
EARLY CHECKING OF SYSML MODELS APPLIED TO PROTOCOLS

Pierre de SAQUI-SANNES, Rob. VINGERHOEDS

ISAE-SUPAERO – University of Toulouse
pdss@isae-supaero.fr

Ludovic APVRILLE

LTCI, TelecomParisTech, Université Paris Saclay
ludovic.apvrille@telecom-paristech.fr

ABSTRACT: The paper shares an experience in using SysML and the free, open-source software TTool for protocol
modelling and communication architecture validation. A dialogue between a pilot and a control tower serves as
running example to demonstrate the benefits of complementary model analysis techniques: simulation, model checking,
and verification by abstraction. The proposed method may be adapted to other modelling languages and tools.

KEYWORDS: Modelling, SysML, Simulation, Formal Verification, TTool, Protocol.

1 INTRODUCTION

The term “protocol engineering” (Bochmann et al.,
2010) was coined four decades ago to denote a set of
activities that locate protocol modelling at the heart of
communication software design. Protocol engineering
pioneered Model-Based Systems Engineering at a time
where the MBSE acronym was not yet in use.

Relying on Extended Finite State Machines and process
algebra, the protocol engineering community developed
its own modelling languages and called them “Formal
Description Techniques”: Estelle, SDL, and LOTOS.
Associated tools took formal descriptions as a reference
document for early checking of design errors in the
protocol’s design trajectory, for automatic generation of
executable code, and for test sequences generation.

Functionally similar tools have been developed for UML
2.5. The relevance of UML to protocol engineering has
been extensively discussed in (Garduno Barrera and
Diaz, 2011) relying on the TAU G2 simulator. (Apvrille
et al., 2004) also demonstrated the possibility to apply
formal verification to UML models of protocols.

The advent of SysML (OMG, 2017) now questions the
applicability of SysML in the same area. To contribute to
this discussion, this paper discusses a case study of
protocol modelling and communication architecture
validation using SysML and the use of a free, open-
source SysML Editor software: TTool. TTool includes a
diagram editor, a simulator, complementary verification
modules (model checking, verification by abstraction),
and several code generators.

The paper is organized as follows. Section 2 defines a
method associated with SysML and TTool. Section 3
specifies the connection set-up procedure that serves as
running example and includes assumptions into the
SysML model (Saqui-Sannes and Apvrille, 2016). The
requirement capture, analysis and design stages of the

life cycle are the subjects of Section 4, 5, and 6,
respectively. Section 4 to 6 addresses a nominal system,
whereas Section 7 discusses a degraded situation
(message loss). Section 8 shows how TTool can be
interfaced with the model checker UPPAAL (UPPAAL,
2017). Section 9 surveys related work. Section 10
concludes the paper.

2 METHOD

The System Modelling Language, or SysML for short
(OMG, 2017), is a diagrammatic modelling language for
systems engineering. The OMG standard (OMG, 2017)
defines a wide spectrum language, offering tool
manufacturers opportunities for customizing the SysML
syntax to handle real-time or other types of systems. It is
important to note that the SysML standard defines a
notation, but not a way of using it. A real challenge is
therefore to convince practitioners to incorporate SysML
into the method in use in their development approaches
and indeed in their company.

Figure 1: Method and SysML diagrams

As far as protocol engineering is concerned, the method
(Figure 1) associated with SysML covers the
requirements capture, analysis and design steps of
traditional V life cycle. To cope with complexity, the
method is further incremental, as suggested by the spiral
depicted by Figure 1. Besides the three aforementioned

steps, Figure 1 underlines the importance of simulation
and formal verification as two techniques enabling early
checking of models against design errors. Figure 1 also
indicates the names of the SysML diagrams used by each
step in the method.
Requirements capture is the first stage in Figure 1. The
“Modelling Assumption Diagram” is not part of the
OMG-standard, but is supported by TTool and lists
simplifications and other assumptions made at the time
of creating the model. Requirement Diagrams, which are
part of the SysML standard, define stakeholder, user, and
system requirements.

The second stage in the method depicted by Figure 1 is
Analysis. A use-case diagram defines the functions and
services to be offered by the system and connects these
functions or services to the system’s environment
(actors). Use-cases are documented by scenarios
(sequence diagrams) and flow-charts (activity diagrams).

