
SysML model transformation for safety and security analysis
Rabéa Ameur-Boulifa

LTCI, Télécom ParisTech, Université
Paris-Saclay

first.last@telecom-paristech.fr

Florian Lugou
Prove & Run

first.last@provenrun.com

Ludovic Apvrille
LTCI, Télécom ParisTech, Université

Paris-Saclay
first.last@telecom-paristech.fr

ABSTRACT
While the awareness toward the security and safety of embedded
systems has recently improved due to various significant attacks,
the issue of building a practical but accurate methodology for de-
signing such safe and secure systems still remains. Where test
coverage is dissatisfying, formal analysis grants much higher po-
tential to discover security vulnerabilities during the design phase
of a system. Yet, formal verification methods often require a strong
technical background that limits their usage. In this paper, we
formally describe a verification process that enables us to prove
security-oriented properties such as confidentiality on block and
state machine diagrams of SysML. The mathematical description of
the translation of these formally defined diagrams into a ProVerif
specification enables us to prove the correctness of the verification
method.

CCS CONCEPTS
• Security and privacy→ Embedded systems security; • Comput-
ing methodologies → Model development and analysis; • Com-
puter systems organization → Embedded systems; • Hardware
→ Safety critical systems;

KEYWORDS
Model-Driven Engineering, Verification, Safety, Security, Embedded
Systems
ACM Reference Format:
Rabéa Ameur-Boulifa, Florian Lugou, and Ludovic Apvrille. 2018. SysML
model transformation for safety and security analysis. In Proceedings of
(ISSA’2018). ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 INTRODUCTION
In our increasingly connected world, security is a growing concern
for embedded systems. This remark firstly applies to critical systems
such as connected vehicles or industrial systems. There are already
many approaches (i.e. methods, models and tools) to evaluate crit-
ical aspects of these systems, independently from their security:
real-time schedulability, formal verification techniques based e.g.
on model-checking or correct-by-construction techniques. Model-
Driven Engineering often considers safety aspects with coherence
checks between diagrams or with model-to-formal-specification

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ISSA’2018, ,
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

algorithms in order to evaluate safety properties from e.g. UML
diagrams. Concerning security aspects, a usual practice is to rely on
dedicated models and tools that are focused on the security aspect
e.g. ProVerif [? ] and Avispa [? ], and are thus not compatible with
safety-related models and tools. As a result, security is often seen as
the right way to use the right tools, if not totally ignored. This how-
ever leads to more subtle bugs when out-of-the-box cryptographic
solutions are not suitable, and in particular when the importance
of an asset or communication is misunderstood. Such a security
issue can be minor when the number of devices affected is small
and when the vulnerability can be fixed easily, e.g. with a software
patch. However, this is typically not the case for embedded systems
where design flaws can be impossible to fix and can affect a whole
range of products. Even when a security vulnerability is discov-
ered before the product is released, the amount of work needed to
rethink the whole architecture may be prohibitive.

To facilitate the design of critical systems with security require-
ments, we suggest enhancing safety-related models with security
mechanisms, and to offer, from the same model, safety-to-formal-
specification and security-to-formal-specification transformations.
In the paper, we present the SysML-Sec environment that supports
both safety and security. Then, we elaborate on the SysML-Sec-
model-to-security-formal-specification that was first sketched in
[? ]. This transformation algorithm is valuable as it enables us to
perform security verification on general-purpose design models
and thus avoids error-prone duplication of models. However, the
transformation algorithm had not been formally described yet. This
paper gives a formal description of the transformation algorithm
in order to prove the correctness of the method. Throughout the
paper, we will illustrate our explanation of the different phases of
modeling and verification on a pedagogical example. Although the
example has purposely been kept to its bare minimum so that the
reader can easily refer to it, it could still be used as a sub-part of a
greater real-life design. In the presented scenario, two participants
(called Alice and Bob) communicate through an unsafe (public)
channel. Alice repeatedly sends sensitive data to Bob. The messages
are encrypted by Alice before being transmitted over the public
channel. The two participants have beforehand shared a crypto-
graphic key and we assume the way the sharing was performed
does not need to be modeled. In practice, the key could have been
physically shared, built from asymmetric key material (through a
Diffie-Hellman protocol for instance) or it could have been provided
to Alice and Bob by a trusted third party. The key used by Alice
to encrypt her communications periodically changes and thus a
new key is created. So each time Alice sends a new message, she
attaches the newly created key so that Bob is able to decrypt the
next message. We typically want to verify that the data sent by
Alice can not be retrieved by a potential attacker eavesdropping and
manipulating messages on the public channel. Other more complex

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


ISSA’2018, , Rabéa Ameur-Boulifa, Florian Lugou, and Ludovic Apvrille

security protocols and systems have been modeled and verified
thanks to the method described in this paper.

