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Abstract—We characterize a two tier heterogeneous network,
consisting of classical sub-6GHz macro cells, and multi Radio
Access Technology (RAT) small cells able to operate in sub-6GHz
and millimeter-wave (mm-wave) bands. For optimizing coverage
and to balance loads, we propose a two-step mechanism based
on two biases for tuning the tier and RAT selection, where the
sub-6GHz band is used to speed-up the initial access procedure
in the mm-wave RAT. First, we investigate the effect of the
biases in terms of signal to interference plus noise ratio (SINR)
distribution, cell load, and user throughput. More specifically, we
obtain the optimal biases that maximize either the SINR coverage
or the user downlink throughput. Then, we characterize the cell
load using the mean cell approach and derive upper bounds on
the overloading probabilities. Finally, for a given traffic density,
we provide the small cell density required to satisfy system
constraints in terms of overloading and outage probabilities. Our
analysis highlights the importance of deploying dual band small
cells in particular when small cells are sparsely deployed or in
case of heavy traffic.

I. INTRODUCTION

Future cellular networks will require a tremendous increase
in data rates. This multi-fold enhancement cannot be achieved
through incremental improvements on existing schemes [1].
For this, two techniques are particularly attractive: network
densification using small cells [2] and mm-wave wave com-
munications [3]. Densification of cellular networks consists of
massive deployments of small cells, overlaying the existing
macro cell architecture. Traditionally, small cells are deployed
in sub-6GHz frequencies with the aim of offloading macro-
cells. This calls for Inter-Cell Interference Coordination [4],
[5] and load balancing [6]. To further increase the data rates,
millimeter-wave (mm-wave) small cells, providing a very
high bandwidth, are gaining popularity. Apart from the large
bandwidths, mm-wave communication comes with highly
directional antennas, which greatly reduces the co-channel
interference [7]. Transmissions using higher frequencies suffer
from larger attenuation and high sensitivity to blockages [8],
[9]. The attenuation in mm-wave can be efficiently mitigated
using beamforming techniques, with large number of antennas.
As the wavelength is shorter, antennas are also smaller than
in sub-6 GHz bands, so that deploying many more antennas
becomes feasible. The highly directional antenna patterns pose
in turn new issues in terms of coverage and user tracking.
Moreover, providing initial access to standalone mm-wave
base stations using beamtraining with thin beams presents a
difficult challenge [10]. In this regard, the sub-6GHz band can
be used to aid the initial access mechanism [11]. Specifically,

given suitable signal processing mechanisms, the position and
orientation of the users relative to a sub-6GHz BS can be
determined (see e.g., [12]). If sub-6GHz and mm-wave BS
are co-located, or their position and orientation relative to
one another are known, the coarse-grained angle information
for beamtraining of the mm-wave RF front-end can be de-
rived easily, which significantly speeds up the initial access
procedure. As a result, it is unrealistic to assume ubiquitous
coverage with only mm-wave small cells, and it is envisioned
that multiple radio access techniques (RATs) will co-exist in
future cellular networks [13] [14].

In this paper, we analyze the signal to interference plus
noise ratio (SINR) distribution, the cell load and the downlink
user throughput in a heterogeneous network with multi-RAT
small cells using stochastic geometry. In order to optimize
the user’s SINR or to balance loads between tiers and RATs,
we propose a cell association scheme based on two biases. In
addition, we show the interest of deploying multi-RAT small
cells to improve users’ Quality of Service (QoS).

A. Related Work

Elsawy et al., have presented a comprehensive survey on
stochastic geometry to model multi-tier cellular networks [15].
The SINR and physical data rate distributions have been
derived in the literature by Bai et al. [16] for single-tier mm-
wave networks, by Singh et al. [17] for multi-tier sub-6GHz
and by Di Renzo for mm-wave networks [18]. In case of small
cells operating in the same band of the macro cell, Singh
et al. [17], have shown that, without advanced interference
management techniques, the SINR decreases with increasing
offloading bias. On the contrary, in this paper, we investigate
how employing mm-wave in conjunction with sub-6GHz in
small cells affects the system performance, and we show that
optimizing the offloading biases can increase the user’s SINR.

Omar et al. [19] have considered separate mm-wave and
sub-6GHz BS. They characterized the blockage in a suburban
context using real data from the Lancaster university, UK. The
results provided by the authors are greatly limited since they
use simulation studies in a specific scenario. These results
may not be applicable in other network architectures. In the
context of random networks, Yao et al. [20], similar to Di
Renzo [18] have characterized the SINR coverage probability
and the physical data rate in a multi-tier mm-wave network.
However, the authors have not studied how traffic dynamics
in a multi-user scenario impacts the network performance and
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the average user throughput. On the other hand, Elshaer et
al. [21] have analyzed a multi-tier network with sub-6GHz
macro cells and mm-wave small cells. They have derived the
SINR coverage probability as a function of the tier association
bias, and they have shown only by simulations that a non-
trivial optimal tier selection bias may exist. They have also
investigated the relation between the association bias and
throughput but without considering dynamic traffic. More-
over, they have characterized the load by using the average
number of associated users in a cell; although, for a more
realistic characterization, a dynamic traffic model should be
considered. Furthermore, they have not optimized the user
throughput while considering SINR outage constraints as well
as overloading constraints.

In this perspective, Bonald and Proutière [22] have studied
the relations between the traffic arrival rate and the cell load
for a single cell scenario. In the case of single-tier cellular
network, Blaszczyszyn and Karray [23] have approximated the
cell load by a mean-cell approach to calculate the number of
active users in a cell and the average user throughput. We
leverage on these studies to design the optimal load balancing
in multi-RAT heterogeneous networks and to derive bounds
on overloading probabilities.

B. Contributions and Organization

The contributions of this paper can be summarized as
follows:

1) SINR Coverage in a multi-RAT Heterogeneous Network:
By using stochastic geometry, we derive the association prob-
abilities and the SINR distribution of a typical user in a multi-
RAT heterogeneous network with small cells operating in sub-
6GHz and millimeter wave bands. In the literature, SINR
coverage and throughput analyses have not been performed
so far for such a system model.

2) Association Scheme for Tier and RAT Selection: We
introduce a mechanism based on two biases, QT and QR, for
tuning the tier and RAT selection, respectively. The principle
of using biased received power for association has been used
so far for tier offloading, whereas in this paper, we introduce a
second bias to distribute the users between the available RATs
in the small cells. Using these biases, we propose a two-step
association scheme, in which initial access is performed in the
sub-6GHz band. We compare our association mechanism with
a more natural and exhaustive one-step association procedure
in terms of sub-optimality of biased received power and
downlink throughput. We show that this two-step association
scheme fares better than cell association with beamtraining in
mm-wave in terms of downlink throughput, specially in case
of higher access delays.

3) Bias Optimization for SINR Coverage: Contrary to
single-RAT heterogeneous networks, biasing the received
power can lead to an improved SINR in a multi-RAT system.
However, bias optimization is difficult in general. In the
general case, QT and QR can be obtained by brute force if
the range of possible values is small. To limit the complexity
of this approach, we provide a strategy that sets QR based on
the ratio of the approximated mean SINR in sub-6GHz band

and mm-wave. Thereafter, QT is obtained using a random-
restart hill-climbing algorithm with adaptive step-size. We
show that this strategy achieves near-optimal SINR coverage
probability. We also highlight through simulations that sparse
deployments require sub-6GHz band service for guaranteeing
SINR requirements, whereas, in case of dense deployments,
mm-wave may provide good SINR coverage, but with limited
macrocell offloading. However, we show that, with large
macrocell offloading, users at the edge of small cells, even
in relatively dense deployments, need sub-6GHz band service
to receive appreciable SINR coverage.