The third stage in the method is design. A block instance
diagram defines the architecture of the system. In each
block instance lays a finite state machine diagrams
defining the behaviour of the block instance.

To make the method in Figure 1 more specific to
communication systems, we need to encompass concepts
borrowed from the ISO Basic Reference Model (ISO,
2000): layered design, protocol, service, protocol data
units and service primitives (Figure 2).

Figure 2: 3-layer architectural pattern

The 3-layer pattern of Figure 1 influences the way we
structure the diagrams identified in Figure1.

At requirement capture stage, separate modelling
assumptions diagrams are created to address the protocol
entities, the underlying network and the user-
applications. Similarly, three families of requirement
diagrams are created.

At analysis stage, two protocol entities are considered to
be the system of interest, whereas the underlying
network and the user-applications form the system’s
environment. Use-cases are documented by means of
sequence diagrams. Services scenarios are built up first,
considering the system as a black box. Then, they are
split up to make the protocol entities appear.

Finally, at the design stage, a 3-layer architecture is
defined to comply with the pattern in Figure 2. The
architecture is made up of block instances that exchange
messages. Of specific interest are the service primitives.
The protocol machines are precisely defined.
Conversely, the upper layers and the communication
service are modelled at a higher degree of abstraction.

3 MODELLING ASSUMPTIONS

This section presents the original specification and lists
modelling assumptions. The original specification
(Section 3.1) was extracted from the Future Air
Navigation System (FANS, 2017) specification and
defines a connection set up procedure initiating a
dialogue between an aircraft and a control.

3.1 Original Specification

When initiated either by flight crew action or an
automatic trigger, an ATS Facilities Notification
Contact message is sent and Avionics Timer ATST1 is
set. The aircraft AFN application then awaits an AFN
Acknowledgement message from ground. Subject to
prior agreement with the service provider, the
supplementary address field of the ATS Facilities
Notification Contact Message may contain an
abbreviation of the ATC center address to which the
message should be delivered (such as the corresponding
IATA or ICAO code). If a successful AFN
Acknowledgement message is received within the period
of time of ATST1, a positive indication is given to the
flight crew and timer ATST1 is cancelled. The AFN
acknowledgement message will contain the full 7-
character address of the ground AFN end-system. This
address should be used in all subsequent AFN
messages. If the aircraft AFN receives an AFN
acknowledgement message with a non-zero reason code
or timer ATST1 expires, an error indication is given to
the flight crew.

3.2 Initial Work on the Specification

The specification in Section 3.1 is ambiguous,
incomplete and partly inconsistent. Table 1 provides
clarifications.

Specification/Problem Modeling Decisions
The connection set up may be
started by the crew or by an
automatic trigger.

The pilot will start the
connection set up
procedure.

Which fields for the Facilities
Notification Contact message?

The messages will
have no parameter.

After issuing a connection
request, the board software sets
ATST1 to an undefined value.

ATST1 = 10 minutes.

Table 1 Decisions taken before modelling in SysML

3.3 Modelling Assumptions Diagram

Experience has shown that models are scarcely self-
contained and need to be documented to facilitate their
sharing and reuse. In particular, a model remains hard to
understand for somebody who does not know about the
simplifications and more generally the assumptions
made by the model’s designer. For instance, a protocol
developed on top of a pre-existing communication
service will be modelled differently depending on
whether the service is lossy or not. Consequently, TTool
supports Modelling Assumptions Diagrams (MAD) to
encourage the model designer to include modelling
assumptions into his or her model.

Figures 3, 4 and 5 depict the MAD developed for the
case study. The diagrams define tree structures with two
types of nodes. The boxes with multiple fields define the
assumptions and associate them with attributes that
explain the origin of the assumption (e.g. the model
creator), the status of the assumptions (stating whether it
is applied or not in the current version of the model, and
the scope indicating, e.g., that an assumption is the
consequence of the modelling activity carried out by the
designer and not a limitation of the verification tool.
Among the relations depicted by Figure 3, let us note the
use of <<impact>> to point out how modelling
assumptions influences design diagrams. Another
important relation is the versioning relation used in
Figure 4; it contributes to make the modelling process an
incremental one.