The verification method enables us to prove confidentiality and
authenticity properties on these models within an acceptable time
(less than 5 minutes on a general-purpose computer). We will not
detail these case studies in the current paper but refer the interested
reader to the SysML-Sec website1 where the corresponding models
are freely accessible.

The paper is organised as follows: in section 2, we present the
methodology chosen here and give a formal description of the
modeling language (a SysML profile). Section 3 presents the basic
model ProVerif language and we give a translation of SysML model
to ProVerif model. Section 4 acts as a validation of our approach
that can be used to assert the validity of our translation. Section 5
surveys related work before concluding in section 6.

2 SYSML-SEC LANGUAGE
SysML-Sec [? ] is a modeling language following a model-driven
approach to design embedded systems with safety, security and
performance constraints. This modeling language was chosen as it
enables the user to analyze behaviors that will be implemented by
the system and specifically targets embedded systems. Moreover, it
is supported by a free and open-source tool to which the presented
algorithm was added.

Designing an application: Basically, SysML-Sec supports two
main modeling phases:

(1) The system-level HW/SW partitioning phase includes
capturing functional elements of the target application, mod-
eling candidate architectures and finally mapping functional
elements—including communications between functions—to
candidate architectures. Then a verification sub-phase fol-
lows in which safety, security and performance constraints
are evaluated in order to select the “best” HW/SW partition.

(2) A software design phase follows a successful partition-
ing phase. Software components are first built from high-
level functions mapped onto processor nodes at the previous
phase. Then, they are progressively refined. Refinement typ-
ically concerns the accurate description of algorithms and
protocols, including security protocols.

Design elements of the two phases are built from (safety and secu-
rity) requirements. Verification is supported in all modeling stages
in order to assess the security and safety requirements. Attack trees
also help capture potential attacks that are feasible in the considered
mapping models.

TTool is a free and open-source tool that supports the different
phases and models of SysML-Sec. It offers a press-button approach
for safety, security and performance verification, and can backtrace
verification results to modeling views.

Software design verification: As formalized below, a software
design is built upon communicating blocks whose behaviors are de-
scribed with state machine diagrams. Software design verification
intends to evaluate the fulfillment of safety and security proper-
ties. Safety verification checks a large set of properties including
safety (e.g. deadlock-free) and liveness (e.g. reachability) properties.
1http://sysml-sec.telecom-paristech.fr/

Properties can be modeled either with a subset of temporal logic
language e.g. CTL, or with the use of observers in the model that are
expressed with state machine diagrams. TTool relies on UPPAAL
model checking Tool for verification.

2.1 Syntax
In the software design phase, the SysML-Sec diagrams intend to
describe a software design. This section provides a formal definition
of software designs.

Definition 1. Design. A design is defined by a network of blocks
interconnected by links and a set of pragmas:
D = ⟨B,C,P⟩ where B is a set of blocks, C is a set of channels, and
P is a set of pragmas.

Figure 1 displays two blocks Alice and Bob as well as a public
link—as denoted by the illuminati symbol—between the two. In this
paper, we don’t mention data types as they only act as syntactic
sugar as far as security analysis is concerned.

SysML blocks consists of a set of methods and attributes. Com-
munication ports can be attached to a block, and to each port are
attached interfaces and signals [? ]. For simplicity, we directly attach
signals to SysML blocks.

Definition 2. Block. A block is a tuple:
block = ⟨ident,A,M,S,behav⟩ where
• ident is a block name.
• A is a set of attributes.
• M is a set of methods.
• S is a set of directed signals. For each s ∈ S, type(s ) ∈
{in,out }.
• behav is a state machine diagram.

We define a function block that, for a given design D, returns
the set of its blocks; and functions sig and att that for a given a
block b returns the set of its signals and its attributes respectively.