4) Cell Load Characterization and Load Balancing: Next,
we analyze the effect of traffic density on the downlink user
throughput by using a M/G/1/PS queue model. The existing
literature in stochastic geometry defines the cell load as the
average number of associated full buffer users, uniformly
distributed over the cell area, see e.g., [15], [24]. This approach
is static in nature and ignores the effect of dynamic traffic on
the user distribution: users with low data rate tend indeed to
stay longer in the system so that the user distribution becomes
inhomogeneous in space. To account for this effect, we rely
on results from queuing theory [22] and characterize the load
of each cell by the mean cell approximation [23]. We solve
a fixed point equation for the load to take the load of the
interfering base stations into account. Accordingly, we derive
upper bounds on the probability for a cell in each tier and
RAT to become overloaded. Based on the derived bounds, we
provide values of minimum necessary deployment densities
required for a given traffic density so as to limit overloading
and outage. We then derive and optimize the downlink user
throughput with respect to tier and RAT biases under these
constraints. We analyze the fundamental trade-off between
user throughput, overloading and outage probabilities. We
finally highlight that the capability of the small cells to operate
also in the sub-6GHz band plays a key role to restrict outage,
thereby justifying our system model.

The rest of the paper is organized as follows. In Section II,
we introduce our two-tier heterogeneous network model. In
Section III-B, we describe the proposed tier and RAT selection
procedure and we derive the related association probabilities.
Then, in Section IV, we compute and optimize the network
downlink SINR distribution in terms of the tier and RAT
selection biases. In Section V, we characterize the load of the
network and the downlink user throughput under a dynamic
traffic model, and, hence, we design the load balancing such
that the user performance is maximized. Simulation results are
provided in Section VI. Finally, the paper concludes in section
VII. Main notations used in this paper are shown in Table I.

II. SYSTEM MODEL

A. Two-Tier Network Model

Consider a two-tier network consisting of macro BSs re-
ferred to as MBSs, and small cell BSs referred to as SBSs.
MBSs are deployed to guarantee continuous coverage to the
users. On the contrary, multi-RAT SBSs locally provide high
data rate by jointly exploiting sub-6GHz and mm-wave bands.
We also assume that the same sub-6GHz band is shared by
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Table I: Notations and System Parameters

Notation Parameter Value
φM , λM MBS process and density λM = 5 per sq. km.
φS , λS SBS process and density λS = 5-200 per sq. km.
PM , PS MBS/SBS power 46 dBm, 30 dBm

αtLr , αtNr Approximated LOS/NLOS path-loss exponents 2, 4
G0 Maximum directivity gain with mm-wave antenna 36 dB
N0 Noise power density -174 dBm/Hz

Bµ, Bmm Sub-6GHz/mm-wave bandwidth 20 MHz, 1 GHz
σ2
N,mm, σ2

N,µ Noise power N0Bmm, N0Bµ
dM , dS MBS/SBS LOS ball radius 200 m, 20 m
θ Beamwidth 15 degrees

MBSs and SBSs. Therefore, users receiving services on this
band experience both co-tier and cross-tier interference. MBS
and SBS locations are modeled as independent Poisson point
processes (PPP), φM and φS , with intensities λM and λS ,
respectively. Let the transmit power of MBS be given by PM ;
the small cell transmit power, in both the bands, is assumed
to be equal to PS . End users are assumed to be distributed
according to a PPP φU , independent of both φM and φS . Due
to the independence of the PPPs and Slivnyak’s theorem [15],
without loss of generality, we carry out our downlink analysis
considering a typical user located at the origin.

B. Blockage Processes

Cellular networks generally suffer from link blockages due
to buildings, vehicles, etc. We assume a blockage process
independent of the BS processes. Let the probability of a
MBS and SBS to be in line of sight (LOS) with respect to
the typical user at a distance r, be denoted by pM (r) and
pS(r), respectively. For a given SBS, the LOS probability in
sub-6GHz is assumed to be the same as that in mm-wave. This
is because, the probability of a signal to be blocked mainly
depends on the blockage process, which is independent of the
carrier frequency [25]. Due to the blockages, MBSs and SBSs
can be categorized into either LOS or NLOS (non line of
sight) processes: φML, φMN , φSL, and φSN , respectively. The
intensity of these modified processes are given by pM (r)λM ,
(1 − pM (r))λM , pS(r)λS , and (1 − pS(r))λS , respectively.
In our work, we use the LOS ball approximation introduced
in [16]. Accordingly, let dM be the MBS LOS ball radius.
The probability of the typical user to be in LOS from a MBS
at a distance r is pM (r) = 1, if r < dM , and pM (r) = 0,
otherwise.1 We assume a similar LOS ball for the SBS process
with a different radius dS .

C. Directional Beamforming in mm-wave

In case of mm-wave operations, the received powers take
advantage of the directional antenna gain of the transmitter
and the receiver. The user and the serving BS are assumed to

1Note that the ball-based LOS probability model is not used in the literature
for sub-6GHz frequencies. Instead, a model with LOS probability equal to
1 until a certain distance and then decreasing exponentially is preferred, see
e.g., [26]. For simplicity and tractability reasons, we use here a step probability
model following criterion 1 in [16] to make the connection between the two
approaches.

be aligned, whereas the interfering BSs are randomly oriented
with respect to the typical user. Here, we assume a tractable
model, where the product of the transmitter and receiver
antenna gains, G, takes on the values ak with probabilities
bk as given in Table 1 of [16]. Let the maximum value of G
be G0.

D. Path-loss Processes

We assume a distance based path-loss model where the path-
loss at a distance dtvr from a transmitter is given by: ltvr(d) =
Ktvrd

−αtvr
tvr for a BS of type tvr, i.e., characterized by tier t

(MBS or SBS), visibility state v (LOS or NLOS), and RAT
r (sub-6GHz or mm-wave). Parameters Ktvr and αtvr are
derived from 3GPP UMa model for sub-6GHz MBSs, Umi
model for sub-6GHz SBSs [27], and Umi model for mm-wave
data transmission in SBSs [8]. By assuming a fast fading that
is Rayleigh distributed with variance equal to one, the average
received power is thus given by Ptvr = PtKtvrd

−αtvr
tvr , where

Pt is the transmit power of a BS of tier t.
With our values (see Table I) of transmit powers, path-

loss exponents, and LOS ball radii, we have d
αSLµ
S

KSLµPS
≤

d
αMLµ
M

KMLµPM
≤ d

αSNµ
S

KSNµPS
≤ d

αMNµ
M

KMNµPM
. The analysis in this

paper is done considering that this ordering does not change
even when powers are biased2. This assumption is reasonable
considering that if a LOS BS exists and the tier bias is
moderate, its biased received power is very likely to be greater
than that of any NLOS BS. Accordingly, we analyze the
performance of the network with tier-selection bias (QT ) in

the range: 1 ≤ QT ≤
d
αSNµ
S KMLµPM

d
αMLµ
M KSNµPS

= QmaxT .

E. Dynamic Traffic Model

We consider a model in which users arrive in the system,
download a file, and leave the system. Any new download by
the same user is considered as a new user. The arrival process
of the new users is Poisson distributed with an intensity λ
[users ·s−1·m−2] and these new users are uniformly distributed
over the network area A. The average file size is σ [bits/user].
When there are n users simultaneously served by a base

2This assumption of ordering is considered only for the sake of simplicity
and practicality. Considering higher bias values marginally alters the theoret-
ical developments by modifying integral bounds in association probabilities.
From an engineering point of view, very high bias values also lead to
unacceptable outage probabilities and thus are of little interest.
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station, the available resources are equally shared between
them in a Round Robin fashion. Accordingly, we define the
traffic density w in the network as w = λ · σ [bits·s−1·m−2].
Note that, while the user arrivals are uniform in space, as the
space-time process evolves, users farther from the serving base
stations which are characterized by lower data rates stay longer
in the system, resulting in an inhomogeneous distribution of
active users in the network.