Figure 3: Modelling Assumptions Diagram

Figure 4: Modelling Assumptions Diagram

Figure 5: Modelling Assumptions Diagram

4 REQUIREMENTS CAPTURE

The goal of system architecture activities is to define a
complete solution based on principles, concepts and
properties logically related and consistent with each
other. Such solution should have suitable characteristics
and properties, matching as well as possible to the
problem expressed by a set of system requirements,
traceable to mission/business and stakeholder
requirements, and traceable throughout life cycle phases
and corresponding engineering tools (e.g., mechanical,
electronics, software …). This underlines the necessity
to obtain pertinent requirements and explains why
SysML supports requirement diagrams, a type of
diagram not taken on board by UML. As SysML is a
language and not a method, there are no constraints to
the writing style of requirements. In contrast, an
advantage of requirement diagrams is to oblige the
system designer to structure and organize the
requirements, and to show how this relates to other
diagrams in the model.

Figure 6: Requirement Diagram

Figure 6 depicts one of the requirement diagram
developed for the case study. The tree structure clearly

appears with two types of nodes and two types of
arrows. Each node depicted by a box contains one
requirement together with its unique identifier, a text,
and a categorization between functional and non-
functional requirement. The <<refine>> relation from R1
to R2 allows R2 to add more precision to R1. Each
<<satisfy>> relation links one design diagram element to
one requirement.

5 ANALYSIS

The use-case diagram in Figure 7 defines the boundary
of the communicating system. It includes one use-case
named InitialNotification and connects the
latter to three actors that respectively represent the Pilot,
the Controller and the pre-existing network the
communication system relies on.

Figure 7: Use-Case Diagram

Two scenarios document the use case. Figure 8 depicts a
service scenario where the communication service is a
black box and the only messages are services primitives.

Figure 8: Nominal Case – Service scenario

The protocol scenario in Figure 9 splits up the service
scenario, keeping coherence with the latter in terms of
service primitives, and adds Protocol Data Units.

Figure 9: Nominal Case – Protocol Scenario

6 DESIGN

6.1 Architectural Design

The protocol engineering community has adopted the
principle of layered design. In practice, two or more
protocol entities rely on some pre-existing
communication service to render their respective upper-
layer user application a value-added service.

Thus, in Figure 10, OnboardCommunication and
GroundCommunication both rely on a
communication service modelled by a FIFO queue
channel to offer a service to Pilot and Controller,
respectively.

Figure 10: Architecture

Figure 10 depicts an architecture of block instances that
communicate via interconnected ports. Black squares
denote rendezvous ports that pairs of block instances use
for synchronized communication. White square
conversely denote FIFO queued communication ports.

6.2 Behavioural Design

Figures 11 to 14 depict the inner workings of the block
instances of the architecture in Figure 10. The state
machines use three symbols: rounded rectangles
modelling states, and message reception / emission.

To keep the Pilot as abstract as possible, its state
machine accepts all rendezvous from
OnboardCommunication, either for initiating the
procedure with INconreq or for successful completion
of the connection set up procedure with INconconf.

Figure 11: State Machine of the Pilot

The protocol machine of OnboardCommunication
(Figure 12) enters the IDLE state and waits for the
Pilot to issue a connection request. The protocol
machine transforms the latter into CR, sends it via the
unlossy channel and waits for the remote protocol
machine to confirm. Upon reception of a CC conveyed
by the unlossy channel, the protocol machine sends a
confirmation to the Pilot.

Figure 12: Protocol Machine – On Board Side

The protocol machine of GroundCommunication
(Figure 13) enters the IDLE state and waits for the
unlossy channel to convey a CR sent by the remote
entity. Upon reception of CR, the protocol machine
issues an indication towards the Controller and waits for
the latter to response. Upon reception of INconresp,
the protocol machine issues CC, a confirmation the
unlossy channel will convey towards
OnboardCommunication.

Figure 13: Protocol Machine – Ground Side

Like the state machine of Pilot, the one of
Controller (Figure 14) is a rendezvous acceptor. It
handles indications and responses.

Figure 14: State Machine of the Controller

Unlike requirement capture and analysis that merely
generate a set of diagrams, the design phase is not only a
matter of drawing: the simulator animates design
diagrams and formal verification modules explore the
behaviour of the model relying on mathematics rather
than chance.