Definition 3. Channel A channel connects signals between
blocks: channel = ⟨type,R⟩ where type is a physical property which
can be either private or public, and R is one-to-one correspondence
between two sets of signals, R ⊆ sig(b1) × sig(b2) where b1,b2 ∈
block (D) such that ∀(s1,s2) ∈ R, type(s1) , type(s2).

SysML design supports the notion of pragma. Pragmas enable to
describe properties of the system in the initial state, and to query
a property of the design that will be checked during verification.
To simplify this description, we will consider only two types of
pragmas which: - express that two attributes have the same value at
the beginning of the execution (Pinit ); - query the confidentiality
of an attribute (Psecret ).

Definition 4. Pragma. Let D be a design. We define a pragma
as a pair: P = (Pinit ,Psecret ) where

Pinit ⊆
(⋃

b∈block (D) att (b)
)2
and Psecret ⊆

⋃
b∈block (D)att (b)

A state machine diagram is a labelled transition systemwith vari-
ables named attributes; a state machine diagram can have guards
and assignments of attributes on transitions. Attributes can be ma-
nipulated, defined, or accessed. Let f range over function names,
xi range over variable names, and c are channel names. The set

http://sysml-sec.telecom-paristech.fr/


Safety and Security Analysis ISSA’2018, ,

<<cryptoblock>>

Alice

- key : Key;
- msg : Message;
- secret : Message;
- newKey : int;

<<cryptoblock>>

Bob

- key : Key;
- msg : Message;
- secret : Message;

<<datatype>>
Message

- data : int;

<<datatype>>
Key

- data : int;

Model Pragmas
#InitialSystemKnowledge Alice.key Bob.key

Security Property
#Confidentiality Alice.secret

Figure 1: A graphical representation of SysML-Sec design example

Actions of action terms in state machine diagrams is defined as
folows:

a ∈ Actions ::= f (x1, . . . ,xn ) function call
| x := exp assignment expression
| c⟨x⟩ input action
| c̄⟨x⟩ output action
| ν .x random action
| ε empty action

Expressions (exp) in SysML-Sec can be variables and function calls
(x and f (x1, . . . ,xn )). The set Guards is the set of boolean expres-
sions.

Definition 5. State Machine Diagram. A state machine dia-
gram is a rooted directed graph: behav = ⟨Q,q0,q⊥,E⟩ where
• Q is a set of nodes.
• q0 ∈ Q is an initial state node.
• q⊥ ∈ Q is a (possibly empty) final state node.
• E ⊆ Q × Guards × Actions × Q.

A name is given by the designer to each state. We define a la-
belling function L that returns the name of a given state. Given an
edge e = (q,д,a,q′), we define functions source(e ) = q, guard(e ) =
д, action(e ) = a, and target(e ) = q′. A trace σ ∈ Actions∗ is a se-
quence of actions a0 a1,. . .an such that there is a sequence of states
q0 q1,. . .qn and (qi−1,д,ai ,qi ) ∈ E for all i = 1, . . . ,n.

Syntactic constraints on activity diagram. TTool enforces some
basic properties on the state machine diagrams, namely:

(1) The initial state node may only occur in the source of an
edge.

(2) The final state node may only occur in the target of an edge.
(3) For any state node, there is a path from the initial state node

to this node.
(4) Any state node different from the final state node has at least

one outgoing transition.
We introduce the notion of basic block that we will use in our

translation. A basic block can be seen as a sub-design that offers
a single point of entry and that can be triggered by several points.
Precisely, it is a connected sub-graph for which all the states have
exactly one incoming edge, except for one state that we name
root. We will use Out function that returns the set of transitions
outgoing from a given state. We also define a predicate UniqueOut
and UniqueIn that take a state q and return true if only if no two
different transitions have q as a source and target state respectively.

UniqueOut(q ) ⇔
(

∀(q1, д1, a1, q′1), (q2, д2, a2, q′2) ∈ E .
q1=q ∧ q2=q ⇒ д1=д2 ∧ a1=a2 ∧ q′1=q

′
2

)