III. CELL ASSOCIATION PROCEDURE

In this section, we propose a cell association scheme based
on tier and RAT selection biases and we derive the correspond-
ing association probabilities. We start below by a preliminary
result.

A. Distribution of the Path-loss Process

To analyze the cell association, path-loss processes are
reformulated as one dimensional processes, φ′tvr = {ξtvr,i :

ξtvr,i = ||xi||αtvr
KtvrPt

, xi ∈ φtv}, t ∈ {M,S}, v ∈ {L,N},
r ∈ {µ,m}. The processes φ′tvr are non-homogeneous with
intensities calculated as below.

Lemma 1. The intensity measures of the LOS and NLOS path-
loss processes, φ′tLr and φ′tNr are:

Λ′tLr(0, x) =

{
πλt(KtvrPt)

2
αtLr x

2
αtLr , x <

d
αtLr
t

KtvrPt

πλtd
2
t , x >

d
αtLr
t

KtvrPt

,

Λ′tNr(0, x) =

{
0, x <

d
αtNr
t

KtvrPt

πλt((KtvrPtx)
2

αtNr − d2
t ), x >

d
αtNr
t

KtvrPt

.

(1)

Proof. The derivation of the intensity measure is similar to
that in [28].

The related intensities are obtained by differentiating the
intensity measures, and are given by:

λ′tLr(x) =

 2πλt(KtvrPt)
2

αtLr

αtLr
x

2
αtLr

−1
, x <

d
αtLr
M

KtvrPt

0, x >
d
αtLr
t

KtvrPt

λ′tNr(x) =

0, x <
d
αtNr
M

KtvrPt

2πλt(KtvrPt)
2

αtNr

αtNr
x

2
αtNr

−1
, x >

d
αtNr
t

KtvrPt
.

(2)

Lemma 2. The probability density function (pdf) of the first
point of φ′tvµ, which corresponds to strongest sub-6GHz BS,
is:

fξtvµ1(r) = e−Λ′tvµ(0,r)λ′tvµ(r).

Proof. The pdf of the first point in φ′tvµ is computed as

fξtvµ1(r) =
d

dr

[
P(φ′tvµ ∩ (0, r) = 0)

]
=

d

dr

[
e−Λ′tvµ(0,r)

]
= e−Λ′tvµ(0,r)λ′tvµ(r),

where Λ′tvµ and λ′tvµ are given by Eq. (1) and Eq. (2),
respectively.

B. Tier and RAT Selection Scheme

For the cell association mechanism, we assume that BSs
send their control signals in the sub-6GHz band. This is due to
the fact that sub-6GHz communication benefits from a higher
reliability and better coverage than mm-wave signals [29].
Our scheme is based on two biases QT and QR for selecting
the tier and the RAT respectively, to which the user will be
associated. Parameter QT is the classical cell range expansion
parameter [17]: a user compares the strongest MBS signal
with the strongest biased SBS signal. By varying QT , we are
able to offload users from MBSs to SBSs. Once associated
to a SBS, in our approach, a user compares the sub-6GHz
received signal with the mm-wave signal strength biased
with a second parameter QR. By varying QR, users can be
distributed between RATs of the same SBS3. The association
policy, summarized in Algorithm 1, consists of two steps: tier
selection and RAT selection.

C. Tier Selection

The tier selection is based on the transmitted signal on the
sub-6GHz band. As a result, a user can be served either by:
1. an MBS in LOS (ML), 2. an MBS in NLOS (MN), 3.
an SBS in LOS (SL), or 4. an SBS in NLOS (SN). The
biased received powers in sub-6GHz from the strongest LOS
MBS, NLOS MBS, LOS SBS, and NLOS SBS are denoted as
PMLµ1, PMNµ1, QTPSLµ1, and QTPSNµ1, respectively. User
association is only based on measured biased received power.
With the ordering assumption of Section II-D, however, a user
associates with an NLOS BS only in absence of an LOS BS. It

Algorithm 1: Tier and RAT Selection

1: Measure downlink sub-6GHz received powers from all MBS,
SBS.

2: Let PMvµ1 and PSvµ1 be the strongest powers received from an
MBS and an SBS, resp.

3: if PMvµ1 ≥ QTPSvµ1 then
4: Associate to the strongest MBS
5: else
6: Associate to the strongest SBS
7: Measure the mm-wave received power from the SBS

(PSvm1).
8: if PSvµ1 ≥ QRPSvm1 then
9: Start service from SBS in sub-6GHz band.

10: else
11: Start service from SBS in mm-wave band.
12: end if
13: end if

must be noted that the user does not know the visibility state of
the base stations and associates only according to the biased
received powers. The result that the user associates with an
NLOS BS only in the absence of a LOS BS follows from the
ordering described in Section II-D, which in turn, is a result
of the values of the transmit powers and LOS ball radii. As a

3An alternative association scheme could be realized through the control
of the SBS power in the different bands. However, as the transmit powers of
SBSs are generally limited, we do not take this into consideration. Moreover,
our approach can be easily adapted to study this alternative scheme.
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consequence, for a LOS BS, the association probability of a
typical user with tier t can be calculated as:

PtL = E [1(tL)] · E[1(t′L)] · P(Q̃TPtLµ1 > Q̃T ′Pt′Lµ1)+

E [1(tL)] · (1− E[1(t′L)]),
(3)

where t, t′ ∈ {M,S}, t 6= t′, and 1(.) is an indicator function:
1(tL) = 1 if and only if a point of tier t with visibility state
L exists. The value of Q̃T is equal to 1 if t = M , else it
is equal to QT . The first term of Eq. (3) is the product of
the probabilities of 1) the existence of a LOS SBS and 2) the
existence of a LOS MBS and 3) that the received power from
the serving tier is greater than the one from the non-serving
tier. The second term is the product of the probabilities of the
existence of at least one LOS BS of the serving tier and the
absence of a LOS BS of the non-serving tier. In the same way,
for the NLOS BSs, we have:

PtN = (1− E[1(tML)]) · (1− E[1(tSL)]) ·
P(Q̃TPtNµ1 > Q̃TPt′Nµ1). (4)

From these observations, we can deduce the tier selection
probabilities as follows.

Lemma 3. The tier selection probabilities are:

PML = exp(−πλMd2
M ) · exp(−πλSd2

S) ·W1+

exp(−πλMd2
M ) ·

(
1− exp(−πλSd2

S)
)
,

PMN =
(
1− exp(−πλMd2

M )
)
·
(
1− exp(−πλSd2

S)
)
·W2,

PSL = exp(−πλMd2
M ) · exp(−πλSd2

S) · (1−W1)+

exp(−πλSd2
S) ·

(
1− exp(−πλMd2

M )
)
,

PSN =
(
1− exp(−πλMd2

M )
)
·
(
1− exp(−πλSd2

S)
)
·

(1−W2),

where,

W1 =
(1− e−(K1+1)t1)

1 +K1
+ exp(−πλSd2

S)·[
exp

(
−Λ′MLµ

(
0,

d
αSLµ
S

QTKSLµPS

))
− exp(−πλMd2

M )

]
,

W2 = exp(−πλSd2
S)
e−(K2+1)t2

1 +K2
,

K1 = πλS(
KSLµPSQT
KMLµPM

)
2

αSLµ (πλM )
−
αMLµ
αSLµ , t1 =

πλM (KMLµPM )
2

αMLµ

(
d
αSLµ
S

QTKSLµPS

) 2
αMLµ

,

K2 = πλS(
KSNµPSQT
KMNµPM

)
2

αSNµ (πλM )
−
αMNµ
αSNµ , and

t2 = πλMd
2
M (KMNµPM )

2
αMNµ

−1
.