6.3 Model Simulation

TTool is a free and open-source tool that supports
several UML profiles, particularly SysML. Figure 15
depicts the main functions on the tool. Note that
executable code generation goes beyond the scope of the
paper.

Figure 15: Overview of TTool

The Simulator of TTool (Figure 16) enables animation of
state machine diagrams. It takes as input a syntactically-
and type-checked SysML model and computes the
model’s initial global state. Step by step firing of
transitions enables early debugging of the model by joint
observation of simulation traces in the form of sequence
diagrams, annotations on the SysML model itself and
display of the state, variables and other elements
contained in the blocks the system is made up of.
Random firing of transitions enables further exploration
of the system’s behaviour until a deadlock situation or a
termination state is encountered.

Figure 16: The Simulator of TTool

In Figure 17, the simulation traces takes the form of a
sequence diagram and completely depicts the connection
procedure.

Figure 17: Simulation Trace

6.4 Model Checking

One of the most widespread verification approaches is
reachability analysis. Relying on a systematic analysis of
the state space of the system under design, reachability
analysis may output a so-called “reachability graph”
representing all the valid execution paths and states of
the system starting from its initial state.

On a general principle, reachability analysis faces the
well-known “state explosion problem”. Assuming the
graph has been computed, the question of exploiting that

graph is asked for. An approach that checks whether one
property is met or not, and provides a yes/no answer is
known as “model checking” (Figure 19). An approach
that processes the reachability graph as a Labelled
Transition Systems and applies minimization techniques
to come up with an abstract view of the system is known
as “verification by abstraction” (Figure 18.

Figure 18: Verification Capabilities of TTool

Figure 19: Principles of Model Checking

Figure 20: Model-Checker Interface

TTool natively offers a model-checker that does not
require expressing a property using a formal language.
Any state or event in a state machine may be checked for
reachability as soon as it is marked with a RL label (see
INconconf reception in Figure 11). Figure 20 shows
the model-checker interface and the way it states that
INconconf is reachable.

6.5 Verification by abstraction

The reachability graph (not represented here for space
reasons) encounters 28 states and 37 transitions.
Labelling the reachability graph with service primitives
as observable events (Figure 22) enables application of
minimization techniques. Minimization with respect to
Milner’s observational equivalence outputs the quotient
automaton in Figure 23. Thus, from a complete
reachability graph that remains hard to explore by hand,
verification by abstraction allows one to characterize the
service provided by the protocol.

Figure 21: Principles of Verification By Abstraction

Figure 22: Service Primitives are Made Observable

Figure 23: Quotient Automaton

7 DEGRADED CASE

Protocol design is an incremental process. The first
version of the protocol machines, as well as of the
service primitives list, fits with a perfect underlying
communication service that neither losses nor corrupt
messages. Version 2 of such model leverages initial
restrictive hypotheses and approaches a more realistic
version of the model where the underlying
communication service may loss one type of message,
namely CC.

For space reasons, the paper does not reproduce version
2 of the model entirely. Figure 24 shows how the state
machine of the board protocol entity has been extended
to handle a (bounded) retransmission counter and to
inform the pilot in case of unsuccessful set-up procedure.

Figure 24: New Protocol Machine On the Ground Side

Figure 25: Quotient Automaton

Figure 25 depicts the quotient automaton obtained for
the extended SysML model. The triangle distinguishes
between successful completion and unset connection.

8 VERIFICATION USING TEMPORAL LOGICS

Safety pragmas can be used in design models in order to
capture complex properties expressed in a reduced form
of CTL. After checking the syntax of these pragmas,
TTool can automatically invoke UPPAAL (UPPAAL,
2017) in order to verify these pragmas.
Pragmas must follow the following format:
• A[] p means that whatever the state of the modelled

system, p must be satisfied
• A<> p means that p must be satisfied in at least one

state of all possible execution paths
• E[]p means that p must be satisfied in all the states

of at least one execution path
• E<>p means that p must be satisfied in at least one

state of one execution path.
• p->q means that whenever p is satisfied in an

execution path, q will eventually be satisfied in the
same execution path.

Figure 26 displays two safety pragmas for the ERROR
state in the OnBoardCommunication block. The first
pragma is not satisfied, which means that the ERROR
state is not reached in all execution paths. Yet, since the
second pragma is satisfied, we know that there is at least
one execution path that goes through the ERROR state.