UniqueIn(q ) ⇔
(

∀(q1, д1, a1, q′1), (q2, д2, a2, q′2) ∈ E .
q′1=q ∧ q

′
2=q ⇒q1=q2 ∧ д1=д2 ∧ a1=a2

)
Figures 2a and 2b show the graphical representation of the two

state machine diagrams of Alice and Bob respectively. Note that
empty actions and “true” guards are not shown in the diagrams.
States are depicted by colored boxes (except for the initial state
which is a circle), transitions by arrows, and actions are either rep-
resented by textual expressions next to arrows (for function calls
and assignment expression) or by white boxes with various forms
(for the other types of actions). For instance, the state machine of
Alice is composed of an initial state linked to a state named gener-
ateNewKey by an empty transition. This state is linked to another
state sendSecret by a transition bearing 4 actions: a random action
and 3 assignment expressions. Another transition links sendSecret
to generateNewKey and bears an output action. Note that in the
diagrams, multiple actions appear on each transition. This is seman-
tically equivalent to multiple chained transitions, each of which
bearing a single action and a true guard.

chout(msg)

generateNewKey

newKey = RANDOM0[0, 0]

sendSecret

msg.data = newKey
msg = concat2(secret, msg)
msg = sencrypt(msg, key)

key.data = newKey

(a) Alice

waitForMessage

chin(msg)

received

msg = sdecrypt(msg, key)
get2(msg,secret,msg)
key.data = msg.data

(b) Bob

Figure 2: State machine diagrams in the SysML-Sec method-
ology

3 FROM SYSML-SEC TO PROVERIF
Our goal is to provide an environment to design safe and secure
systems with the SysML language. Our plan is to give a formal
definition of the behavioural semantics of SysML, and get a stan-
dard code to do the security analysis. This section describes the
behavioural semantics of SysML design allowing security analysis.



ISSA’2018, , Rabéa Ameur-Boulifa, Florian Lugou, and Ludovic Apvrille

3.1 ProVerif Language
ProVerif [? ] is a cryptographic protocol verification tool working on
a symbolic model. ProVerif specifications are described in a custom
language following a well-defined structure [? ]. It consists of a
sequence of declarations and a process. Our translation use a core
of ProVerif language, excluding only some declarations. In detail, it
covers the following features, which form a complete language for
generating well-formed code for security analysis:
• Functions declaration (referred to by fun and reduc key-
words). They are typically used to describe cryptographic
primitives such as hash, symmetric encryption, etc. and they
don’t depend on the particular design we are translating.
• Variables declaration (denote by channel and free keywords).
They declare channels and other variables that are shared
by every participant and can be either public or private.
• Queries (referred to by query keyword) express the security
properties that a user wishes to prove on the design
• Sub-processes declaration (referred to by let keyword). Each
sub-process declaration contains a behavioral description
of part of the state machine diagrams of the design. They
may be referenced by other sub-processes or by the main
process. If they are not referenced by anyone, they are simply
ignored.
• The main process (referred to by process keyword), which
is the entry point of the design. It can reference any sub-
process.

Global structure of an example of ProVerif code is presented in
Listing 1.

( ∗ Func t i on s ∗ )
fun s en c r yp t ( b i t s t r i n g , b i t s t r i n g ) : b i t s t r i n g .
reduc f o r a l l x : b i t s t r i n g , k : b i t s t r i n g ;

s d e c r yp t ( s en c r yp t ( x , k ) , k ) = x .
. . .

( ∗ Va r i a b l e s ∗ )
f r e e token___Bob___0 : b i t s t r i n g [ p r i v a t e ] .
f r e e t oken___A l i c e___0 : b i t s t r i n g [ p r i v a t e ] .
. . .

( ∗ Quer i e s ∗ )
query a t t a c k e r ( new A l i c e _ _ _ s e c r e t _ _ d a t a ) .
. . .

( ∗ Sub−p r o c e s s e s ∗ )
l e t Bob___0 =

new st rong___Bob___02 : b i t s t r i n g ;
out ( chContro l , s t rong___Bob___02 ) ;
. . .

( ∗ Main p r o c e s s ∗ )
p r o c e s s

new A l i c e___key__da t a : b i t s t r i n g ;
. . .

Listing 1: Global structure of a ProVerif file

In particular, we see a constructor declaration (sencrypt), a
destructor declaration (sdecrypt), two shared variables declara-
tions (token___Bob___0 and token___Alice___0), a confidential-
ity query, the declaration of a sub-process (Bob___0) and the main
process which creates a new private name (Alice___key___data).