Proof. See Appendix A.

Lemma 4. Given that a user is associated to a tier t of
visibility state v, the pdf of the point in the 1D process of
the serving BS is given by:

f̂ξtvµ1(x) =
fξtvµ1(x)

Ptv

∏
∀(t′v′ 6=tv)

P(φ′t′v′ ∩ (0, x) = 0), (5)

where fξtvµ1(x) is given by Lemma 2.

Proof. The proof follows from Lemma 3 above and Lemma
3 of [16].

D. RAT Selection in SBS
A dual-band user, associated with an SBS, is served using

mm-wave if and only if the biased estimated power in the mm-
wave band is larger than the power received in the sub-6GHz
band.

Lemma 5. Given that a user is associated with a SBS of
visibility state v, the sub-6GHz and mm-wave RAT selection
probabilities are respectively given by:

Pvµ = exp

(
−πλS

(
KSvmG0QR

KSvµ

) 2
αSvm−αSvµ

)
(6)

Pvm = 1− Pvµ. (7)

Proof. See Appendix B.

We denote Ptvr , PtvPvr as the association probability
to a BS of type tvr with the convention that when t = M ,
Pvµ = 1− Pvm = 1.

E. Comparison to a One-Step Association Strategy

It must be noted that our proposed two-step association
scheme is different from a more natural and exhaustive scheme
(e.g., [21]), which directly compares the biased received
powers from all the tiers and RATs (i.e., one-step procedure).
In this regard, our two-step association procedure suffers from
some sub-optimality with respect to the biased received power.
However, access delay is lower with our strategy because the
users position and orientation can be acquired in the sub-6GHz
band before performing beamtraining.

First, we show that both the one-step strategy and our
approach result in the same RAT selection, given that the user
associates with the small cell tier. Then, our strategy differs
from the one-step strategy when a user associates to an MBS
while the biased power received from an SBS in mm-wave
is higher than the biased power received from the MBS. We
characterize hereafter the probability of this event.

Proposition 1. If the typical user receives a higher sub-6GHz
received power from an SBS S1 as compared to an SBS S2,
then it also receives higher mm-wave power from S1 than from
S2. Moreover, the tier selection and RAT selections biases QT
and QR, do not impact this ordering of received powers.

Proof. See Appendix D.

From Proposition 1, we conclude that it is not possible for
the typical user to have a higher received power in sub-6GHz
band from SBS S1 as compared to S2 and lower mm-wave
power from the same. Thus, the two schemes result in the
same RAT selection, in case the user associates with the SBS
tier. Therefore, the only difference in association arises when
the biased received power from the strongest SBS (denoted
S1) in sub-6GHz band is less than that received from the
strongest MBS (denoted by M1), while simultaneously, the
biased received power from S1 in mm-wave is higher than the
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biased received power from M1. Let us call these events E1

and E2, respectively. This results in sub-optimal association of
some users in the sense that these users are not associated to
the tier-RAT pair providing the highest biased power. We have
the following result to model this sub-optimal association.

Lemma 6. The probability of suboptimal association in case
of an association with LOS MBS instead of mm-wave LOS
SBS is given as:

PSO = 2πλM
1− exp

(
−π (λSζ2 − 2λSζ1 + λM ) d2

M

)
2ζ2

, (8)

where ζ1 = PSQT
PM

and ζ2 = KmPSQRQT
KµPM

Proof. See Appendix E.

In Section VI, we provide numerical results to show that the
sub-optimality is limited, and this loss can be compensated by
a faster access procedure, which may increase the network
throughput.

F. A Simple Strategy to Prioritize mm-Wave RAT

Depending on the network load and the active services,
the mobile operator may want to prioritize one RAT over the
other. For instance, the utilization of mm-wave frequencies for
latency sensitive applications, can be an attractive strategy to
offload the sub-6GHz band, which can mainly be dedicated to
communications requiring reliability and continuous service.
In the following, we propose a strategy to achieve this goal.
For that, we introduce the following definition:

Definition 1. The critical distance with respect to the typical
user is the distance of the SBS from which the typical user
receives equal mm-wave and sub-6GHz power.

For our system model, the critical distance for the LOS SBS
tier can be expressed as:

dCL =

(
KSLm

KSLµ
G0

) 1
αSLm−αSLµ

(9)

Proposition 2. If there exists exactly one point of the LOS SBS
process within the critical distance, the typical user always
selects mm-wave as serving RAT. Moreover, in this scenario,
this is the optimal strategy in terms of SINR for the typical
user.

Proof. In the case where this condition holds, the useful signal
received in mm-wave is greater than that received in sub-
6GHz (as per definition of dCL). Thus, the typical user always
selects the mm-wave RAT from the serving SBS. Moreover,
as all interfering LOS SBS are outside dCL, the sub-6GHz
interference has state-wise dominance with respect to the mm-
wave interference. Hence, the mm-wave SINR is always larger
than the sub-6GHz SINR.

From Eq. (9), we see that, for given path-loss exponent
values of each user, the critical distance can be controlled
by varying the product of the transmitter and receiver antenna
gain G0. This enables the users served by LOS SBSs to adjust
their antenna gain in order to select mm-wave communica-
tions, and ensure that this choice is optimal from the SINR

perspective. In addition, given a fixed antenna gain G0, we
have the following corollary, which provides the deployment
density of SBSs that maximizes the probability of occurrence
of a single LOS SBS within the critical distance.

Corollary 1. The maximum probability of occurrence of
exactly one point of LOS SBS within the critical distance is
1/e, and this occurs at:

λS =
1

π

(
KSvm

KSvµ
G0

) 2
αSLµ−αSLm

.

Proof. The probability of existence of only one point within
the critical distance is calculated as:
P (φ′SL ∩ b(0, dCL) = 1) = πλSd

2
CL exp(−πλSd2

CL),
where b(0, dCL) is the ball of radius dCL centered at the
origin. The maximum value of this probability occurs at
πλSd

2
CL = 1, then substituting the value of dCL from Eq.

(9) completes the proof.

IV. DOWNLINK SINR DISTRIBUTION

In this section, we first derive the downlink SINR coverage
probability for the maximum biased received power associa-
tion policy and then optimize the biases with respect to the
cell coverage.

A. SINR Coverage Probability

The SINR coverage probability at a threshold γ, can be
expressed as PC(γ) = P(SINR > γ). Following the theorem
of total probabilities, we have:

PC(γ) =
∑

t∈{M,S}, v∈{L,N}, r∈{µ,m}

P(SINRt,v,r > γ|t, v, r)Ptvr,

(10)
We divide the problem of finding the overall coverage proba-
bility into two parts: the one related to the sub-6GHz service
and the one associated with the mm-wave service, and we
compute the coverage probability by relying on 1D processes
φ′tvr.

Lemma 7. The conditional SINR coverage probability, given
that the user is associated with a sub-6GHz BS of tier t and
visibility state v, is given by:

PCtvµ(γ) =

∫ ∞
0

exp

−γ · σ2
N,µ · x−

∑
t′,v′

At′v′(γ, x)


f̂ξtvµ1(x)dx,

(11)

where,

At′v′ =

∞∫
lt′

γx

y + γx
Λ′t′v′µ(dy), ∀ t′ ∈ {M,S}, v′ ∈ {L,N}.

