIW-SNR improvement which
is defined as

∆SNRintellig =
∑
i

Ii(SNRi,out − SNRi,in) (24)



where SNRi,out and SNRi,in represent the output SNR of the noise reduction
filter and the SNR of the signal in the first microphone in the ith band, respec-
tively.

5.3 Results

In a first experiment we study the impact of the reverberation on the perfor-
mance of each algorithm. Figures 1 and 2 present the SIW-SNR improvement
and the SIW-SD performance averaged over noise types and spatial scenarios
and depending on the input SNR for the RIR with RT60 = 0ms (anechoic room)
and RT60 = 500ms, respectively. In the scenario where RT60 = 0ms, ARC is out-
performed by MWF based algorithms both in terms of SIW-SNR improvement
and SIW-SID.

-5 0 5 10

Input SNR (dB)

0

5

10

15

20

25

30

S
IW

-S
N

R
 i
m

p
ro

v
e

m
e

n
t 

(d
B

)

RT60 0ms

MWF

GEVD-MWF

ARC

Fig. 1. SIW-SNR & SIW-SD in an anechoic scenario.
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When the reverbaration time increases (Fig. 2) the performance of the MWF-
based algorithms degrades. The SIW-SNR of all three algorithms become com-
parable and ARC outperforms MWF-based algorithms in terms of SIW-SD at
low input SNR.

In noise reduction algorithms there is a trade-off between the quantity of
noise removed and the spectral distortion introduced in the speech signal. In
MWF-based algorithms it is possible to tune this trade-off explicitly, this is
the so-called speech distortion weighted MWF (SDW-MWF) [7, 22]. Spectral
distortion can sometimes be perceived as more annoying than additive noise
by the listeners and can also decrease the performance of speech recognition
systems severely. It is important to be able to design noise reduction algorithms
that can limit the amount of spectral distortion they introduce. Therefore, in
a second experiment we set the trade-off parameter in MWF-based algorithms
such that the MWF and the GEVD-MWF introduce an SIW-SD similar to the
SIW-SD introduced by ARC. We then focus on the performance analysis in terms
of SIW-SNR. More particularly, for each input SNR the SD-SIW introduced by
the MWF, the GEVD-MWF and ARC are averaged over the noise types and the
spatial scenarios. The trade-off parameter for the MWF and the GEVD-MWF
is then adjusted (for each input SNR) such that every algorithm introduces a
comparable amount of SIW-SD.

The SIW-SNR performance of the algorithms is presented in Table 1. ARC
outperforms the standard SDW-MWF for which the SIW-SNR decreases quickly
as the trade-off parameter favors the limitation of spectral distortion. At low
input SNR, the trade-off parameter becomes close to 0, the filter coefficients are
then close to 1 in each frequency bands and the input signal is barely affected by
the MWF. On the other hand, it has been shown that the GEVD can maintain
its SIW-SNR performance to some extent while limiting the spectral distortion
introduced [22]. Therefore, even when both algorithms are adjusted to introduce
similar SIW-SD, the GEVD-MWF still outperforms ARC.

Noise position Input SNR MWF GEVD-MWF ARC

30◦
−5 dB 0 2.8 0.7

0 dB 1.15 4.4 1.5
5 dB 1.4 5.3 2.7

90◦
−5 dB 0.1 2.9 0.8

0 dB 1 5.1 2.3
5 dB 1.8 5.6 4

Table 1. SIW-SNR improvement performance when the different systems are tuned
to introduce similar SIW-SD.



6 Conclusion

As a conclusion, a new method has been proposed to model the noise that is
less sensitive to outliers. Despite lower scores than state-of-the-art in terms of
SIW-SNR improvement, the ARC algorithm appears to be more robust to the
reverberation, that can drastically decrease the performance of algorithms that
rely on the estimation of simple correlation matrices (such as the MWF and
GEVD-MWF algorithms presented here). In reverberant scenarios, MWF based
algorithms then introduce an important amount of SIW-SD, in particular at low
input SNR where the noise reduction algorithm has to face signals dominated
by noise. This distortion can be perceived very negatively by human listeners
and can affect speech recognition system dramatically. It is therefore important
to be able to limit it. All three algorithms were thus compared while adjusted to
introduce a similar amount of distortion. In the latter case, ARC outperforms
the standard MWF algorithm. Future work will include a model that combines
both methods GEVD-MWF and ARC in order to get an algorithm exploiting the
advantages of both approaches: less spectral distortion and a better SIW-SNR
improvement.
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