3.2 Translation of SysML-Sec design to ProVerif
We now give the semantics of a SysML-Sec design, expressed as a
translation from SysML-Sec designs into ProVerif specifications. For

each SysML-Sec design D, the interpretation function is expressed
under the form:
JDKE = FE (D) ⊕ VE (D) ⊕ QE (D) ⊕ PE (D) ⊕ "process" ⊕ MainE (D)

It relies on several auxiliary functions for expressing the semantics
of specific parts of the designs. The core entities of this semantics
include five functions: FE (D) for generating the set of functions,
VE (D) for generating the set of variables, QE (D) for generating
the set of queries from pragmas, PE (D) for generating the set of
processes, and MainE (D) that generates the main process that
manages global instantiation of other processes. The construction
of these functions relies on the notion of environment denoted
E = (Eq ,Ev ) that keeps track of the states that have to be visited
(Eq ) and those that have already been visited (Ev ) during state
machine traversal.

Before defining the interpretation function, it is helpful to in-
troduce some notations. We use the quote (") character to indicate
the beginning and ending of a string (corresponding to ProVerif
instruction). Quoted strings placed next to each other are concate-
nated (by ⊕ operator) to produce a whole string (complete source
code). −→a a∈S denotes a list of parameters over the set S.

1) Declarations part.
Functions. They include a list of common cryptographic primi-
tives that can be used in all SysML-Sec designs. They also include
additional functions tok and untok (used to protect variables), and
a pair of encryption and decryption functions that are added to
each private channel.
Variables. They consist of three kinds one for channel used for
public communication, one for channel controlling messages (re-
ferred to by chctrl) and one variable for each basic block (referred
to by token_ . . .). Note that the token_ . . . variables can only be
generated once the sub-processes generated.
Queries. In this paper, we focus on the confidentiality property. For
each variable v for which the designer would like to check the confi-
dentiality, we generate a query of the form "query attacker(new v)".

2) Processes generation.
Sub-processes. They are generated by walking through the state
machine diagram of every basic block of the SysML-Sec design. To
do this, the interpretation function relies on a queue of states to be
visited Eq that is initialized to contain the root state of each baisc
block, and a list Ev that contains all the states that have already
been visited (which is empty at the beginning). While there are
unexplored states, one state s is picked from the Eq set, it is added
to the explored set Ev set, a sub-process is created by using the first
function JsKp

E
(see Table 1). The idea is that the translation function

goes through the whole basic block starting from the root and gen-
erates a Proverif instruction for each constructor encountered by
calling the appropriate interpretation function. All interpretation
functions are defined in Table 1. They use the terminology fresh
variable which means that the variable is a new one and it has no oc-
currence anywhere in the code except in the instruction that creates
it. Informally, the interpretation functions, as descibed in 1, trans-
late states to a corresponding ProVerif event used for reachability
queries; and transitions by translating their guards into if condi-
tions (J., .Kt

E
) and their actions into ProVerif instructions (J., .Ka

E
).

The continuation of the translation of following states is completed



Safety and Security Analysis ISSA’2018, ,

by J.Kc
E
function. Two interpretation functions require special at-

tention: multiple outgoing transitions and transitions linking states
of two different basic blocks. For the former, the resulting ProVerif
process generates a token for each possible transitions and makes
them available to the attacker (J.Km

E
). Then, it triggers the path by

asking the attacker to accept one token. For the latter, the process
also generates a token (J.Kb

E
). This token must contain the current

state of the block (as described by its attributes) and the identifier
of the basic block to be called (the token_ variables). In order to
prevent the attacker from replaying previous tokens, the token
includes a nonce that is issued by the callee. This token is protected
from modification and spying by the attacker by encapsulating it
into a private function tok.

Main process. The main process is then appended to the end of
the ProVerif specification. Its purpose is first to create one unique
tok(. . .) message for each state machine so that the attacker can
call2 the process corresponding to each basic block whose root is
the initial state of a state machine. To create each token for a block,
the main process needs to instantiate the attributes of the block,
wait for a nonce and send the token. Then, it runs all the created
processes in parallel (as denoted by the | operator) infinitely (as
denoted by the ! operator).

MainE (D) =
( ⊕
b∈block (D)

( ⊕
a∈att (b )

"newa;" ⊕ "in(chctrl, nonce);

out(chctrl, tok(token_L(q0), nonce, args))"
))

"
����"q∈Ev

(
"!proclabel_L(q )"

)
with args = −→a a∈att(b)

4 VALIDATION
The purpose of this section is to provide arguments validating the
semantics given in this paper. The first part shows formally that we
didn’t introduce any new information in our translation process;
the second part focuses on an example to show how our translation
works in practice.