Additionally, lt′ = x if t′ = t, lt′ = QT · x, when t = M and
t′ = S, and lt′ = x/QT , when t = S and t′ = M .

Proof. See Appendix C.
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Lemma 8. The conditional SINR coverage probability, given
that the user is associated with a SBS in mm-wave of visibility
state v, is given by:

PCSvm(γ) =

∫ ∞
0

exp

(
−
γ · x · σ2

N,mm

G0
−B1(γ, x)

−B2(γ, x)) f̂ξSvm1(x)dx, (12)

with B1(γ, x) =

4∑
k=1

−bk ∞∫
x

(
akγx

y + akγx
Λ′Svm(dy)

) ,

and, B2(γ, x) =

4∑
k=1

−bk ∞∫
x

(
akγx

y + akγx
Λ′Sv′m(dy)

) .

Proof. The proof follows in a similar way to that of Lemma
7.

B. A Near-Optimal Strategy for Bias Selection

On the one hand, obtaining optimal biases with respect
to the SINR coverage probability is difficult because of the
complex expressions. On the other hand, using brute force
to search through all the possible pairs of tier and RAT
selection biases can have a very high time-complexity which
limits practical implementation. Accordingly, in this section,
we propose a strategy to select the tier and RAT selection
biases with the aim of maximizing the SINR coverage.

Specifically, the proposed strategy is based in two parts: 1)
computing the RAT selection bias, QR and 2) obtaining the
tier selection bias QT based on a random-restart hill-climbing
algorithm.

1) Heuristic for Selection of QR: The heuristic to set the
RAT selection bias QR consists of computing the ratio of the
mean signal to interference and noise perceived by the typical
user on the sub-6GHz and mm-wave bands. That is:

QR =
E
[

Smm
Imm+σ2

N,mm

]
E
[

Sµ
Iµ+σ2

N,µ

] , (13)

where Iµ and Imm, respectively, are the sum of the interfer-
ence from all the (LOS and NLOS) BSs in sub-6GHz and mm-
wave, respectively. It must be noted that evaluating the above
expression without the knowledge of the coverage probability
is not possible. However, with a relaxation of independence of
the useful signal and the interference for each of the RATs, the
expected values can be approximated using the results of [30].
Once QR is computed, QT can be obtained by the following
step

2) Random-Restart Hill-Climbing Algorithm for Selection
of QT : We start with a random value of QT , i.e., Q0

T and
calculate the gradient of PC at Q0

T . In case the gradient is
non-negative, we increase the value of QT by a step size of k.
If the gradient is negative, we decrease the value of QT by the
same step size k. We continue this procedure with the updated
value of QT until the variation in QT is sufficiently small. In
the case where the product of two consecutive values of the
gradient is non-positive, and as a result we cross a stationary

point, we reduce the step size by a factor β and continue the
algorithm.

In our algorithm, QmaxT is the maximum value of the bias in
the moderate range. If the coverage probability is monotonic,
quasi-convex or quasi-concave, this procedure provides the
optimal value of QT . In the general case, the procedure stops
at a local maximum in the range 1 ≤ QT ≤ QmaxT . This
local maximum can be improved by repeatedly starting the
same algorithm with random starting points. This procedure
to obtain QT is summarized in Algorithm 2. In Section VI,
we compare the performance of this proposed scheme with
the optimal case.

Algorithm 2: Random-restart hill-climbing algorithm with Adaptive
Step-Size

1: Set t = 1, k > 0, ε > 0 and β > 1.
2: Set QT (0) = Q0

T .
3: while |QT (t)−QT (t− 1)| > ε do
4: if dPC

dQT
(QT (t)) > 0 then

5: QT (t) = min{QT (t− 1) + k,QmaxT }.
6: else
7: QT (t) = max{QT (t− 1)− k, 1}.
8: end if
9: if dPC

QT
(QT (t)) · dPCQT

(QT (t− 1)) < 0 then
10: k ← k

β
.

11: end if
12: t← t+ 1
13: end while

V. CELL LOAD, USER THROUGHPUT, AND LOAD
BALANCING

In the previous section we have focused only on coverage
aspects, we now take into account cell loads to show how
tier and RAT selection biases can improve the user average
throughput. For this, we consider a multi-user system where
the users share the available radio resources according to a
round robin policy.

A. Cell Load Characterization
According to our model of the traffic arrival process, the

traffic density is given as w = λ · σ [bits/s/m2]. For a single
cell scenario, Bonald et al. [22] have modeled the load of
the cell of area A as ρ =

∫
A

w
R(s)ds [22], where R(s) is the

physical data rate of a user located at s. In case of Poisson-
Voronoi cells, the average load is generally difficult to evaluate
because of the randomness in the shape and sizes of the cells.
Furthermore, in a multi-cell scenario, the load of a cell depends
on the SINR characteristics of the cell, which in turn, depends
on the load of the other cells in the network.

We know from the ergodicity of the PPP, that the fraction of
the BS of type tvr that are idle is equal to the fractional idle
time of the typical BS of same type. Accordingly, assuming
that the load of the typical BS of type tvr is given by ρ̄tvr,
then, the fraction of idle BS of type tvr is given by 1− ρ̄tvr.
We substitute this value ∀ t, v, r in the calculation of the load
as:

ρ̄tvr =

∫
γ

wAtvr
Br log2(1 + γ)

ptvr(ρ̄, γ)dγ, (14)
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where the pdf of the SINR ptvr(ρ̄tvr, γ) is a function of the
average idle fraction of the BS and ρ̄ is a vector of the fraction
of idle BSs of all BS types, i.e., ρ̄ = [ρtvr] ∀ t, v, r. This fixed
point equation is then solved in an iterative manner to obtain
the actual load of the BS of all the tiers (starting from zero
load). Then, the SINR coverage probability with 1− ρ̄ fraction
of BSs idle, given that the user is associated with a sub-6GHz
BS of tier t and visibility state v, is given by:

PCtvµ(ρ̄, γ) =

∫ ∞
0

exp
(
−γ · σ2

N,µ · x−

∑
t′,v′

At′v′(γ, x, ρt′v′µ)

 f̂ξtvµ1(x)dx, (15)

where,

At′v′(γ, x, ρt′v′µ) =

∞∫
lt′

γx

y + γx
Λ′t′v′µ(dy, ρt′v′µ),

∀ t′ ∈ {M,S}, v′ ∈ {L,N}.

Additionally, lt′ = x if t′ = t, lt′ = QT · x, when t = M
and t′ = S, and lt′ = x/QT , when t = S and t′ = M .
The intensity measures Λtvr are obtained by modifying λt to
λtρtvr for each BS type. The calculation for the mm-wave BS
follows in the same way.

It should be noted that in case of a Poisson distributed
network, there exists a non-zero fraction of unstable cells
(ρ ≥ 1), which cannot handle their load.

Lemma 9. The probability of a typical cell of type tvr to be
unstable is bounded as:

P (ρtvr ≥ 1) ≤ min

{
σ2
tvr

(1− ρ̄tvr)2 , ρ̄tvr

}
, (16)

where σ2
tvr = E[ρ2

tvr] − ρ̄2
tvr, is the variance of the load,

which can also be calculated, similar to ρ̄tvr by using the
SINR coverage probability of the typical user.

Proof. We have for every k > 0,

P [(ρtvr − ρ̄tvr ≥ kσtvr)] ≤ P [|ρtvr − ρ̄tvr| ≥ kσtvr]
(a)

≤ 1

k2
,

where, (a) is from Chebyshev inequality. Substituting k·σtvr =
1− ρ̄tvr, we obtain the first term of the right hand side in (16).
The second term is a direct result of Markov inequality.