Figure 26: Safety pragmas

9 RELATED WORK

Unlike SysML tools that associate formal verification
with activity diagrams (e.g., Ouchani et al., 2014) TTool
applies model checking to block and state machines
diagrams.

TTool also implements verification by abstraction,
which, to our knowledge, is not offered by other SysML
tools. Let us remark that verification by abstraction was
already applied to protocol models expressed in Estelle
(Courtiat and de Saqui-Sannes, 1992).

In terms of protocol modelling and communication
architecture validation, the book by Garduno and Diaz
(Garduno Barrera and Diaz, 2011) discusses a complete
case study of Transport-level protocol modelling using
UML/SDL, the variant of UML 2 supported by the TAU
G2, a tool that offers simulation capabilities similar to
the one offered by TTool. Unlike TTool, TAU G2 does
not offer verification capabilities.

10 CONCLUSIONS

With their capacity to abstractly model services and
protocols, and to check a model against its expected
service, SysML and TTool help designers in the early
stages of the design trajectory of communicating
systems. SysML diagrams and TTool outputs are closed
to the notations protocol designers are familiar with.
This paper addresses safety issues and concentrates
formal verification on the temporal ordering of events.
SysML-sec, another language supported by TTool (Li et
al, 2017), could be used to detect security flaws. Finally,
SysML models are also used to generate test sequences.

REFERENCES

Apvrille, L., Courtiat, J.-P. Lohr, C., de Saqui-Sannes,

P., 2014, TURTLE: A Real-Time UML Profile
Supported by a Formal Validation Toolkit, IEEE
Trans. on Software Engineering, 30 (7), p. 473-487.

Bochmann, G.v., Rayner, D., West, C. H., 2010, Some
Notes on the History of Protocol Engineering,
Computer Networks, 54(128), p. 3197-3209.

Courtiat, J.-P., de Saqui-Sannes, P, 1992, ESTIM: An
Integrated Environment for the Simulation and
Verification of OSI Protocols Specified in Estelle,
Comp. Networks and ISDN Systems, 25(3), p. 83-98.

FANS 2017, Future Air Navigation Systems,
https://en.wikipedia.org/wiki/Future_Air_Navigation_System.

Garduno Barrera, D., Diaz, M., 2011, Communicating
Systems with UML2: Modeling and Analysis of
Network Protocols, June 2011, Wiley-ISTE, 288 p.

Li, L.W., Lugou, F., Apvrille, L., 2017, Security
Modeling for Embedded System Design", 4th
International Workshop on Graphical Models for
Security, Santa Barbara, CA, USA.

ISO, 2000, ISO/IEC 7498-1:1994, Information
technology -- Open Systems Interconnection -- Basic
Reference Model: The Basic Model,
https://www.iso.org/standard/20269.html

OMG, 2017, Systems Modeling Language 1.5, May
2017, http://www.omg.org/spec/SysML/1.5/.

Ouchani, S., Aït Mohamed, O., Debbabi, M., 2014, A
formal verification framework for SysML activity
diagrams, Expert Systems with Applications, (41) 6,
pp. 2713-2728.

Saqui-Sannes, P. de, Apvrille, L., 2016, Making
Modeling Assumptions an Explicit Part of Real-Time
Systems Models", 8th European Congress on
Embedded Real Time Software and Systems (ERTS),
Toulouse, France, pp. 27-29

TTool, 2017, http://ttool.telecom-paristech.
UPPAAL, 2017, http://www.uppaal.org/.

https://en.wikipedia.org/wiki/Future_Air_Navigation_System
http://www.omg.org/spec/SysML/1.5/
http://ttool.telecom-paristech/
http://www.uppaal.org/

	1 INTRODUCTION
	2 METHOD
	3 modelLing assumptions
	3.1 Original Specification
	3.2 Initial Work on the Specification
	3.3 Modelling Assumptions Diagram

	4 requirementS capture
	5 Analysis
	6 design
	6.1 Architectural Design
	6.2 Behavioural Design
	6.3 Model Simulation
	6.4 Model Checking
	6.5 Verification by abstraction

	7 Degraded case
	8 Verification USING Temporal Logics
	9 related work
	10 conclusions