4.1 Correctness theorem
We first proved that our translation algorithm is sound: if there is a
possible disclosure of a secret in the software design, then there is
a disclosure in the ProVerif specification. Soundness of translation
algorithm states that each ProVerif code generated by MainE (D),
is compliant with the software designD, according to the property
of confidentiality.

Proposition 1. If a term M is a secret in the SysML-Sec model,
thenM is a secret in the generated ProVerif specification.

The proof is done by induction on the length of all possible
execution traces of SysML-Sec model (proof detailed in [? ]).

For checking properties like confidentiality, ProVerif tries to
prove it by finding all possible execution traces that would lead to a
violation of this property in an approximated model. This approx-
imated model—which is needed since proving secrecy property
in the Dolev-Yao model has been proved to be undecidable in the
2The term call here is abusive. Indeed, the attacker has no control over the execution
flow of each process. It is however able to pass a token to a particular process which is
blocked waiting for it.

general case [? ? ]—is constructed so that each possible trace on the
real model produces a possible trace in the approximated model.
As such, ProVerif can issue three types of results (given for secrecy
here):
• Property is true. ProVerif did not find any trace leading to a
violation of the property in the approximated model. Since
the approximation is sound, this means that the property is
true also on the real model.
• Property is false. ProVerif has found a trace on the approxi-
mated design and has managed to construct a corresponding
trace on the real model. The trace found is provided with
the result by ProVerif.
• Property cannot be proved. ProVerif has found a trace on
the approximated design but this trace did not match a valid
trace on the real model. In this case, ProVerif is not able to
conclude but the trace on the approximatedmodel is returned
so that the designer can decide whether this matches a valid
trace or not.

We keep these three possible results and make them available to
the designer through the TTool interface.

4.2 Verification results in TTool
In order to enable the designer to simultaneously see the results
of the previous verification and accordingly continue modeling,
verification results are displayed on the diagrams that are built
by the designer. Results for the reachability, confidentiality and
authenticity properties are displayed on the block and state machine
diagrams in the form of green (when property is true) or red (when
property is false) locks. For instance, we can see in Figure 3a that
the waitForMessage and received states are reachable.

waitForMessage

chin(msg)

received

msg = sdecrypt(msg, key)
get2(msg,secret,msg)
key.data = msg.data

(a) State machine with re-
sults

(b) Sequence diagram of an attack trace

Figure 3: ProVerif results concerning the reachability of re-
ceived

Also, in order to ease debugging and when it is available, the
designer is provided with a trace that shows why the property is
true (for instance how a state is reachable) or false (how a secret can
be disclosed). This trace is automatically constructed based on the
trace issued by ProVerif and displayed as a sequence diagram. As
such, the trace presents the messages exchanged by the participants
(all blocks and the attacker) and the states that each block goes
through. As shown in Figure 3b, we see how the received state
inside Bob’s state machine can be reached.

5 RELATEDWORK
Assessing security properties when designing software components
mostly relies on formal approaches. For example, [? ] proposes



ISSA’2018, , Rabéa Ameur-Boulifa, Florian Lugou, and Ludovic Apvrille

Table 1: Interpretation function of State Machine Diagrams

JqKp
E
=




"let proclabel_L(q ) =
newnonce;
out (chctrl, nonce);
in(chctrl, token);let (=token_L(q ), =nonce, args) = untok(token)" ⊕ JqKs

E

with args = −→a a∈att(b)

JqKs
E
=




"." if q = q⊥
"event enteringState_L(q ) ();" ⊕ Jq, eKtE ifUniqueOut(q )
"event enteringState_L(q ) ();" ⊕ JqKmE otherwise

Jq, eKtE =
{
"if guard(e ) then" ⊕ Jq, eKaE if guard(e ) , true
Jq, eKaE otherwise

JqKmE =



⊕
e∈Out(q )

"new xe;out (chctrl, xe ); " ⊕ "in (chctrl, c );"
⊕

e∈Out(q )

(
"if c=xe then" ⊕ Jq, eKtE

)
where c and xe are fresh variables

Jq, eKaE =




"let x = exp in" ⊕ Jtarget(e )KcE if action(e) = x := exp
"new x;" ⊕ Jtarget(e )KcE if action(e) = ν .x
"out (c, x );" ⊕ Jtarget(e )KcE if action(e) = c̄⟨x ⟩
"in (c, x );" ⊕ Jtarget(e )KcE if action(e) = c⟨x ⟩
Jtarget(e )KcE if action(e) = f (x1, . . . , x2) | ε