B. Average User Throughput

The average downlink throughput that a user receives from
a BS of type tvr is Ttvr

∆
= wAtvr

Ntvr
, where Ntvr is the average

number of active users in a cell, which can be approximated
by using the mean cell approach [23]. The mean cell is defined
as a hypothetical cell that has the same average load as that
of a typical cell.

Lemma 10. The downlink average user’s throughput in a non-
overloaded mean cell of type tvr is:

Ttvr = λ · σ 1− ρ̄tvr
ρ̄tvr

Atvr.

Proof. The proof is similar to that presented in [22].

The average user throughput is then given by theorem of
total probability as: T =

∑
tvr PtvrTtvr. Due to the different

operating bandwidths, the bias values which provide the op-
timal user throughput may lead to weak SINR, which in turn
increases the outage. Thus, to guarantee the communication
reliability, it is necessary to consider an SINR constraint on
the selection of the optimal biases. We define the outage
probability with respect to a SINR threshold γmin as:

Po,tvr(γmin) = 1− PCtvr(γmin). (17)

Therefore, we introduce the notion of effective throughput,
which measures the throughput of the users, which are not
in outage, as: Teff (γmin) =

∑
tvr Ptvr · Ttvr · PCtvr(γmin).

In Section VI, we optimize QT and QR so as to maximize
the average effective user throughput Teff (γmin) under the
constraint of a maximum outage probability Po,tvr(γmin) ≤ P̄o
for every BS type tvr.

C. Delay-Throughput Trade-off of the One-Step Association
Scheme.

It must be noted that the sub-optimality in biased received
power does not always deteriorate the downlink user through-
put, specially for larger access delays. To illustrate this, let us
assume that the initial access using mm-wave suffers from a
delay given by ∆. In this regard, the throughput for the users
associated to the SBSs in mm-wave RAT is given by:

TSvm =
σ

NSvm
Λ + ∆

, (18)

where Λ = λ · ASvm is the traffic arrival rate in terms of
users per second in the mm-wave cell of visibility state v of
coverage area ASvm = PSvm

λS
, NSvm = ρ̄Svm

1−ρ̄Svm is the number
of active users in the cell, and NSvm

Λ is the transmission time
according to Little’s theorem [31]. In Section VI, we provide
some numerical results to show that in case of realistic access
delay with the mm-wave RAT, our scheme performs better in
terms of the downlink throughput.

VI. SIMULATION RESULTS

In this section, we first validate our path-loss exponent
approximation with respect to 3GPP values. Then, we study
the effects of biases on SINR and user throughput. Finally, we
discuss the selection of optimal biases.

A. Validation of the Path-loss Exponent Approximation

Fig. 1 shows the comparison of our analytical results using
the approximated path-loss exponents from Table I (see Eq. 9)
with Monte-Carlo simulations with actual path-loss exponents
from the 3GPP recommendations [8], [27] in terms of SINR
coverage probability for various tier, RAT selection biases,
and density values. Our results indicate that the analytical
expressions based on approximated path-loss exponents pro-
vide good approximations to the simulated results with 3GPP
values of exponents. Hence, this approximation can be used
for analyzing the system performance.
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Figure 1: Validation of the approximated path-loss exponents
with 3GPP parameters.

B. Trends in Cell Association Probabilities

Fig. 2 (left) shows the tier selection probabilities with
respect to the ratio of the MBS and SBS densities λS/λM
with QT = 10 dB and with QT = 0 dB. As expected, the
association to MBSs decreases as λS/λM increases or when
QT increases. However, the association to LOS BSs does not
change appreciably when increasing QT from 0 to 10 dB.
Only cell edge users, which are more likely to be in NLOS
visibility, are indeed affected by moderate values of QT .

The conditional probability of mm-wave service, given that
the user has associated with a SBS, is plotted in Fig. 2 (right),
by varying QR for two different antenna gains and deployment
density ratios. As expected, this probability increases with QR.
However, it is interesting to note that the maximum directional
antenna gain has a large effect on the RAT selection regardless
of the SBS density. For example, increasing by only 3 dB the
antenna gains of transmitter and receiver each has much more
impact on the mm-wave association than deploying four times
more SBSs.

C. Comparison with the One-Step Association Strategy:

We plot the probability of sub-optimal association (8) in the
left side of Figure 3, for various tier and RAT selection biases
and two antenna gains. We note that the probability of sub-
optimal association is low (≤ 12%). Moreover, the probability
becomes negligible with low tier selection bias (≤ 1%). This
is because with lower QT , the biased received power of the
mm-wave transmission in SBS are lower, thereby reducing the
probability of sub-optimality. Similarly, with lower antenna
gain (G0), the biased mm-wave power is lower, resulting in
low sub-optimality. Furthermore, we observe that the prob-
ability of sub-optimal association increases with increasing
network densification, since denser networks correspond to
higher mm-wave powers. However, for G0 = 30 dB, the
probability of sub-optimal association does not exceed 8%
even for very dense deployments.

In the right side of Figure 3, we compare the throughput
perceived by the typical user with the two approaches (18). We
plot the downlink user throughput vs the initial access delay ∆,
for two different file sizes (σ). We see that with increasing ∆,
the throughput with the one-step association scheme decreases,
and goes below the throughput achieved by using our two-step

solution. In practical systems, the initial access delay in mm-
wave can be of the order of several milliseconds [10]. As a
result, our two step association is more efficient in terms of
the user throughput as compared to the case where association
is performed in one-step.

D. Trends in SINR Coverage Probabilities

In Fig. 4, we plot the SINR coverage probability of the
typical user, with respect to QT and various ratios of SBS to
MBS densities. In the case where the SBSs operate only in
sub-6GHz band, i.e., QR = −∞ dB (Fig. 4 left), increasing
the tier selection bias decreases the SINR coverage probability
because some users are forced to associate with BSs providing
less signal power. For dM = 200 m and dS = 20 m, Fig. 4
(right) shows that the same effect can be observed when SBSs
transmit data only in mm-wave, i.e., QR = ∞, regardless of
the deployment densities.

However, in the latter case, when varying the blockage
characteristics, we observe two different behaviors for the
SINR coverage probability. In Fig. 5, we see that depending
on the LOS ball radii, the SINR may increase with the tier
selection bias. Indeed, the SINR may improve by associating
macro cell users to SBSs transmitting data only in mm-wave,
even though this SBS offers less power in sub-6GHz band,
because the received power in mm-wave may be higher due
to antenna gain. Additionally, the interference in mm-wave is
generally lower than the one in the sub-6GHz band. However,
increasing the bias further forces the users closer to the MBS
to associate with a SBS that provide very limited received
power, which leads to lower SINR.

Assuming maximum power tier selection (QT = 0 dB),
Fig. 5 (right) shows that increasing QR has contrasting effects
on the SINR depending on the ratio of SBS to MBS densities.
Increasing the SBS density increases co-channel interference
more in sub-6GHz than in mm-wave. Moreover, as the user-
SBS distance decreases, the useful signal power increases
more in mm-wave than in sub-6GHz. Both effects are due
to the difference in the path-loss models. As a consequence,
as the SBS density increases (λS/λM = 200), it is more and
more attractive for a user to be served by mm-wave band,
which is realized by higher values of QR. On the contrary,
in case of sparser SBS deployments (λS/λM = 15, 50, 100),
increasing QR forces users to be served from distant SBSs in
mm-wave, and the gain due to the reduced interference cannot
compensate the signal strength loss. Note that this contrasting
effect cannot be observed with single RAT networks.

We now study the joint effect of QT and QR for dense
(λS/λM = 200) and sparse (λS/λM = 50) deployments in
Fig. 6 left and right, respectively. For sparse SBS deployments,
the conclusions drawn so far hold: high SINR regions occur at
low QT and QR. The optimum biases as marked in the figure
are QT = 0 dB and QR = 0 dB. For dense deployments,
however, we can observe that, for a high QT (here for QT >
8 dB), SINR coverage probability generally decreases with
increasing QR, which is in contrast to the case when QT is
small. This is because, for users far away from their serving
SBS, it is now preferable to get associated with sub-6GHz than
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with mm-wave. The optimal biases in this case are QT = 0
dB and QR = 5 dB.

E. Performance of the Near-Optimal Strategy to Select Tier
and RAT Biases

In Section IV-B, we have proposed a near-optimal strategy
to fix the RAT and tier-selection bias, to reduce the complexity
of the brute force search. In this strategy, first QR is selected
according to (13). Then, for the fixed QR, a QT is selected ac-
cording a random-restart hill-climbing algorithm as described
in Algorithm 2. We show the convergence of the algorithm in
the left side of Fig. 7 for λS/λM = 200 and for two pairs of
LOS radii. With k = 0.5 and β = 2, the proposed algorithm
converges at QT = 3.19 dB for dS = 20 m and dM = 150 m,
and at QT = 7.16 dB for dS = 15 m and dM = 100 m.
Fig. 7 (center) compares various bias selection strategies. We
observe that our proposed strategy performs at least as good as
the classical strategy based on the maximum received power.
In particular, for sparse deployment of SBSs, the proposed
strategy and the maximum power association perform equal to
the optimal association. However, with increasing SBS density,
the performance of the maximum power association decreases
due to the increasing interference in the sub-6GHz RAT. On
the contrary, since our strategy takes interference into account,
it achieves near optimal SINR.

F. Analysis of the Bound on Overloading Probabilities

In this section, we investigate the relation between the cell
overloading probabilities and the traffic density, based on the
analytical bound derived in Lemma 9. We see in Fig. 7 (right)
for λS/λM = 5 that the proposed bound is relatively loose
but it provides the operator the guarantee that the overload
probability will not exceed this value. Based on this bound and
a constraint on the overall outage probability, a conservative
network sizing can be derived. In Fig. 8 (left), we show
the minimum deployment density required such that feasible
biases exist to meet both theses constraints. The more stringent
the constraints are, the more SBSs the operator should deploy.
When the traffic density is low, the outage probability is the
limiting constraint and accordingly, the minimum deployment
density is the one required to maintain coverage. However, as
traffic density increases, overloading probability is determin-
ing.

G. Rate Optimal Choice of Tier and RAT Selection Biases

In this section, we optimize tier and RAT selection biases
with respect to the average effective throughput. To guarantee
a good coverage, we impose a constraint on the outage proba-
bility (from 7.5 to 12.5%4). The MBS association probability
corresponding to the optimal QT as a function of the traffic
density is shown in Fig. 8 (right). Depending on the ratio of
densities λS/λM , users are offloaded from MBS to SBS (for
low SBS densities) or vice-versa (for high SBS densities).

4Note that generally, PPP based modeling of cellular networks provide a
pessimistic view of the network. Previous studies showed that an outage of
1% in hexagonal model corresponds to 10% outage in a PPP based modeling
for the same network parameters [32].

In Fig. 9 (left), we show the optimal effective downlink
throughput as a function of the traffic density for various
deployment densities and outage constraints. We observe that
more stringent outage constraints result in lower downlink
throughput in the network. This is because biases are mainly
optimized to guarantee coverage also for cell edge users.
We also observe that increasing the SBS density not only
results in higher throughput, but also increases the range of
traffic densities that the network can serve, i.e., the network
capacity. In this evaluation, we have obtained the downlink
throughput by considering that the users in overloaded base
stations receive zero throughput. Therefore, even though the
network as a whole can serve traffic densities up to 1 Gbps/m2,
the MBS tier gets overloaded for much lower traffic densities.
Accordingly, the network is no longer well-dimensioned for
the region of traffic densities beyond the MBS overloading
points. Furthermore, in Fig. 9 (right), we plot the optimum
association probabilities as a function of outage probability
with λS/λM = 50 and traffic density of 200 bits·s−1m−2.
We see that for more stringent outage constraints, sub-6GHz
service in SBSs becomes necessary, in addition to mm-wave
service, to satisfy the QoS constraints of outage and overload-
ing simultaneously, thus justifying the interest of deploying
dual band SBSs.

As a conclusion, in dense SBS deployments (see Fig. 10,
right), the users do not suffer from outage even in the case
of high tier biases. In this case, QR should be high enough
to maximize the mm-wave association probability. In case
of λS/λM = 200, this results in a maximum throughput of
around 30 Gbps at QT = 10 dB and QR = 6 dB. In sparse
SBS deployments ( Fig. 10 (left)), high values of QT are
desirable to offload traffic from overloaded MBSs. However,
as the SBS ranges increase, mm-wave becomes unattractive for
users at the SBS cell edges. We can observe that increasing QR
beyond a certain limit pushes the SBS users in outage thereby
decreasing the effective throughput. The maximum average
throughput in this scenario, considering the regime of biases
where the MBS tier is not overloaded, is 10 Mbps at QT = 6
dB and QR = 3 dB.

VII. CONCLUSION

In this paper, we characterize a two tier network, consisting
of classical sub-6GHz macro cells, and Multi RAT small cells,
able to operate in sub-6GHz and mm-wave bands. First, we
propose a two-step tier and RAT selection strategy where the
sub-6GHz band is used to speed-up the initial access procedure
in the mm-wave RAT, and then we investigate the effect of
tier and RAT offloading in terms of SINR, cell load, and
throughput. Our study highlights the fundamental trade-offs
between outage probability, user throughput, and overloading
probability, and, thereby, underscores the necessity of the dual
band small cells to maintain outage below a certain threshold,
specially in sparse deployments. In our system model, we have
proposed effective approaches to optimize the user association.
However, obtaining closed form solutions for the optimal
biases and the maximum traffic density that the network
can handle are open challenges. Moreover, the dual band
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nature of the base stations calls for advanced radio resource
management, which is an interesting topic to be investigated.

APPENDIX A
TIER SELECTION PROBABILITY

The probabilities that at least one LOS MBS and LOS
SBS exist are, respectively, E[1(tML)] = 1−exp(−πλMd2

M )
and E[1(tSL)] = 1 − exp(−πλSd2

S). Then, the values of
P(Q̃TPtvµ1 > Q̃TPt′vµ1) are derived as follows:

P(PMLµ1 > QT · PSLµ1)

=

∫ ∞
0

e−Λ′SLµ(0,QT r)e−Λ′MLµ(0,r)λ′MLµ(r)dr

=

∫ d
αSLµ
S

QT ·KSLµPS

0

e−Λ′SLµ(0,QT r)e−Λ′MLµ(0,r)λ′MLµ(r)dr+

∫ d
αMLµ
M

KSLµPM

d
αSLµ
S

QT ·KMLµPS

e
−Λ′SLµ

(
0,

d
αSLµ
S

KSLµPS

)
e−Λ′MLµ(0,r)λ′MLµ(r)dr

=
1

1 +K1
(1− e−(K1+1)t1) + e

−Λ′SLµ

(
0,

d
αSLµ
S

KSLµPS

)
·[

exp

(
−Λ′MLµ

(
0,

d
αSLµ
S

QTKSLµPS

))
−

exp

(
−Λ′MLµ

(
0,

d
αMLµ
M

KMLµPM

))]
,

where, K1 = πλS(
KSLµPSQT

PM
)

2
αSLµ (πλM )

−
αMLµ
αSLµ and t1 =

πλM (KMLµPM )
2

αMLµ

(
d
αSLµ
S

QTKSLµPS

) 2
αMLµ

. Similarly,

P(PMNµ1 > QT · PSNµ1)

= exp

(
−Λ′SNµ

(
0,

d
αSNµ
S

KSNµPS

))
e−(K2+1)t2

1 +K2
,

where K2 = πλS(
KSNµPSQT
KMNµPM

)
2

αSNµ (πλM )
−
αMNµ
αSNµ and t2 =

πλMd
2
M (KMNµPM )

2
αMNµ

−1
. Finally,

P(QT · PSLµ1 > PMLµ1) = 1− P(PMLµ1 > QT · PSLµ1);

P(QT · PSNµ1 > PMNµ1) = 1− P(PMNµ1 > QT · PSNµ1).