JqKcE =
{
JqKsE if UniqueIn(q)
JqKbE otherwise

JqKbE =




"in(chctrl, nonce);out(chctrl, tok(token_L(q )), nonce, args))." if q ∈ Ev orq ∈ Eq
"in(chctrl, nonce);out(chctrl, tok(token_L(q )), nonce, args))." otherwise

Eq = Eq ∪ {q }

with args = −→a a∈att(b)

verifying cryptographic protocols with a probabilistic analysis ap-
proach. Protocols are represented as trees whose nodes capture
knowledge while edges are assigned transition probabilities. Al-
though these trees could include malicious agents in order to model
attacks and threats, nevertheless security properties are not ex-
plicitly represented. Moreover, for threat analysis, attacks should
be explicitly expressed and manually solved. [? ] defines a formal
basic set of security services for accomplishing security goals. In
this approach, security property analysis strongly relies on the
designer’s experience. Moreover, threat assessment is not easily
feasible. There are number approaches for the formal verification
security properties. Most of them are not automated and cannot
be used as the engineering tool e.g. [? ], [? ] and [? ]. Among the
researches dedicated to the engineering-oriented security verifica-
tion that we are aware of, the closest are [? ], [? ] and [? ]. UMLsec
[? ] is a modeling framework aimed at defining security properties
of software components and of their composition within a UML
framework. It also features a rather complete framework address-
ing various stages of model-driven secure software engineering
from the specification of security requirements to tests, including
logic-based formal verification regarding the composition of soft-
ware components. In [? ], Kordy et al. exposed a formal description

of attack-defense trees. In these diagrams, interactions between
the attacker and the system (defender) are modeled as attacks and
countermeasures. In this sense, our approach is different as it re-
lies on attacker capabilities and on a description of the system
behaviour. This means that the verification algorithm presented in
this paper is able to prove that a design is secure against a certain
class of attacker, without prior knowledge of the form the attack
would take. On the other hand, verification algorithms working
on attack-defense trees can at best prove that a countermeasure is
efficient against a specific attack. More recently, [? ] developed an
expanded UML model extending the sequence diagrams of UML for
security protocol verification. Their approach includes translation
of the models into ProVerif for verification of confidentiality and
correspondence. However, our work includes state diagrams for
the ability to model a broader range of protocols. Basic sequence
diagrams may model only a single execution, while state diagrams
may model protocol involving conditional statements and loops.
Furthermore, our process includes verification of weak and strong
authenticity.

With regards to previous publications on SysML-Sec, we propose
a way to better model situations (e.g., loops) and their models-to-
ProVerif transformation, taking into account the capabilities and



Safety and Security Analysis ISSA’2018, ,

limitations of ProVerif. We thus manage to limit cases where the
proof of security properties would fail, without impacting the safety
proof capabilities of SysML-Sec diagrams.

6 CONCLUSION
The paper describes a formal and novel Model-Driven Approach
for the (safety) and security modeling and verification of embedded
systems. The paper itself focuses on the formal SysML-to-ProVerif
transformation, and sketches a proof of the soundness of our ap-
proach. Last but not least, this new transformation is already avail-
able in TTool, and it includes backtracing capabilities. The overall
approach is exemplified with a toy example. However, it has already
been successfully applied to a large range of systems, they include
an authenticated and non-authenticated versions of the TLS proto-
col, an implementation of the X3DH protocol used by messaging
applications such as Signal/Telegram or a key exchange protocol
targeting Intel SGX architecture, and the design of the embedded
architecture of an autonomous vehicle. Our formal description set
the frameworks for a future proof of equivalence or soundness.
Proof limitations of ProVerif could also be addressed using other
proving techniques, e.g. relying on Prolog.


	Abstract
	1 Introduction
	2 SysML-Sec Language
	2.1 Syntax

	3 From SysML-Sec to Proverif
	3.1 ProVerif Language
	3.2 Translation of SysML-Sec design to ProVerif

	4 Validation
	4.1 Correctness theorem
	4.2 Verification results in TTool

	5 Related Work
	6 Conclusion