Using these expressions in Eq. (3) and Eq. (4) completes the
proof.

APPENDIX B
RAT SELECTION PROBABILITY

The power received from strongest SBS of state v is
PSvµ1 = (ξSvµ1)−1 = KSvµPS ||xSv1||−αSvµ .

So, the estimate of the mm-wave power is: PSvm1 =
G0KSLmPS ||xSv1||−αSvm . Therefore the probability of sub-
6GHz service, given that the user is associated with strongest
SBS of visibility state v, is calculated as:

Pvµ = P(PSvµ1 > QR × PSvm1)

= P

(
||xSv1|| ≥

(
KSvmG0QR

KSvµ

) 1
αSvm−αSvµ

)

= exp

(
−πλS

(
KSvmG0QR

KSvµ

) 2
αvm−αvµ

)
(19)

The probability of mm-wave service is given by PSvm = 1−
PSvµ. This completes the proof.

APPENDIX C
PROOF OF EQ. (15)

We provide the derivation only for the LOS MBS associ-
ation case. The other cases follow similarly. When the user
is associated with the strongest LOS MBS, it experiences
interference from the other LOS MBSs, the NLOS MBSs, and
the SBSs. Thus, the instantaneous SINR is:

SINRMLµ =
hξMLµ1(ξMLµ1)−1

IMLµ + IMNµ + ISLµ + ISNµ + σ2
N

,

where I{.} denote the interference terms given as

IMLµ =
∑

ξMLµi∈φ′MLµ\{ξMLµ1}

hξMLµi(ξMLµi)
−1;

IMNµ =
∑

ξMNµi∈φ′MN

hξMNµi(ξMNµi)
−1;

ISLµ =
∑

ξSLµi∈φ′SLµ

hξSLµi(ξSLµi)
−1;

ISNµ =
∑

ξSNµi∈φ′SNµ

hξSNµi(ξSNµi)
−1.
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Now,

PCMLµ = P(SINRMLµ > γ)

= P
(

hξMLµ1(ξMLµ1)−1

IMLµ + IMNµ + ISLµ + ISNµ + σ2
N

> γ

)
= P

(
hξMLµ1 >

γ(IMLµ + IMNµ + ISLµ + ISNµ + σ2
N )

(ξMLµ1)−1

)
(a)
= EξMLµ1

{
Eφ′MLµ

[
exp

(
− γ · IMLµ

(ξMLµ1)−1

)]
·

Eφ′MNµ

[
exp

(
− γ · IMNµ

(ξMLµ1)−1

)]
·

Eφ′SLµ

[
exp

(
− γ · ISLµ

(ξMLµ1)−1

)]
·

Eφ′SNµ

[
exp

(
− γ · ISNµ

(ξMLµ1)−1

)](
exp

(
− γ · σ2

N

(ξMLµ1)−1

))}
,

(20)

where (a) comes from the pdf of hξMLµ1 . Now,

Eφ′MLµ

[
exp

(
− γ · IMLµ

(ξMLµ1)−1

)]
=

E

exp

−γ ·
∑

φ′MLµ\{ξMLµ1}
hyy
−1

(ξMLµi)−1




=E

 ∏
φ′MLµ\{ξMLµ1}

Ehy
[
exp

(
−γ · hy(y)−1

(ξMLµ1)−1

)]
= exp

− ∞∫
ξMLµ1

(
1− Ehy

[
exp

(
− γ · hyy−1

(ξMLµ1)−1

)])
·

Λ′MLµ(dy)
)

= exp

− ∞∫
ξMLµ1

(
γξMLµ1

y + γξMLµ1
Λ′MLµ(dy)

) .

Similarly,

Eφ′tvµ

[
exp

(
− γ · Itvµ

(ξMLµ1)−1

)]
=

exp

− ∞∫
ltv

(
1− y

y + γξMLµ1
Λ′tvµ(dy)

) ,

for tv = MN,SL and SN , respectively, where the lower
indexes are: lSL = lSN = QT · ξMLµ1 and lMN = ξMLµ1.
Substituting the above results in Eq. (20), and taking the
expectation with respect to ξMLµ1, completes the proof.

APPENDIX D
PROOF OF PROPOSITION 1

Consider two LOS SBS S1 and S2
5. Let the power received

by the typical user from the SBS S1 in mm-wave and sub-

5The analysis where there are NLOS SBS can be performed with similar
reasoning.

6Ghz band be PS1m and PS1µ, respectively. Let the corre-
sponding values for S2 be PS2m and PS2µ, respectively. Now

PS1µ ≥ PS2µ ⇐⇒ KµPSd
αSvµ
1 ≥ KµPSd

αSvµ
2

⇐⇒ KmPSd
αSvm
1 ≥ KmPSd

αSvm
2

⇐⇒ PS1m ≥ PS2m

⇐⇒ QRPS1m ≥ QRPS2m (21)

APPENDIX E
PROBABILITY OF SUB-OPTIMAL ASSOCIATION

Recall that E1 and E2 denote the events the biased received
power from the strongest SBS (denoted S1) in sub-6GHz band
is less than that received from the strongest MBS (denoted by
M1) and the biased received power from S1 in mm-wave is
higher than the received power from M1, respectively. We
have:

P
[
E2 | E1

]
=

P [E2 ∩ E1]

P [E1]
=

1

P
[
PMd

−αMv′µ
M1 ≥ QTPSd

−αSvµ
S1

] ·
(
P
[
KmPSQRQTG0d

−αSvm
S1 ≥ KµPMd

−αMv′µ
M1 ∩

PMd
−αMv′µ
M1 ≥ QTPSd

−αSvµ
S1

])
=

1

P
[
dS1 ≥

(
PSQT
PM

d
αMv′µ
M1

) 1
αSvµ

] ·
P

[
dS1 <

(
KmPSQRQTG0

KµPM
d
αMv′µ
M1

) 1
αSvm

∩

dS1 ≥
(
PSQT
PM

d
αMv′µ
M1

) 1
αSvµ

]

= EdM1

 1

exp
(
−πλS (ζ1x

αMv′µ)
2

αSvµ

) ·
(

exp
(
−πλS

(
(ζ2x

αMv′µ)
2

αSvm − (ζ1x
αMv′µ)

2
αSvµ

)))]
= 2πλM ·∫ dM

0

exp
(
−πλS

(
(ζ2x

αMv′µ)
2

αSvm − (ζ1x
αMv′µ)

2
αSvµ

))
exp

(
−πλS (ζ1x

αMv′µ)
2

αSvµ

) ·

x exp(−πλMx2)dx

Solving this integral with the approximated values of the path-
loss exponents completes the proof.
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